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Objectives

• We want to improve a previous analysis 1 in τ → KKπντ .

• We want first to reproduce that analysis.

• Then, we want to compute all the τ → 3h ντ , where h = π±, π0, K±, K0, K
0
.

• All computed within RχT2, an extention of χPT.

1D. Gómez-Dumm et al., PRD 81 (2010) 034031.
2Ecker et al., Nucl. Phys. B321 (1989) 311; Ecker et al., PLB 223 (1989) 425.
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Motivation

• τ decays provide the cleanest scenario to test low-energy hadronic interactions.

• Such τ decays give a large background in measuring observables for other processes.

• Expressing the decay amplitudes in terms of some parameters, MC methods can be
used to generate such events.

• Therefore, one can include these amplitudes in MC generators as TAUOLA 3.

3Jadach et al. Comput.Phys.Commun. 64 (1990) 275
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χPT

• Chiral Perturbation Theory relies on the symmetry of the quark term in the QCD
Lagrangian in the chiral limit.

Lq =
∑
f

qf (iγµD
µ −mf ) qf ,

where f = u, d, s, ...

• When projecting the quark fields into left/right parts qL/R = 1
2
(1∓ γ5)q,

qγµD
µq = qLγµD

µqL + qRγµD
µqR,

• while
−mqq = −mqRqL −mqLqR.
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χPT

• So, if the mass terms is disregarded one gets an SU(3)R ⊗ SU(3)L symmetry.

• This means, uχ ↔ dχ ↔ sχ ↔ uχ, for χ = R,L.

• The terms in the Lagrangian are constructed imposing such symmetry.

• The lowest order operators are

L2 =
f 2

4
⟨(DµU)†DµU⟩+ f 2B0

2
⟨MU † + U †M⟩.
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χPT

• Here f and B0 are low energy constants, U = exp
[√

2ϕ/f
]
,

ϕ =
∑
a

1√
2
ϕaλa =

 1√
2
ϕ+ π+ K+

π− 1√
2
ϕ− K0

K− K0 ϕs

 ,

• where
ϕ± = ±π0 + Cqη + C ′

qη
′, and ϕs = −Csη + C ′

sη
′
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RχT

• The vector resonances are included following the flavor structure and chiral
symmetry

LV
2 =

FV

2
√
2
⟨Vµνf

µν
+ ⟩+ i

2
√
2
GV ⟨Vµν [u

µ, uν ]⟩,

• and similarly for the axial resonances

LA
2 =

FA

2
√
2
⟨Aµνf

µν
− ⟩,

• where uµ = i[u†(∂µ − irµ)u− u(∂µ − iℓµ)u
†], f± = uF µν

L u† ± u†F µν
R u and U = u2.
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Form factors

• The decay amplitude is

M = −4GFV uquντγ
µ(1− γ5)uτTµ,

• where the hadronic matrix element is given by

T µ = V µ
1 F1 + V µ

2 F2 + V µ
3 F3 +QµF4,

where Vi are the Form Factors, V µ
1/2 = (gµν − QµQν

Q2 )(p2/3 − p1)ν and

V3µ = iεµνρσp
ν
1p

ρ
1p

σ
3 .
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τ decays

• We find ten decay channels, where for each channel the diagrams that contribute
are

a) c)

f)e)d)

b)
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Reproducing results

• The ten decay channels are for τ− → ντh1h2h3

Channel h1 h2 h3

1 π− π+ π−

2 π− π0 π0

3 π− K+ K−

4 K− π+ π−

5 K− K+ K−

6 K− π0 π0

7 π− K
0

K0

8 K− K
0

K0

9 K− π0 K0

10 π− K
0

π0

τ decays 10/23



Reproducing results

• We found that for channels 3 and 7, the form factors have the same functional form.

• Dividing F3 into contributions from zero, one and two resonance exchange

FNR
3 = − 1

12f
,

F 1R
3 = − 1

24

FVGV

f 3

[
g1R3

M2
ρ − s

+
h1R
3

M2
K⋆ − t

]
,

F 2R
3 =

1

12

FAGV

f 3

Q2

M2
a1
−Q2

[
g2R3

M2
ρ − s

+
h2R
3

M2
K⋆ − t

]
.
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Reproducing previous results

• For these decays, we have the same Feynman diagrams and Form Factors.

• Thus, we can use these decays as test.

• But... we haven’t reproduced such observables. (Serious lack of students!)

• All the form factors for the other channels have been computed.
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Conclusions and pending work

• We have been able to reproduce previous results for τ → KKπντ decays.

• Such results include Feynman diagrams and all the form factors.

• Such results show we are on the right path!

• We are making the numerical programs to compute the Q2 invariant mass spectra.

