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The set of all QFTs is vast

Without a complete classification of all relativistic field theories, it is
impossible to performa a systematic search in them of solutions to open
problems. For this reason I believe that a crucial responsability of theorists is
to push the boundaries of quantum field theory to eventually achieve such a
classification.



Outline

▶ Fundamental ingredients of QFT
▶ Field theories and covariant bases
▶ Extradimensional excursions



Fundamental ingredients of QFT



Beyond the Standard Model can mean two things

1. The ingredients of the Standard Model, arranged in novel ways, or

2. entirely new ingredientes.

What are the possibilities for new ingredientes? That’s constrained by known
physics, which gives several no-go theorems and obstructions:
▶ Weinberg–Witten no-go theorem .
▶ Haag-Lopuszanski-Sohnius theorem.
▶ Ostrogradski unstability.
▶ Vafa-Witten theorem on global symmetries.



A (perturbative) QFT needs three ingredients

They are: a spacetime (fixing asymptotically free states), a gauge group (fixin
the gauge bosons) and a matter content.

Z =

∫ ∏
DΨi︸ ︷︷ ︸

matter

exp
∫
M

dDx︸ ︷︷ ︸
spacetime

L
(

Dµ︸︷︷︸
gauge

Ψj ,V(Ψj)

)

Historically: we build a noninteracting theory of matter fields and then we
add interactions.
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The matter sector is the least sistematically understood

L = Lgauge(Ψ, Aµ)︸ ︷︷ ︸
3 coupling constants + 1 phase

+ LHiggs(Φ, A
µ)︸ ︷︷ ︸

1 mass & 1 vev

+ Lflavor(Ψ,Φ)︸ ︷︷ ︸
(9) 12 masses, (3) 6 angles & (1) 2 phases

.

▶ The gauge Lagrangian is very economical.
▶ Most SM parameters come from the flavor Lagrangian .
▶ Formal simplicity is achived by specifying the gauge group and the matter

multiplets. There is nothing similar for the matter Lagrangian.



One-particle states are Poincaré irreps

The Poincaré algebra has two algebraic invariants

C2 = PµPµ, C4 = WµWµ with Wµ = 1
2εµστρM

στP ρ.

One-particle states satisfy

C2 |Ψ⟩ = m2 |Ψ⟩ , C4 |Ψ⟩ = −m2j(j + 1) |Ψ⟩

We callm the mass and j the spin ofΨ.

The Lorentz algebra is the homogeneous part of the Poincaré algebra. This
algebra so(1, 3) ∼= su(2)A ⊕ su(2)B is generated by the commuting sets

A =
1

2
(J − iK), B =

1

2
(J + iK).

We label the Lorentz irreps with the su(2) numbers (a, b).



The SM includes a few possibilities

▶ Klein-Gordon’s equation is the eigenvalue condition for P 2 in the scalar
representation:

(0, 0) .

▶ Dirac’s equation is the parity projection for the representation(
1

2
, 0

)
⊕
(
0,

1

2

)
.

▶ Proca’s equation for a massive vector field is the spin (i.e., Pauli-Lubanski)
projection for j = 1 in the representation(

1

2
,
1

2

)
.



Even if we are conservative, others are theoretically possible
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Field theories and covariant bases



General constructions run into consistency obstructions

1. A general (a, b) field contains spins |a− b| . . . (a+ b); theory must
include constraints to remove unwanted spins. These may propagate as
ghosts or produce other acausalities when interactions are introduced 1.

2. In some cases, the only kinematical terms available produce a
higher-derivative theory, which may run into the Ostrogradski
unstability2.

3. Massless j > 2 fields imply a trivial S-matrix, rendering interactions
inconsistent3.

1Velo & Zwanziger, Noncausality and Other Defects of Interaction Lagrangians for Particles
with Spin One and Higher, 1969

2Woodard, Avoiding Dark Energy with 1/R Modifications of Gravity, 2006
3Weinberg & Witten,Limits on Massless Particles,10.1016/0370-2693(80)90212-9 ,1980



We conventionally use parity-invariant representations

Parity exchanges the (a, b) Lorentz labels; parity-invariant representations are:

▶ Non–chiral (a, a) irreps, which correspond to integer spin Fierz-Pauli.
▶ Chiral, reducible (a, b)⊕ (b, a) with a ̸= b.

