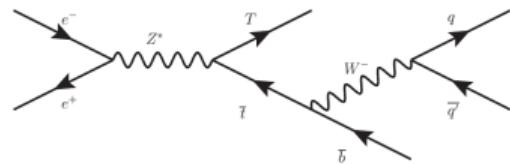


Single Production of a Vector-Like Top Partner via the Recoil-Mass Technique

Higinio Valle Cristina Oropeza Oscar Ochoa

Universidad Iberoamericana, CDMX, México

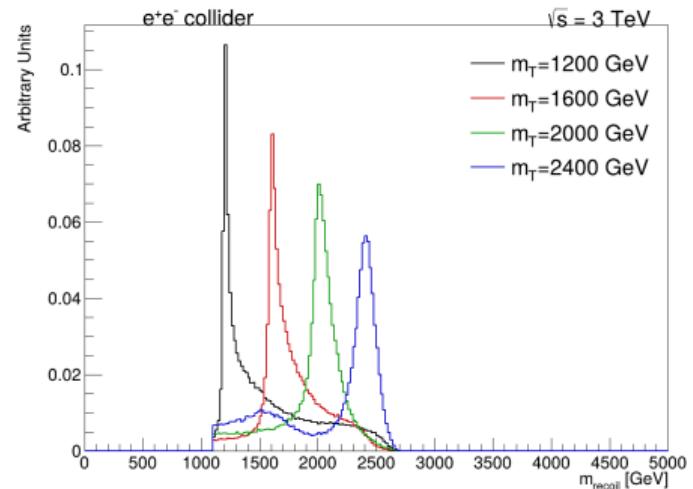

October 21, 2025

- Motivation for vector-like top partners and the recoil-mass strategy
- Benchmark model, simulated samples, and analysis workflow
- Event-selection highlights and baseline performance
- Impact of ISR and beam polarization on sensitivity
- Discovery reach in the (m_T, κ) plane and outlook

- Vector-like quarks help stabilize the Higgs potential and appear in composite/little Higgs scenarios.
- A clean e^+e^- environment allows precise studies of single-production channels.
- Recoil-mass techniques provide mass-agnostic and decay-mode-agnostic searches that remain sensitive across wide m_T ranges.
- Objective: quantify discovery potential for single- T production at $\sqrt{s} = 3 \text{ TeV}$ with 5 ab^{-1} .

Model and Benchmarks

- Signal: $e^+e^- \rightarrow T\bar{t}$ with effective coupling κ at the T –top–gauge vertex.
- Benchmark masses: $m_T = \{1.2, 1.6, 2.0, 2.4\}$ TeV with widths from dedicated simulations.
- Reference coupling: $\kappa = 0.20 \Rightarrow \Gamma_T \approx 22.3$ GeV for $m_T = 1.2$ TeV.
- Additional samples scan $\kappa \in \{0.10, \dots, 0.60\}$ to map the discovery reach.

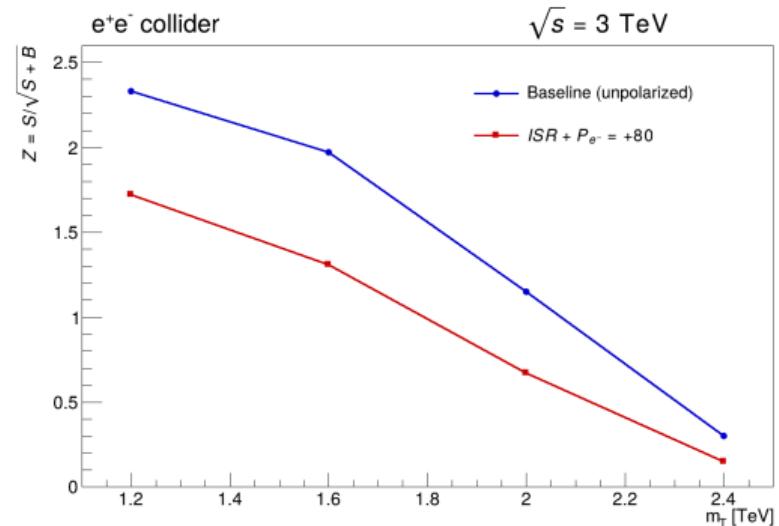

Event Samples and Reconstruction

$$\mathcal{L}_{\text{eff}} \supset \kappa_T \left\{ \sqrt{\frac{\zeta_{Tq}^W}{\Gamma_W}} \frac{g}{\sqrt{2}} [\bar{T}_{L/R} W_\mu^+ \gamma^\mu d_{L/R}] + \sqrt{\frac{\zeta_{Tt}^Z}{\Gamma_Z}} \frac{g}{2c_W} [\bar{T}_{L/R} Z_\mu \gamma^\mu u_{L/R}] - \sqrt{\frac{\zeta_{Tt}^H}{\Gamma_H}} \frac{M}{v} [\bar{T}_{R/L} H u_{L/R}] \right\} + \text{h.c.}$$