• Stay tuned for the final chapter!
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Thank you!
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Back up!
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Isospin structure of mass operator

• SU(3)R ⊗ SU(3)L breaks spontaneously to SU(3)V , which means qR transforms
exactly as qL.

• Let’s analize the isospin structure of the qλiq operators within SU(3)V .

qλiq
SU(3)V−−−−→ qU †λiUq.

• Taking the trace
Tr[U †λiU ] = Tr[λi] = 0,

one finds that
U †λiU = Rijλj,

since any traceless matrix is a linear combination of Gell-Mann matrices.
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Isospin structure of mass operator

• On the other hand, isospin transformations form a subgroup SU(2)I ⊂ SU(3)V .

• In flavor space this means for U ∈ SU(3)V

U =

(
V 0
0 1

)
, V ∈ SU(2)I

• Since only λ1, λ2 and λ3 transform thusly under SU(2)I ,

U †λiU = Rijλj for i, j = 1, 2, 3.

• Also, since

2δij = ⟨λiλj⟩ = ⟨(U †λiU)(U †λjU)⟩ = RikRjl⟨λkλl⟩ = 2(RRT )ij,

R is an orthogonal 3× 3 matrix.
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Isospin structure of mass operator

• ⇒ qλiq for i = 1, 2, 3, transform under SU(3)V exactly as pion fields.

• Thus, qλ3q generates ∆I = 1,∆I3 = 0 transitions.

• Therefore, the qλ3q operator has exactly the same structure as a π0 field operator.

• We can now use this to compute the η → π0π+π− decay amplitude.
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η → 3π decay amplitude

• The decay amplitude is defined as

i(2π)4δ(4)(p1 − p2 − p3 − p4)A
ijk
η→3π = ⟨πi(p2)π

j(p3)π
k(p4)|iT |η(p1)⟩,

• where

T = −mu −md

2

∫
d4xq(x)λ3q(x),

• which gives

A
ijk
η→3π = −mu −md

2
⟨πiπjπk|q(0)λ3q(0)|η⟩.

• On the other hand, one can define an amplitude for a general isospin index s.t.

A
ijk,l
η→3π = −mu −md

2
⟨πiπjπk|q(0)λlq(0)|η⟩.
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η → 3π decay amplitude

• This means
A

ijk,3
η→3π = A

ijk
η→3π.

• qλlq transforms exactly as a pion under isospin transformations.

• Therefore A
ijk,l
η→3π must have the exact same isospin structure as ππ → ππ.

• This means that it can be written as Aijkl
ππ→ππ,

A
ijk
η→3π = A

ijk,3
η→3π = A1(s, t, u)δ

ijδk3 + A2(s, t, u)δ
ikδj3 + A3(s, t, u)δ

i3δjk.
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η → 3π decay amplitude

• Crossing symmetry gives

A1(s, t, u) = A1(s, u, t), A2(s, t, u) = A1(t, s, u), A3(s, t, u) = A1(u, t, s)

• Therefore, the decay amplitude is given by a single function

A
ijk
η→3π(s, t, u) = A(s, t, u)δijδk3 + A(t, u, s)δikδj3 + A(u, s, t)δi3δjk.

• There are only two decay channels for physical pions

A+−0
η→3π = A113

η→3π = A(s, t, u),

A000
η→3π = A333

η→3π = A(s, t, u) + A(t, u, s) + A(u, s, t).

• Thus, the neutral channel can be obtained directly from the charged one.

τ decays 21/23



From η decays to η′ decays

• The great advantage of this development is the straightforward use in η′ decays.

• Following the previous procedure, we define the decay amplitude

A
ij
η′→ηππ = ⟨πi(p2)π

j(p3)η(p4)|iT |η′(p1)⟩,

• where

T = −mu −md

2

∫
d4xqλ3q.

• So, we construct the amplitude

A
ij,k
η′→ηππ = −mu −md

2
⟨πiπjη|qλkq|η′⟩,

which fulfills Aij,3
η′→ηππ = A

ij
η′→ηππ, for which we’ll use the same arguments.
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η′ → ηππ decays

• The A
ij,k
η′→ηππ has the same isospin structure as Aijk

η→3ππ, which means

A
ij
η′→ηππ = A

ij,3
η′→ηππ = A1(s, t, u)δ

ij + A2(s, t, u)δ
i3δj3 + A3(s, t, u)δ

i3δj3.

• Crossing symmetry relates all the previous functions, such that

A
ij
η′→ηππ = A(s, t, u)δij + [A(t, u, s) + A(u, s, t)] δi3δj3.

• Finally, for the physical pions we have

A+−
η′→ηππ = A11

η′→ηππ = A(s, t, u),

A00
η′→ηππ = A33

η′→ηππ = A(s, t, u) + A(t, u, s) + A(u, s, t).
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