

Exploring New Geometries in String Theory: Non-Abelian Orbifolds

In collaboration with S. Ramos-Sánchez [2506.08370] and R. Pérez-Martínez [2601.XXXX]

Miguel Ángel Hernández Segura
Instituto de Física, UNAM

XIX Mexican Workshop on Particles and Fields

Motivation

[The power of mirror symmetry, Robbert Dijkgraaf]

Motivation

Framework for obtaining B-U ingredients:

- Bigger gauge groups $SU(5)$, $SO(10)$, $SU(3)^3$, etc
- Non SM fields (axions, extra Higgs, leptoquarks, RHN ...)
- SUSY(?) and extra symmetries (R sym, \mathbb{Z}_2 , Q_6 , S_3 , A_5 , $\Delta(96)$...)
- Extra dimensions
- Modular symmetries

As nicely presented in talks by Myriam, Catalina, Selim, León, Alexander, Lorenzo, Melina, Hansel, Saúl... and many more (:

[The power of mirror symmetry, Robbert Dijkgraaf]

Framework: Heterotic String Theory

We have:

- ❖ 10 dimensional theory
- ❖ Supersymmetric theory
- ❖ Fixed gauge group:
 $E_8 \times E_8$ or $SO(32)$

We wish:

- ❖ 4 dimensional theory
- ❖ Supersymmetric theory (?)
- ❖ SM gauge group:
 $SU(3) \times SU(2) \times U(1)$

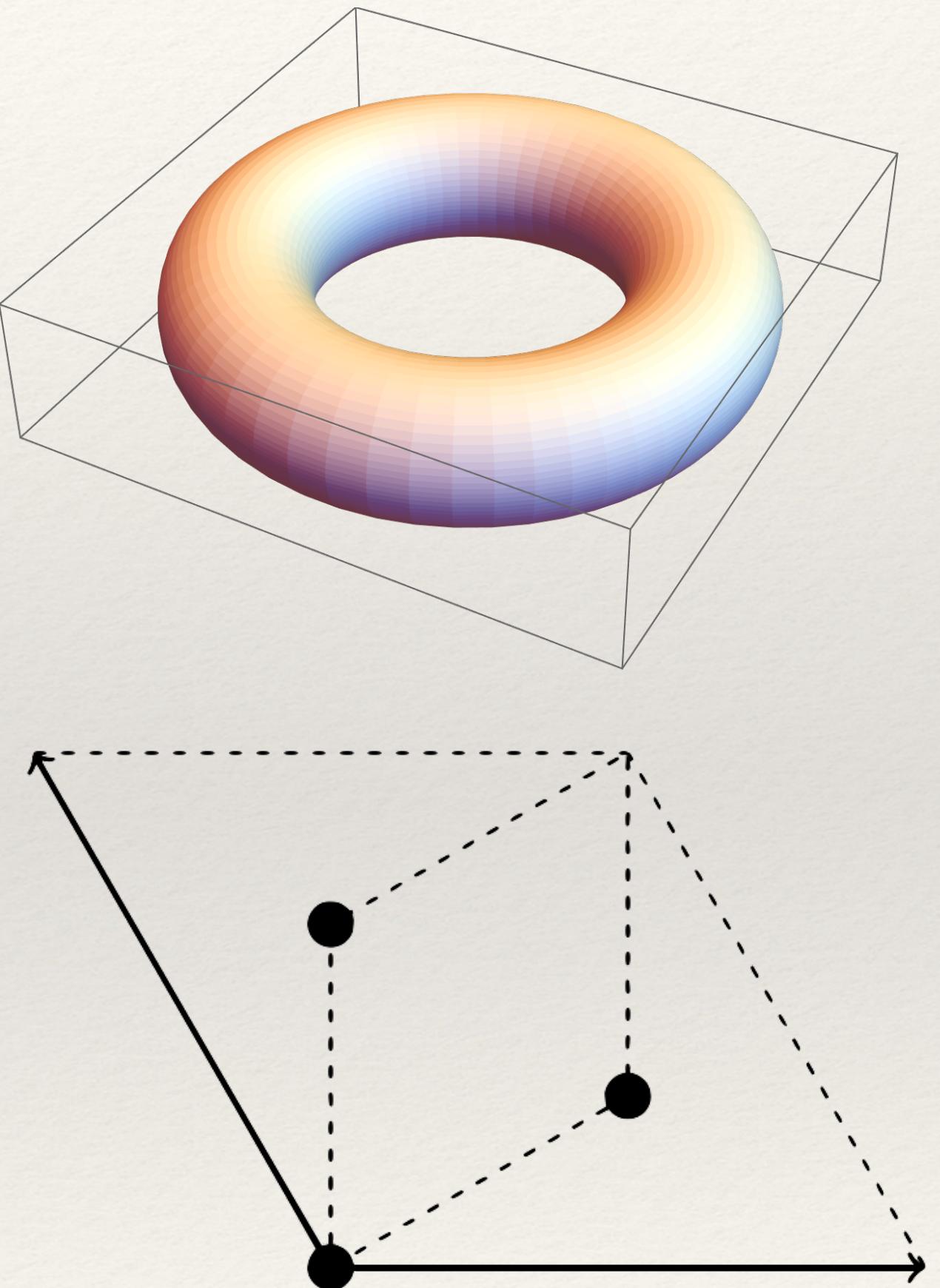
The spacetime dimension and the rank of the gauge groups does not match!

