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1. Observational Evidence of Dark
Matter
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Rotational Curves of Galaxies and Clusters

Fritz Zwicky (1933)! Vera Rubin (1970)2
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Figura 2: Galaxy Rotational Curve *.

Figura 1: Cluster Coma ultraviolet and
visible 3.

LZwicky 1933, 2Rubin et al. 1970, 3(GSFC) 2007, 4Astrénomo.org 2024.
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Dark Matter Properties

Properties of DM are the follow:

Dark matter should not interact with photons, or its interaction should be
extremely weak!.

The self- interaction of DM should be weak 2.
Their barion interactions should be weak?.
Particles with velocities no-relativistic.

Dark Matter should be a stable particle.

Dark Matter can not be a standar model particle.

Profumo et al. 2007, 2D'Amico et al. 2009
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2. Dark Matter Model
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Dark Matter Model
4. There is a global custodial symmetry

WL IR (el Mo N oI EXRR ETU I CRUM ST (2) ¢ which stabilizes the gauge bo-
2009t sons AL, and their masses are degenerate.

)

1. A local SU(2) 4 symmetry was Dark Matter Candidate

introduced in the BSM framework. J The three vector bosons AL.

2. A scalar field ® was added, which is a l 5. The scalar 1) mixes with the Higgs bo-

doublet under SU(2) s and a singlet | 5, allowing the model to have possibili-

under the SM. ] tjes for direct detection.

3. Through the Higgs mechanism, thel 6. The model's phenomenology was

1: .
gauge bosons Aj, acquire mass. | analyzed through the direct detection

cross section and the relic density.

IHambye 2009
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Model Lagrangiane

A local symmetry SU(2) g was incorporated into the BSM framework.
Moreover, a scalar field ® was added, which transforms as a doublet under
SU(2) ¢ and as a singlet under the SM*.

1 .0
£ = LM — ZFJ‘ Fi¢ 4+ (D,®)!(D"®)
— A ®TOHTH — 2010 — )\ (19)? — uHTH — N(HH)?. (1)

= The kinetic term is given by —iF’““”Fl’ﬁ,, where F/8 = 0,A7 — 0,Af, +
g )
%fabcAzAlc/'

= The covariant derivative is defined as DM<I> — 8“{) - zg(ﬁ?’Aﬂ.

= The terms p3®1® + )\, (®T®)? constitute the potential of ®, analogous to
the Higgs potential.

= The term \,,,®'® HT H represents the coupling between the scalar doublet ®
and the Higgs doublet.

IHambye 2009
Juan Felipe Jiménez Dark Matter Phenomenology in the Non-Abelian Hidden Model 6 /33




Observacionales E. DM Model Observables Numerical Results Conclusions Referencias

Theoretical Constraints

Tree-level unitary scattering amplitude®.

Am S8, A<4m  Ag <4m 3(A+Ay) £ \/9()\ +A,)% +4A2, < 8.

The scalar masses should be real 1:

A>0, Ay>0, 2X, + /X >0.

Stability and Perturvativity

@ The potential should be bounded from below *.
@ Couplings must remain perturbative .

@ The electroweak vacuum is stable up to the Planck scale!.

A>0, XAy >0, A >0.

1Baouche et al. 2021
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Custodial Symmetry

The scalar doublet is given by:

V2 |94 tids
The term ®T® is writing like:

TP = <¢1+¢2+¢3+¢4 Z¢2 (3)

This equation can be understood as the norm of a four-component vector, which
exhibits a global rotational symmetry SO(4)!.

1Schwartz 2013
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Custodial Symmetry

When the field ® acquires a vev v, the local symmetry SU(2) g is spontaneously
broken. Since the vev must be neutral, we have ¢, — vy + 77’1.

- Hli-akaind

T V2 40 V2 lvg i +ids (4)

V2
The term ®T® is written as:
1 3
1o = 3 (Z o7 + (0 + %)2) ; ()
i—1

That term preserves the global rotational symmetry SO(3), whose Lie algebra is
isomorphic to the group SU(2)g (custodial symmetry)?.