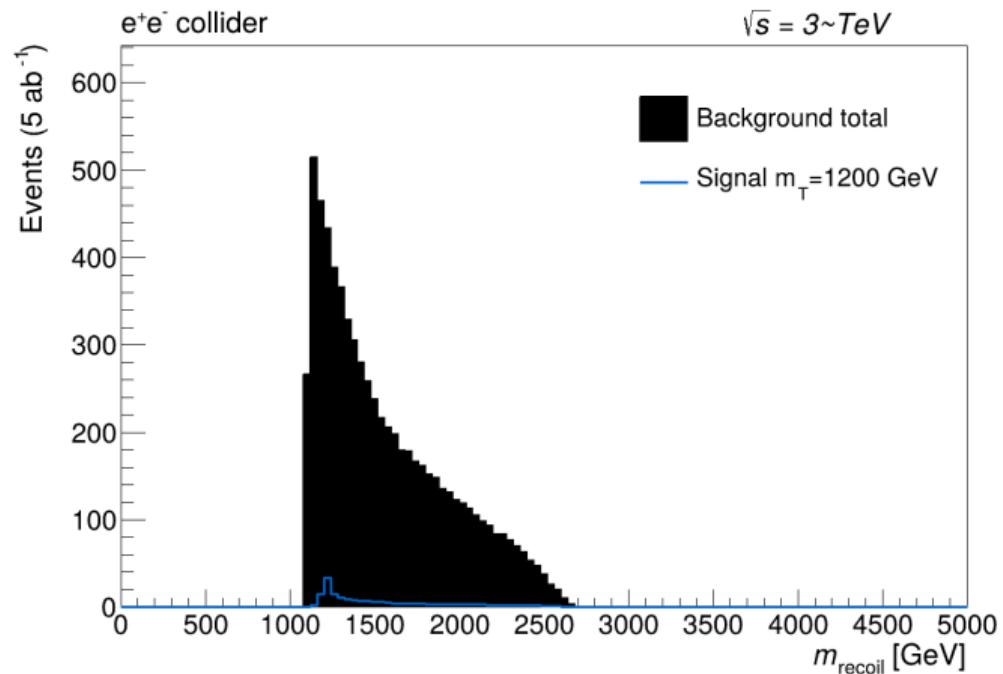
- Model: Mathieu Buchkremer et al. “Model-independent framework for searches of top partners”(Nuclear Physics B 876.2 (2013), págs. 376-417.).
- Generation: MadGraph5 _ aMC@NLO + MadSpin with Pythia 8 showering.
- Backgrounds: $t\bar{t}$, $t\bar{t}Z$, $t\bar{t}h$, W^+W^-Z , normalized to 5 ab^{-1} .
- Two configurations: baseline (no ISR, unpolarized) and ISR + $P_{e-} = +80\%$.

Selection Strategy

- Identify a high- p_T Cambridge–Aachen $R = 1.0$ fat jet tagged with the Johns Hopkins top-tagger.
- Require at least one b -tagged subjet/small- R jet to suppress light-flavor backgrounds.
- Constrain event kinematics: $E_{\text{miss}} < 1 \text{ TeV}$ and $m_{\text{recoil}} > 1.1 \text{ TeV}$.

