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Portal to the Dark Side?

 Leading hypothesis: non-gravitational interactions between
dark and visible matter
 Generic in BSM theories
e Coincidence problem
 Shared thermal (or non-thermal) history with SM
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Beyond the WIMP Paradigm

Electroweak-scale window to the dark sector is closing
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Beyond the WIMP Paradigm

Electroweak-scale window to the dark sector is closing
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Beyond the WIMP Paradigm

KiNetically DEcoupling Freezeout
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Dark Photon

e in mass basis:
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Dark Photon

e in mass basis:

L=~ FuF" — JF, F™ 4 omfy A 4 x (i) —my) x Hedhy (A + e4))

D=3d—igpd ap=gp/in

e Let’s consider
region:

My S mar S 2m,y

3 X
E.
f :

« kinetic mixing | | |
t %@< with SM: 5 1 ,:

AR




Breaking Equilibrium
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KINDER Regime
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New Regimes

r >1.5: 3—>2 freezes out last
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Experimental Constraints
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Kinetic decoupling essential for accurate experimental
projections




Experimental Constraints
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 KINDER: small available window. Large self-interaction rates, large s-

wave annihilation signal i

n CMB

e Available windows for new Regimes i, Il




Inelastic Vector-Portal DM

DM pseudo-Dirac fermion charged under hidden U(1)
U ( 1) p broken: X X* Non-degenerate Majorana fermions
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Vector coupling off-diagonal
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Inelastic KINDER Constraints

r=1.8, 2,h*=0.12

v“‘v’]vvl

r=14, 2,h*=0.12

R B ST e
: |

|

1074

‘‘‘‘‘‘ CMB (xx* > e*e")

CMB (ISR) Accelerator

1078

SN1987A - ap=4nr

ggi/my > 1 cm?/g ap =1

1073 1072 107! 1
m, [GeV]

« CMB and Self-Interaction constraints alleviated

e Available windows for new Regimes KINDER, Ii, Ill




Conclusions

etically DEcoupling freeze-out production of DM
Rich set of novel pathways to the relic abundance of DM
Necessary for accurate experimental targets

New viable target regions for future experiments searching
for light DM

Carefully explore even benchmark dark sector models in
search of new cosmological histories

More to come...