Masses Degenerate

The conservation law associated with the custodial symmetry stabilizes the gauge
bosons A, and ensures their masses remain degenerate.

1Schwartz 2013
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Hypercharge Coupling

Starting from the Lagrangian of the hypercharge coupling, the Dirac spinors can
be written in terms of their chiral components.

?/JL]
U= ; 6
[ 0
Therefore, the Lagrangian of the hypercharge coupling interaction is:

Lsp D gYUNWUB, = ¢V v B, + 9 Vet ¥R B,, (7)

However, the operator f’assigns different eigenvalues to the spinor ¥ according
to its chirality.

Stability of Dark Matter Candidate

Therefore, the hypercharge coupling breaks the global SU(2) symmetry in the SM.
As a result, there are no interactions between the DM particles AL and the
fermions of the SM'.

IHambye 2009
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Apply the unitary norm:
7 o ien) 2 5 g ]
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Figura 3: The gauge bosons acquire mass through the action of the Goldstone bosons

Replacing the new doublet, the Lagrangian in the interaction basis is as follows

1 2 " 1 2 o2 1 2 o/

g(g¢v¢) A, - A¥+ §g¢AH CAFR'? 4 19¢U¢Au - Akn

A, w2 A

7(77/ +vg)?HTH — f(n’ +vg)? — f(n’ +v4)*
—u?HTH - XHTH). (9)

1
L= L5 = FWE +

+ (8,11,77/)2 -

N =
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Considering the potential in the scalar sector:

A Z A 2
V= VSM+Tm(n'+v¢)2(h’+v)2+ #2‘25 (0 +vy)?+ 4¢ (n/+v¢)4+%(h’+v)2+%(h/+v)4.
(10)
The mass matrix is obtained from:
o2V
M?) =_——— / 11
Hence, the mass matrix takes the following form:
2 2 Amv3 2 2
M2 — [mh/ mh/nf] L e+ 3 % + A VgV (12)
=1,2 2 q|n= 2
My My A UgV )‘"5” +3)\¢v3) —1—;@ ’

From the diagonalization of this matrix, it is possible to obtain the rotation matrix
of the scalar fields.

(M?);; — tan2f.
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Lagrangian in the Physical Basis

The two scalars in the interaction basis mix according to the following matrix:

= [ nd] ). -

Therefore, the Lagrangian in the physical basis is given by:

, LA 1 1 1
L=Lgy — 4F F'w 8(g¢v¢)2AﬂA“ + 5(8#17)2 + 5(3#h)2 — §m727772
1
— §mflh2 + A, A" [mn‘f’nQ + Kk, ®h? + Iinh¢77h + 20¢§n¢n + 2v¢§h¢h]

1
2W#+W’“ + o520, ZHZ“} [nnn2 + kph? + Kppnh + 20,1 + 2v£hh]
= At = N bt = MPR? = Agnh® — Xgn*h — p,n® — pph® — pyPh— panh?

— (hcos B+ nsinf) Z (%ff) . (14)
f
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3. Observables
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Direct Detection

Q
<
=
o
-
>

Figura 4: Elastic scattering between a DM particle and a nucleon
The cross section is shown below:

2 2 212 2
1 v (ms —m3) m
ST 2 4 2 2hli? n h N
o°t = sin“ 26m%,— . 15
647rf & p N2 mamy, <mA+mN) (15)
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Relic Density

The relic density is defined as follows:

p N, M
Q) =~ = %
pC pc
where n,. = Moy po = B — (105371 x 1070 GeVem™9) 1.

The relic density of a species evolves according to three different stages:

@ Stage I: The system enters thermal equilibrium?.

@ Stage II: The system is in equilibrium and decouples (Freeze-out)!.

@ Stage Ill: The system is out of equilibrium?.

Figura 5: Relic Density Across Three Different Stages

LGiunti et al. 2007, 2Rubakov et al. 2017
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5.Numerical Results
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Data Analysis

A likelihood profile has been built in the parameter space based on the following
contributions:
L=Lg+ L, +4L,, (17)

donde:

@ L, is the likelihood function related to the relic density measurement from
the PLANCK experiment and calculated using MicrOMEGAS.