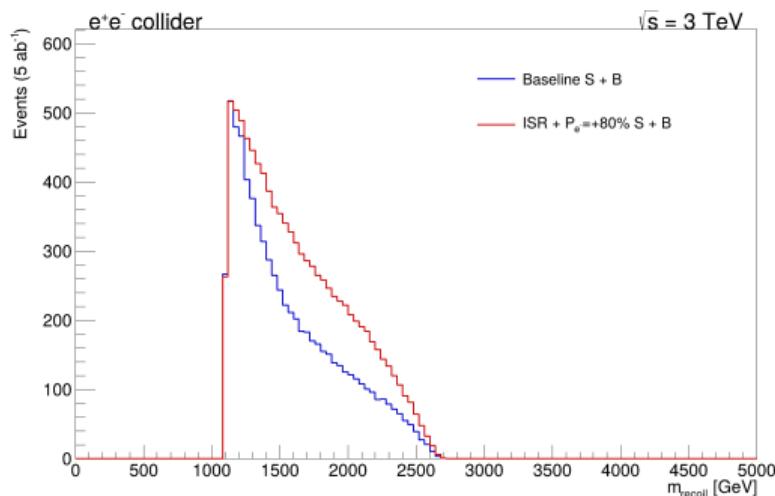


Baseline Performance

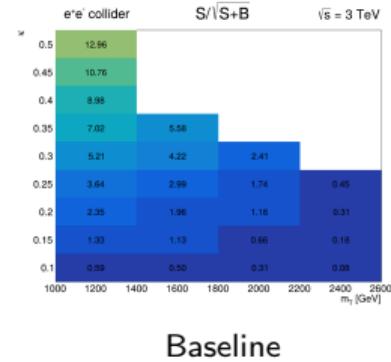

- $t\bar{t}$ reduced from $\mathcal{O}(10^5)$ to 2.3×10^3 events after the full selection.
- Signal efficiency for $m_T = 1.2 \text{ TeV}$ retains $\sim 16\%$ of events ($\approx 199 / 1232$) at $L = 5 \text{ ab}^{-1}$.
- Total background after full selection: $B \approx 6940$ events for $L = 5 \text{ ab}^{-1}$.
- Counting significance for $\kappa = 0.20$: $Z = 2.35$ at $m_T = 1.2 \text{ TeV}$ for $L = 5 \text{ ab}^{-1}$.

Significance Summary

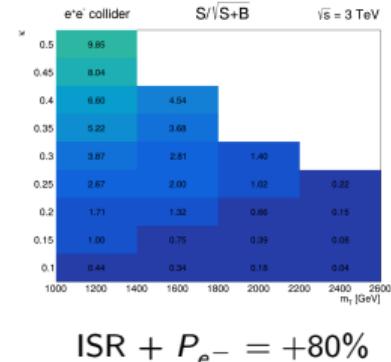
m_T [TeV]	Z_{base}	$Z_{\text{ISR+pol}}$
1.2	2.35	1.72
1.6	1.97	1.31
2.0	1.15	0.67
2.4	0.30	0.15



Recoil-Mass Spectrum


Impact of ISR and Polarization

- ISR increases background acceptance to $B = 9789$.
- Signal yield drops from 199 to 172 events at $m_T = 1.2 \text{ TeV}$.
- Net effect: $\sim 25\%$ loss in counting significance.



Coupling Scan

- Dedicated samples map $Z = S/\sqrt{S+B}$ versus (m_T, κ) .
- Baseline (no ISR) reaches $Z \approx 5$ at $(1.2 \text{ TeV}, \kappa = 0.30)$.
- ISR + $P_{e^-} = +80\%$ shifts the reach to $Z \approx 3.7$ at the same point.
- Sensitivity falls below $Z = 1$ near $m_T \gtrsim 2 \text{ TeV}$ unless $\kappa \gtrsim 0.4$.

Baseline

ISR + $P_{e^-} = +80\%$

Summary and Outlook

Summary

Baseline selection reaches about 2.35 sigma at 1.2 TeV with κ 0.20, retaining roughly 16 percent of the signal while remaining mass and decay-mode agnostic across the scanned benchmarks.

ISR with plus-eighty-percent electron polarisation reduces the yield but the recoil observable keeps broad sensitivity over the mass versus κ plane.

Next Steps

Optimise the selection separately for low and high masses, extend the dedicated studies to additional κ benchmarks, and incorporate ISR-aware observables to recover significance.

Backup: Baseline Cutflow

Selection step	Signal	$t\bar{t}$
All events	1232.3	95 706.0
Fat-jet preselection	1232.0	95 335.1
Top tagged	401.4	41 535.0
Substructure tag	348.6	37 869.4
Isolation veto	215.1	31 975.5
$m_{\text{recoil}} > 1.1 \text{ TeV}$	206.1	5897.1
$E_{\text{miss}} < 1 \text{ TeV}$	198.6	5654.6
$\text{BDT}_{t\bar{t}}$	189.2	4244.3
BDT_{1200}	187.3	4122.1
Final (BDT_{2400})	110.0	2322.6