Dimensional Reduction

- ❖ Need to go from a 10 dim theory to a 4 dim one
- ❖ Ansatz $\mathcal{M}_{10} \rightarrow \mathcal{M}_4 \times X_6$
- ❖ In general X_6 should be a Calabi-Yau manifold
- ❖ In this talk, X_6 is a toroidal orbifold

Orbifolds: an Invitation

- ❖ An orbifold is defined as the quotient
$$\mathcal{O} = M/P$$
- ❖ Specially interesting if
$$M = \mathbb{T}^6, P \subset \mathrm{SU}(3)$$
- ❖ $\mathbb{T}^6 = \mathbb{R}^6/\Gamma$
- ❖ Hence, $\mathcal{O} = \mathbb{R}^6/S, \quad S = P \ltimes \Gamma$



Why Non-Abelian P ?

- ❖ In Abelian orbifolds, $\text{rank}(G_{4D}) = 16 = 4 \times \text{rank}(G_{\text{SM}})$
- ❖ From the bottom-up perspective, it is possible to obtain rank reduction from non-Abelian twists [\[Hebecker-Ratz 0306049\]](#)
- ❖ Rank reduction evidence from the top-down approach [\[Konopka 1210.5040\]](#)

Which Non-Abelian Point Groups?

- ❖ There are 35 inequivalent point groups compatibles with 4 dim. SUSY $\mathcal{N} = 1$,

S_3	$\mathbb{Z}_3 \times S_3$	$\mathbb{Z}_3 \rtimes \mathbb{Z}_8$	$\mathbb{Z}_3 \times (\mathbb{Z}_3 \rtimes \mathbb{Z}_4)$	$\mathbb{Z}_3 \times S_4$
D_4	$\Delta(27)$	$SL(2, 3) - I$	$\mathbb{Z}_3 \times A_4$	$\Delta(96)$
A_4	$\mathbb{Z}_4 \times S_3$	$\mathbb{Z}_3 \times SL(2, 3)$	$\mathbb{Z}_6 \times S_3$	$SL(2, 3) \rtimes \mathbb{Z}_4$
D_6	$(\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$	$(\mathbb{Z}_4 \times \mathbb{Z}_4) \rtimes \mathbb{Z}_2$	$\Delta(48)$	$\Sigma(36\phi)$
$\mathbb{Z}_8 \rtimes \mathbb{Z}_2$	$\mathbb{Z}_3 \times D_4$	$\mathbb{Z}_3 \times ((\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2)$	$GL(2, 3)$	$\Delta(108)$
QD_{16}	$\mathbb{Z}_3 \rtimes Q_8$	$\Delta(216)$	$SL(2, 3) \rtimes \mathbb{Z}_2$	$PSL(3, 2)$
$(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$	Frobenius T_7	S_4	$\Delta(54)$	$\Sigma(72\phi)$

[Fischer, Ratz, Torrado, Vaudrevange 1209.3906]

- ❖ 331 non equivalent geometries arise from them (twice as many as Abelian ones)

Many other options for Non SUSY orbifolds!