Those with only two spin sectors (including the three in the SM, plus others)
can be enumerated:

1. The non-chiral (0, 0) and
(
1

2
,
1

2

)
.

2. The single spin chiral representations (SSχR) (j, 0)⊕ (0, j) with j ≥ 1

2
(Joos-Weinberg representations).

3. The double spin chiral representations (DSχR)(
j − 1

2
,
1

2

)
⊕
(
1

2
, j − 1

2

)
for j > 1.



Duffin-Kemmer-Petiau and Rarita-Schwinger are exceptions

Other formalisms have been used to study the properties of hadrons, which
don’t fit in this scheme. One is the Rarita-Schwinger field, transforming as(

1,
1

2

)
⊕
(
1

2
, 1

)
⊕
(
1

2
, 0

)
⊕
(
0,

1

2

)
.

Historically this came about from the product of a spinor and a vector. The
other one is the Duffin-Kemmer-Petiau theory, using the 10–dimensional
vector–tensor representation

(1, 0)⊕ (0, 1)⊕
(
1

2
,
1

2

)
.

This is a puzzling construction: the propagating dofs comprise a mixture from
different irreps of the Lorentz algebra including both chiral and non-chiral
representations. Let us try to understand it!



The defining property of DKP is the meson algebra

The Duffin–Kemmer–Petiau relativistic wave equation was used in the XX
century to describe the properties of spin zero and spin one mesons. At the
heart of the DKP theory is the meson algebra

SρSµSν + SνSµSρ = gµνSρ + gµρSν , (1)

which has nontrivial 5 and 10 dimensional representations. This algebra
permits the construction of a Dirac-like first order wave equation

(Sµ∂
µ −m)Ψ = 0. (2)

It is not very popular anymore.



Lie representations are Jordan-Lie algebras

Given a Lie algebra g over F, the universal enveloping algebra U(g) is the
infinite sum

T (g) =
∞⊕

n=0

Tn(g),

where T 0 = F, and Tn is the n-fold product g⊗ g⊗ · · · ⊗ g, modded by the
Lie product x ⋄ y = [x, y]. This means that every representation of g can be
uniquely extended to a representation of U(g)!.
This unfaithful representation carries a dual algebrais structure, called a
Jordan-Lie algebra, where the products are the anticommutator and
commutator. By constructing this algebra, we can find all possible covariant
operators acting on the representation space4.

4S. Gómez-Ávila, M. Napsuciale, Covariant basis induced by parity for the (j, 0)⊕ (0, j)
representation, 10.1103/PhysRevD.88.096012, 2013



From Jordan-Lie we get covariant kinetic terms

Given a Lorentz irrep V , the associated Jordan-Lie algebra provides a basis for
End(V ). We build a wave equation for each kinematical term, that is, every
covariant operator that can be contracted with momenta.

A very well-known example is the Dirac representation:[(
1

2
, 0

)
⊕
(
0,

1

2

)]2
= (0, 0)2 ⊕ (1, 0)⊕ (0, 1)⊕

(
1

2
,
1

2

)
2

.

This corresponds to the following basis for End(V ):

{1, γ5, γµ, γ5γµ, σµν}.

The kinematical terms available are: γµPµ, γ5γµP
µ and PµP

µ. The other
terms are forbidden by symmetry5.

5Ferro, Olmos, Peinado & Vaquera, Quantization of second-order fermions,
doi:10.1103/PhysRevD.109.085003.



From kinetic terms we get field theories

1. We start with some representation of the Lorentz algebra g.

2. We define new elements through the Jordan product g • g .
3. We evaluate the Jordan and Lie products of these new elements with g

and itself.

4. We continue this process until the algebra closes and we have a
complete basis for End(V ).

5. We classify all kinematical terms (symmetric operators), and construct
the corresponding wave equations.

6. The remaining operators classify all possible self-interactions, and
bilinear couplings to other fields.



Kinetic terms for the SSχR

In the single–spin chiral representations there are two possible kinetic
operators. One comes from

(j, 0)⊗ (j, 0)⊕ (0, j)⊗ (0, j) ≃ (0, 0)2 ⊕
2j⊕
i=1

(i, 0)⊕ (0, i) . (3)

This scalar kinetic term will produce a Klein-Gordon equation of motion for
every spinor component, tipically double the number of degrees of freedom
desired. We also have anti block diagonal operators:

2((j, 0)⊗ (0, j)) ≃ (j, j)2 . (4)

This correspond to another possible kinetic term, formed from a symmetric
traceless tensor with 2j indices. This is of order 2j in the momenta; for j > 1,
it corresponds to a higher–derivative theory.



