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Abstract

It is well known that the relativistic equations have acausal so-
lutions, which have generally been ignored. This is particularly true
for higher spins. We consider spin 1/2 and spin 1 in this talk. We
analyze corresponding propagators which may indicate if a theory is
local or non-local. Negative-energy and tachyonic solutions are also
considered. The conclusions are paradoxical in both spins.

The algebraic characteristic equations of the Dirac equation are Det(p—
m) = 0 and Det(p+m) =0, p = p'v, for u— and v— 4-spinors of the spin-
1/2. They have solutions with py = £E, = £+/p? + m?. The recent prob-
lems of superluminal neutrinos, negative-mass squared neutrinos, various
schemes of oscillations including sterile neutrinos, require attention. Re-
cently, the concept of the bi-orthonormality has been proposed; the (anti)
commutation relations and statistics are assumed to be different for neutral
particles. Next, Sakharov in 1967, Ref. [1], introduced the idea of two uni-
verses with opposite arrows of time, born from the same initial singularity
(i.e. Big Bang). Next, Debergh et al. constructed (within the framework
of the present-day quantum field theory) negative-energy fields for spin-1/2
fermions, Ref. [2]. Currently, the predominating consensus is the existence
of dark matter (DM) and dark energy (DE) paradigms. Possible particle
candidates have been proposed for the DM, but to date, the search for
these candidates has not been successful. This suggests that something
was missing in the foundations of relativistic quantum theories. Modifica-
tions appear to be necessary in the Dirac sea concept, and in the even more
sophisticated Stueckelberg concept of backward propagation in time. The
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Dirac sea concept is intrinsically related to the Pauli principle. However,
the Pauli principle is intrinsically related to the Fermi statistics and the
anticommutation relations of fermions. We propose relevant modifications
in the basics of relativistic quantum theory below.

The general scheme for construction of the field operator has been pre-
sented in [3]. In the case of the (1/2,0) & (0,1/2) representation we have:

U(x) = (2717)3 /d4p 5(p? — m2)ePTU(p) =
= (2711_)3 Z/d‘lp 5(173 - Ez)e—ip-xuh(po,p)ah(po, p) = (1)
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where ay, b}; are the annihilation/creation operators, and in textbook cases

 (exp(+0 - 9/2)8(0)
un(p) = <exp<—a - so/2><z>§<o>> @)

cosh(p) = E,/m, sinh(y) = |p|/m. During the calculations above we had
to represent 1 = 60(pg) + 0(—pp) in order to get positive- and negative-
frequency parts [4]. In the Dirac case we should assume the following
relation in the field operator:

S un@)bh(p) = > un(—p)an(-p). (3)
h h

We need A,z (p) = Uu(p)ur(—p). By direct calculations, we find
—mbl,(p) = > Aun(p)aa(—p). (4)
A

Hence, A,y = —im(o -n),\, n = p/|p|. In the (1,0) ® (0, 1) representation
a similar procedure leads to a different situation:

au(p) = [1 = 2(S - m)*]nax(-p). (5)

This signifies that in order to construct the Sankaranarayanan-Good field
operator [5] to satisfy [v,,0,0, — %Eat)mﬂ\ll(x) = 0, we need additional
postulates.

We have, in fact, uj,(E,, p) and up(—E,, p) originally, which satisfy the
equations: [Ep(+7°) —~-p —m] up(+Ep, p) = 0. Due to the properties
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UTyOU = =40, UT~'U = ++* with the unitary matrix U = 4%9° we have
in the negative-energy case: [Epyo —v-p— m] Ulup(—Ep,p) = 0. The
explicit forms 7570u(—Ep,p) are different from the textbook “positive-
energy” Dirac spinors. After the space inversion operation, we have (R =
(x = —x,p = —Dp))

PRa(p) = PRy Y'up(—Ep,p)=—
PRu(p) = PRy*Yu (~E,,p)=—

(p), (6)
(p)- (7)

Similar formulations have been presented in Refs. [6] and [7]. The group-
theoretical basis for such doubling has been given in the papers by Gelfand,
Tsetlin and Sokolik [8], who first presented the theory in the 2-dimensional
representation of the inversion group in 1956 (later called “the Bargmann-
Wightman-Wigner-type quantum field theory” in 1993). Barut and Zi-
ino [7] proposed yet another model. They considered the 75 operator to
be the operator of charge conjugation. Thus, the charge-conjugated Dirac
equation has a different sign compared to the ordinary formulation:

(i7" 0 + m]¥gz =0, (8)

and the charge conjugation so defined applies to the whole system,
fermion+electromagnetic field, e — —e in the covariant derivative. The
superpositions of the ¥pz and ¥4, also give us the “doubled Dirac equa-
tion”, the equations for A— and p— self/anti-self charge conjugate spinors.
The concept of doubling the Fock space has been developed in the Ziino pro-
gram (cf. Refs. [8, 9]) within the framework of the quantum field theory. In
the BZ case the charge conjugate states are simultaneously the eigenstates
of the chirality. Here, the relevant paper is Ref. [10]. It is straightforward
to merge u(p) and v(p) spinors in one doublet of “positive energy” and
v(p) and u(p) spinors, in another doublet of “negative energy” , as Markov
and Fabbri did. However, the point of my paper is that both u(po, p) and
v(po, p) contains contributions to both positive- and negative- energies, cf.
Ref. [11].

We study the problem of construction of causal propagators in spin
S = 1/2 and higher-spin theories. The hypothesis is: in order to construct
analogues of the Feynman-Dyson propagator we actually need four field
operators connected by the dual and parity transformation. We use the
standard methods of quantum field theory. Thus, the number of compo-
nents in the causal propagators is enlarged accordingly. The conclusion
under discussion is that if we did not expand the number of components
in the fields (in the propagator) we would not be able to obtain the causal
propagator.



According to the Feynman-Dyson-Stueckelberg conception, the S = 1/2
causal propagator Sp has to be constructed on using the formula (e.g.,
Ref. [12, p.91])

dB3p m i
o) =3 | G 0t =ty a v )

+ 9(t1 —t2) b v (p)07 (p)e® ], (9)

where = x5 — x1. In the spin S = 1/2 Dirac theory, it results in

dp _. p+m
S = e 10
r(z) / (27r)4e p2 —m?+ie’ (10)
where a = —b = 1/i, € defines the rules of work near the poles.

However, attempts to construct the causal covariant propagator in this
way failed in the framework of the Weinberg theory, Ref. [13], which is a
generalization of Dirac’s ideas to higher spins. The propagator proposed in
Ref. [14] is the causal propagator. However, the old problem remains: the
Feynman-Dyson propagator is not the Green function of the Weinberg equa-
tion. As mentioned, the covariant propagator proposed by Weinberg prop-
agates kinematically spurious solutions [14]. We construct the propagator
in the framework of the model given in Ref. [9]. The concept of the Wein-
berg field doubles has been proposed there. For the functions w%l) and @Z)él),
connected with the former by the dual (chiral, 75 = diag(13x3), —13x3))
transformation, the equations are!

(Vuwpupw +m?)tY =0, (11)
(’Y;wpupu - mz)wél) =0, (12)

with pu,v = 1,2,3,4. For the field functions connected with wgl) and wél)
by the 5744 transformations the set of equations is written:

- 2

['Y,pr,upl/ - m2] ¢§ ) =0, (13)

— 2

[VMVPMPV + m2] ¢§ ) =0, (14)
where ¥, = Y44YuwVaa is connected with the S = 1 Barut-Muzinich-

Williams +,,, matrices [16]. In the cited paper I have used the plane-
wave expansion. Thus, ugz)(p) = 7574411& )( ), ug ) = ﬂ§1)75*y44, ug)(p) =

T have to use the Euclidean metrics here in order a reader to be able to compare the
formalism with the classical cited works.



7574475u51)(p) and u(Q)( ) = —651)744. Now we check whether the sum of

the four equations
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can be satisfied by a definite choice of a and b. Simple calculations give
3.0 [a Ot —t1) 27" 1 bo(ty — tg)e_ip(”_“)] =

- [apupue(h —t1) exp [ip(x2 — x1)] + bpup,0(t1 — t2) exp [—ip(x2 — x1)] }

+a[ — 8,460,460 ' (ta — t1) + 1 (DpOua + Puua)d(ta — t1)}

exp [ip - (x2 —x1)] +b [5M45y45 "(ta —t1)+

i1(ppdva + pudua)d(ta — t1)] exp [—ip(x2 — x1)] ; (16)

We conclude as follows: the generalization of the notion of causal propa-
gators is admitted by the use of the Wick-like formula for the time-ordered
particle operators provided that a = b = 1/4im?. It is necessary to con-
sider all four equations, Eqgs. (11)-(14). Obviously, this is related to the
12-component formalism, which I presented in Ref. [9].

