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Particle production from Schwinger mechanism

* The Lund model
Implemented in ®0) qo\ /qo P
*PYTHIA

J. Schwinger, Phys. Rev. 128, 2425 (1962). B. Andersson, T. Sjostrand, et al, Phys. Rep. 97, 31 (1983).

B. Andersson, The Lund Model (Cambridge University Press, Cambridge, 1998)



Nonextensive particle production

Gaussian fluctuations
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g-Gaussian fluctuations
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Asymptotic behaviors
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J. R. Alvarado Garcia, D. Rosales Herrera, et al, J. Phys. G: Nucl. Part. Phys. 50, 125105 (2023).

Low pT particles:
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High pT particles:




Hagedorn also comes from fragmentation of strings

We found:
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High pT particle production requires heavy tailed string
tension fluctuations!



Temperature fluctuations

Gaussian fluctuations g-Gaussian fluctuations
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Nonextensive particle production implies a
nonthermal description of the system!

D. Rosales Herrera, et al, Phys. Rev. C 110, 015205 (2024).



Thermodynamics from the pT spectrum

Temperature of min bias pp Shannon entropy for the
collisions (at LHC energies) normalized TMD:
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D. Rosales Herrera, et al, Phys. Rev. C 109, 034915 (2024).



Heating the TMD

Heat capacity is a measure of how much energy is required for “heat up” the TMD

Flattening of the soft part
TMD
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Enhancement of the TMD tail
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Thermodynamics from the pT spectrum

Heat capacity:

dH
C = Td_T
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Pion production at
ISR energies
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Softened hadron production Xexp(-X)
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Particle production coming

from string fragmentation

D. Rosales Herrera, et al, Eur. Phys. J. C 85, 760 (2025).
ALICE Collaboration, Phys. Lett. B 845, 138110 (2023).
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Softened hadron production
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Color String Percolation Model (CSPM)

String percolation model
Strings=color objects

QGP Y
8-
Pb Pb
— &

Pb

e Strings need to interact for particle
production
e Corresponds to the initial state of the

system
Chartrchyan et al., Phys. Rev. C, 2013
Feofilov et al., SHEPPXXII, 2015
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Phenomenology of the CSPM

String Properties

*color field Q0
*Transverse area S1 5
*Transverse momentu (PT>1

Cluster of two strings

*Multiplicity — [4 1
Cluster of n strings B
*Multiplicity: p=NF(n)u.
/1Sy PT)1
1

*Transverse momentum: - with

s,

S <P%>1
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F(’?)Z\/

Braun and Pajares, EPJC 16, 349 (2000)
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Properties

*Independent emission
*Multiplicity:

ulm =281 /81 +V2(5?/8))
*Transverse momentum:
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Origins of the temperature fluctuations

Structure of the QGP for interacting color strings
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Origins of the temperature fluctuations

HOT SPOTS
Percolation (of interacting color strings) Color Glass Condensate \\\\
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Concluding remarks

e A nonextensive description is required to
accurately describe the pT spectrum

e The system created in ultrarelativistic collisions is
out of equilibrium

e Source of fluctuations:

o fluctuations in the intensity of color interactions
o anisotropies of the initial state
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Thank you



124 The phenomenological implications of the tunnelling process

1 The production of heavy flavors

The results derived above are compatible with the WKB results, ie.
they are equivalent to Schwinger’s result for the decay of the no-particle
vacuum in the presence of an external electric field. We obtain for the qg
production rate, with u the mass and +k, the transverse momenta of the
pair,

dP ~ d*k, exp(—nE? /x), E =Kk} + p? (12.28)

The result in Eq. (12.28) has several different consequences.

The first is related to the relative abundance of different flavors in the
fragmentation process. It is difficult to obtain precise mass-values for the
unobservable gg-particles but it is possible to obtain estimates.
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