@ L, s the likelihood function related to the Higgs boson mass, calculated
using HiggsSignals.

@ £ is the likelihood function related to the experimental cross section data,
calculated using DDCalc.

For the Case of the Relic Density

In this case, £ was not considered to avoid biasing the results.

Juan Felipe Jiménez Dark Matter Phenomenology in the Non-Abelian Hidden Model 18 / 33
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Relic Density

1.0
i
=}
08 =
%
Cfl: 0.6 5 @ The region of the mass of AZ
~ 2 that maximizes the likelihood
15 o4 B is m 4 € [60,1390] GeV.
T @ Masses above m, > 1390
o GeV are excluded.
0.2 1~
£

1000 2000 3000 4000
ma(GeV)

Figura 6: Likelihood ratio as a function of the mass of the dark matter candidate
(m ) and the relic density, compared to the Planck density Qh? = 0.120 £ 0.001
(red dashed line)?.

LAghanim et al. 2020
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Direct Detection Cross Section

@ The best-fit point is located
around m 4 ~ 1000 GeV.

V o1yex pooyaNi o[goid

=
¥}
xcuL7/7

500 1000 1500 2000
ma(GeV)
Figura 7: Likelihood ratio as a function of the dark matter candidate mass (m ,) and
the spin-independent direct detection cross section log(agl/cm2)1’2'3'4, with current data
from the LUX-ZEPLIN experiment (2024)° and considering the XLZD project®.

! Aprile et al. 2023, 2Aprile et al. 2018, 3Billard et al. 2014, *Schumann et al. 2015, 5Aalbers et al. 2024, 5Collaboration et al.
2024
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Coupling Constant

1.0 1
%
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Figura 8: Likelihood ratio as a function of the coupling constant (g,,) and the mass
of the additional scalar (m,), showing the best-fit region for these variables.
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Annihilation Channels

The scattering amplitudes were computed as functions of the Mandelstam variables

t and s, with the goal of determining the dominant annihilation channel at each
point in the parameter space’:

b
where the integration limits for an arbitrary process a + b — ¢ + d are given by

1 g b
(8) = —0—————% dt |M, 18
) = Torxte vy . %P (19)

1
t = mg +mg — o= (s + mg —mg)(s + mg —mg)

FAY2(s,m
and the kinematic function X is defined as A(z, y, (v —y— 2)? — 4yz. Finally,
the thermally averaged rate for channel 7 is given by*:

= g | AR (%) a (20)

1Byckling et al. 1971, 2Cirelli et al. 2007
Juan Felipe Jiménez

amp) N2 (s,m2mg)] - (19)
z) =
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Annihilation Channels
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Figura 9: Parameter space of the relic density, highlighting the dominant annihila-
tion channels.
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6. Conclusions
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Conclusions

@ There is a parameter space where the model exactly predicts the ob-
served relic density, confirming its viability.

@ The parameter space that satisfies all theoretical constraints lies above
the neutrino floor, suggesting theoretical prospects for direct detection.

@ A significant fraction of the parameter space can be explored by LUX-
ZEPLIN experiments, while practically the entire space is accessible to
the XENON200T experiment.

@ Recent results from LUX-ZEPLIN in 2024 indicate that over 90 % of
the favored parameter space region is accessible with this experiment.

@ The future XLZD experiment has the potential to fully probe the favo-
red region of the parameter space.

Juan Felipe Jiménez Dark Matter Phenomenology in the Non-Abelian Hidden Model 25 / 33
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@ Constrain the parameter space by considering indirect detection data.
@ Explore detection processes through particle collider experiments.

@ Study the model's behavior at energy scales significantly higher than
the electroweak vacuum scale.

Juan Felipe Jiménez Dark Matter Phenomenology in the Non-Abelian Hidden Model 26 / 33
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Thank You Very Much
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7. References
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