Meanwhile, I propose to use the 8-component (or 16-component) spin-
1/2 formalism in similarity with the 12-component formalism of this dis-

cussion. If we calculate

3 d3 m —0 —ip-T
Sg, )(m’xl):/(%z))i% fp [e(tQ—tl) a ¥ (p)Vy(p)e

o d'p  _ipe  (PEM)
0(t1 — t2) b W (p) T2 (p)eP™| = P , (17
+0(t1 —12) b VE(p) ¥ (p)e } / (Qﬁ)ﬁ p2 —m?2 +ie (17)
(with ¥ doublets in the field operator) we readily come to the result that
the corresponding Feynman-Dyson propagator gives the local theory in the
sense:

Sl Fm]SE T (@ — 1) = 60 (2 — 2), (18)
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even in the case of self/anti-self charge conjugate states. 2

We should use the set of Weinberg propagators obtained in the per-
turbation calculus of scattering amplitudes. In Ref. [17] the amplitude for
the interaction of two 2(2S + 1) bosons has been obtained on the basis of
the use of one field only, and it is obviously incomplete, see also Ref. [16].
But, it is interesting to note that the spin structure was proved there to
be the same, whether we consider the two-Dirac-fermion interaction or the
two-Weinberg S = 1-boson interaction. However, the denominator differs
slightly (1/A% — 1/2m(Ag—m)) from the fermion-fermion case in the cited
papers [17], where A, A is the momentum-transfer 4-vector in Lobachevsky
space. More accurate considerations of the fermion-boson and boson-boson
interactions in the framework of the Weinberg theory have been reported
elsewhere, Ref. [18]. So, the conclusion is: one can construct analogs of the
Feynman-Dyson propagators for the 2(25 4 1) model and, hence also local
theories, provided that the Weinberg states are quadrupled (S = 1 case),
and the neutral particle states are doubled.

What is the physical sense of the mathematical formalism presented
here? In the S = 1 Weinberg equation [13] we have 12 solutions.> Apart
from py = +E, we have tachyonic solutions py = £E), = +1/p? —m?, i.
e. m — im. This is easily checked by using the algebraic equations and
solving them with respect to pg:

Det[y"'pup, £m? = 0. (19)

In constructing the field operator, Ref. [19] we generally need
u(—p) = u(—po,—p,m) which should be transformed to
v(p) = Yu(p) = Yu(+po, +p,m). On the other hand, when we calcu-
late the parity properties we need p — —p. The u(pg, —p, m) satisfies

5 pupw + m*Ju(po, —p,m) =0, (20)
The u(—po, p,m) “spinor” satisfies:
(3" pupy + m*Ju(—po, +p,m) =0, (21)

that is the same as above. The tilde signifies ¥ = ~p07*“ Y00 that is
analogoues to the S = 1/2 case 4* = v9y*v9. The u(—po, —p, m) satisfies:

V™ pupy + m?Ju(—po, —p,m) = 0. (22)

2The dilemma of the (non)local propagators for the spin S = 1 has also been analyzed
in Ref. [15] within the Duffin-Kemmer-Petiau (DKP) formalism or the Dirac-Kéhler
formalism [15].

In Ref. [16] we have causal solutions only for the S=1 Tucker-Hammer equation.



This case is opposite to the spin-1/2 case where the spinor u(—pg, p,m)
satisfies

[Y*pu + mlu(—po, +p,m) =0, (23)

and u(pov —b, m)a
Y*pu — m]u(po, —p,m) = 0. (24)

In general we can use u(—pg, +p, m) or u(pg, —p, m) to construct the
causal propagator in the spin-1/2 case. However, we do not need to use
both because a) u(—pg, +p, m) satisfies a similar equation to u(+pg, —p, m)
and b) we have an integration over p. This integration is invariant with
respect to p — —p. The situation is different for spin 1. The tachyonic
solutions of the original Weinberg equation

V™ pupy + m?Ju(po, +p,m) = 0 (25)

are just some solutions of the equation with the opposite square of m —
im). We cannot transform the propagator of the original equation (25) to
that solely by a change of variables, as in the spin-1/2 case. The mass
squared changes the sign, just as in the case of v— “spinors”. When we
construct the propagator we have to take this solution into account, as well
as the superposition u(p,m) and u(p,im), and corresponding equations.
The conclusion is paradoxical: in order to construct the causal propagator
for spin 1 we have to take acausal (tachyonic) solutions of homogeneous
equations into account. It is not surprising that the propagator is not
causal for the Tucker-Hammer equation because it does not contain the
tachyonic solutions.
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