…and for the DSχR

In the double spin chiral representation block diagonal operators in the
direct–sum basis are(

j − 1

2
,
1

2

)⊗2

=

2j−1⊕
r=0

[(r, 0)⊕ (r, 1)],

(
1

2
, j − 1

2

)⊗2

=

2j−1⊕
r=0

[(0, r)⊕ (1, r)].

(5)

Since j ≥ 3
2 , this will always include a pair of symmetric tensors (1, 1).

Anti–block diagonal operators come from the cross product

2

(
j − 1

2
,
1

2

)
⊗
(
1

2
, j − 1

2

)
= 2

j⊕
r,s=j−1

(r, s). (6)

The lowest order kinetic term comes from the anti diagonal product
(j − 1, j − 1), which means that we have a first-order wave equation for
j = 3/2, and a second-order wave equation for j = 2.



Extradimensional excursions



Lorentz in 4+1 dimensions

Representations of the 4+1 Lorentz algebra are classified by two numbers
m/n, defining the shape of a figure in the (a, b) space.

A

B

1

2

3

2

1

2

3

2

3/1 representation

A

B

1

2

3

2

1

2

3

2

1/3 representation

A

B

1

2

3

2

1

2

3

2

3/2 representation

4+1 irreps are in correspondence with sequences of 3+1 Lorentz irreps.



Poincaré in 4+1 dimensions

The 4+1 Poincaré algebra has rank 3 and therefore its irreducible
representations are indexed by three Casimir operators. Two are well–known:

C2 = PµPµ, C4 = W ρµνWρµν , with Wρµν = 1
2

∑
(ρµν)

Mµν Pρ.

The new Casimir is lineal in the momenta:

C3 =
1

23
ϵαβµνρMαβMµνPρ. (7)

The problem of building free QFTs for the extradimensional theory amounts
to constructing the induced representations with good C2, C3, C4 quantum
numbers.



The linear Casimir projects linear equations

1+4 Irrep Lorentz Projection C3

1/1 Scalar Field 0

1/2 Spin Zero DKP 0

2/1 Dirac Field γµP
µ

2/2 Rarita-Schwinger γ′
µP

µ

1/3 Spin 2 Symmetric + Vector + Scalar 0
3/1 Spin 1 DKP βµP

µ

All of the three known linear equations can be understood as the 3 + 1
projection of the 4 + 1 C3 eigenvalue equation.



In the bosonic case, two spin 2 linear equations exist

A

B

1

2

3

2

1

2

3

2

1/3 TeVeS representation
with C3 = 0.

A

B

1

2

3

2

1

2

3

2

3/2Connection + Tensor +
DKP.

A

B

1

2

3

2

5

2

1

2

3

2

5

2

5/1 Weyl + Connection +
Tensor.

Both 3/2 and 5/1 carry three spin sectors⇒ constraints might be bad.



For spin 3
2 , there is a novel possibility

A

B

1

2

3

2

1

2

3

2

2/2 Rarita-Schwinger representation

A

B

1

2

3

2

1

2

3

2

4/1 Novel spin 3
2
representation



The 4/1 corresponds to the(
3

2
, 0

)
⊕
(
3

2
, 0

)
⊕
(
1,

1

2

)
⊕
(
1

2
, 1

)
a 20-dimensional representation. The covariant vector operator is

Sµ ≡ 1

23
ηµν ϵ

ναβρσ{Mαβ ,Mρσ},

which we can use to write a linear equation for this field.



Conclusions



▶ We linked quantum numbers in 4+1Minkowski to field theories in 3+1.
▶ The three known relativistic linear theories can be projected from the

eigenvalue equation for C3.
▶ In this sense, Dirac’s, Rarita-Schwinger and Kemmer-Duffin-Petiau are

related.
▶ An unexplored (as far as I know) alternative to Rarita-Schwinger was

identified.
▶ There is also a pair of spin 2 linear equations mixing Weyl’s, Levi-Civita

and Proca representations.



Thank you for your attention!


