Reconstruction accuracy of the surface detector of the Pierre Auger Observatory

The Pierre Auger Collaboration Simone Maldera

Auger Surface Detector

Angular Resolution

computed on an event by event basis

 θ , Φ and σ_{θ} , σ_{Φ} from fit of arrival time of the first particle in the tank.

based on:

◊ Parabolic shower front Model

\$\\$ semi-empirical model for the uncertainty in the time measurement in each detector.
(C. Bonifazi, et al astro-ph 0705.1856)

Angular Resolution: angular radius that would contain 68% of the showers coming from a point source.

space-angle uncertainty computed from σ_{θ} and σ_{ϕ} as: $E(n) = \frac{1}{2} \left[\sigma^2 \pm \sin^2(\theta) \sigma^2 \right]$

$$F(\eta) = \frac{1}{2} \left[\sigma_{\theta}^2 + \sin^2(\theta) \sigma_{\phi}^2 \right]$$

$$AR = 1.5\sqrt{F(\eta)}$$

Angular resolution on an event by event basis

check on Angular resolution (I): "twin" tanks

We reconstructed the same showers twice, each time using one of the pairs of stations located 11 m apart.

The space angle difference between the two reconstructions is distributed as:

$$dp = e^{-\frac{\eta^2}{2\sigma^2}} d\left(\cos\left(\eta\right)\right)$$

The angular resolution obtained is in agreement with the event by event estimation

check on Angular resolution (II): Hybrid data

comparison between hybrid and SD only reconstruction (Hybrid resolution ~0.9° (σ ~ 0.6°) subtracted in quadrature).

AR =
$$1.5\sqrt{\sigma^2 - 0.6^2}$$

Provides an absolute check on the reference system.

FD mirrors pointing checked with stars and reconstructed laser shots (< 0.3°)

S(1000) as energy estimator and its uncertainty

Building an energy estimator for a Ground Array

Sampled signals have to be used to estimate:

Core Position and $S(R_{ref})$ with R_{ref} a reference distance

uncertainties of the energy estimator

Shower-To-Shower:

fluctuations of S(1000) for fixed primary energy and composition

caused by shower physics

Model and energy independent

shower to shower fluctuations of S(1000) at the level of 10%

uncertainties of the energy estimator

reconstruction uncertainties:

Statistical:

sampling fluctuations in signal sizes (finite area of detectors)

obtained from the LDF fitting uncertainties

Systematic:

caused by the uncertainty in the shape of the LDF on an event by event basis

event reconstructed N times with LDF slope (β) sampled 0. from a Gaussian distribution centered around the predicted value and $\sigma = \sigma_{\beta}$

uncertainties of the energy estimator

reconstruction uncertainties:

Statistical:

sampling fluctuations in signal sizes (finite area of detectors)

obtained from the LDF fitting uncertainties

Systematic:

caused by the uncertainty in the shape of the LDF on an event by event basis

event reconstructed N times with LDF slope (β) sampled from a Gaussian distribution centered around the predicted value and $\sigma = \sigma_{\beta}$

no dependence on zenith angle

Check on the S(1000) uncertainty estimation

• Full MC simulations (Corsika-Proton-QGSJetII)

- S(1000)_{True} computed simulating a ring of 18 tanks at 1000 m.
- The distribution of: log(S(1000)_{Rec}/S(1000)_{True}) is fitted to a log normal distribution for each S(1000).

 $\sigma_{_{S(1000)}}/S(1000)$ form MC is compared with data

agreement between estimation from data and MC

Checks with Hybrids

we reproduce the dispersion around the calibration curve using the S(1000) fluctuations and FD energy resolution

 \diamond the dispersion around the calibration

 \diamond using S(1000) uncertainties (sh-to-sh

curve is related to the combined

uncertainties of SD and FD

Conclusions

Angular Resolution

- The angular resolution is experimentally determined event by event
- checked using doublets and hybrid data.
- It is better than 2 deg for E< 4 EeV,

1.2 deg 3<E<10 EeV and 0.9 deg for E>10 EeV (θ>20°)

S(1000) accuracy

- Uncertainties are estimated on an event by event basis
- $\frac{\sigma_{S(1000)}}{S(1000)}$ ~ 4% (8%) at the highest energies for events without (with) saturated stations.
- At the highest energy the uncertainties of the energy estimator are dominated by shower to shower fluctuations.