To be discussed on a poster by Isaac Castañeda on Friday

Abelian vs Non-Abelian

- ❖ In the Abelian case, P is a subgroup of the $\text{SO}(6)$ Cartan subalgebra
- ❖ Not the case in the non-Abelian scenario, *i.e.* needs a new formalism
- ❖ This fact gives rise to rank reduction

Generalization to the Non-Abelian Case

- ❖ Tasks:
 - Embed P in the geometric degrees of freedom $\mathbf{SO}(6) \subset \mathbf{SO}(8)$ and in the gauge degrees of freedom $\mathbf{SO}(32)$
 - Compute the 4 dim spectrum
- ❖ Difficulties:
 - Write P elements as rotations (block diagonal matrices, needs an algorithm)
 - Deal simultaneously with different choices for the Cartan basis (different roots systems)

$P \hookrightarrow \mathrm{SO}(6)$

- ❖ To achieve the embedding, we have to assign a twist vector $\nu = (0, \nu_1, \nu_2, \nu_3) \in \Lambda_{\mathrm{SO}(8)}$ to each $[g] \in P$ ν in the $\mathrm{SO}(8)$ Cartan basis
- ❖ The components of the twist vector of a given g , are such that $g = \exp [2\pi i \nu_k J_k]$, with J_k $\mathrm{SO}(6)$ generators
- ❖ So, we look for a basis β_g , such that $g = \exp [2\pi i \nu_k J_k]$
- ❖ Successfully done for S_3 , D_4 and $(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$

4 D Gauge Group G

- ❖ To achieve $P \hookrightarrow \mathrm{SO}(32)$, we have to assign a shift vector $V = (V_1, V_2, \dots, V_{16}) \in \Lambda_{\mathrm{SO}(32)}$ to each $g \in P$ V is in the $\mathrm{SO}(32)$ Cartan basis
- ❖ Solution: $V = (v_1, v_2, v_3, 0, \dots, 0)$ [Standard embedding]
- ❖ This gives
 $\mathrm{SO}(32) \rightarrow \mathrm{SO}(6) \times \mathrm{SO}(26) \rightarrow G \times \mathrm{SO}(26)$
- ❖ With G , such that $\mathrm{rank}(G) < 3$.
Therefore
 $\mathrm{rank}(G \times \mathrm{SO}(26)) < 16$ 😊

Spectrum: Untwisted Sector

- ❖ Work with $\text{SO}(8)$ weights, $|q\rangle$ and $\text{SO}(32)$ roots, $|p\rangle$ that
$$0 = \frac{q^2}{2} + N - 1/2, \quad 0 = \frac{p^2}{2} + \tilde{N} - 1.$$
- ❖ We build states $|q\rangle \otimes |p\rangle$, such that
$$p \cdot V_g - q \cdot v_g = 0, \text{ mod } 1 \quad \forall g \in S$$
- ❖ This require us to work with different Cartan bases simultaneously
Trouble!

Spectrum: Twisted Sectors

- ❖ We look for $|q\rangle$ in the $\mathrm{SO}(8)$ weight lattice, and $|p\rangle$ in the $\mathrm{SO}(32)$ root lattice such that, $\frac{q_{sh}^2}{2} - \frac{1}{2} + \delta_g = 0$, $\frac{p_{sh}^2}{2} - 1 + \tilde{N} + \delta_g = 0$, and they satisfy the physical condition for their respective equivalence class $[g]$ and its centralizer $\mathcal{C}_S(g)$
- ❖ This task reduces to the Abelian techniques (if $\mathcal{C}_S(g)$ is Abelian)
Fine!

Particular Geometries

- ❖ We studied the point groups S_3 , D_4 and $(Z_4 \times Z_2) \rtimes Z_2$
- ❖ These are completely inequivalent geometries.
Therefore, their study will allow us to check our method in truly different scenarios and verify that rank reduction is indeed a generic feature of non-Abelian orbifolds

S_3 Orbifold: Results

- ❖ 4 dim gauge group: $G = SO(26) \times U(1) \times U(1)$
- ❖ 4 untwisted moduli (\rightarrow modular symmetries?) in agreement with [Fischer, Ramos, Vaudrevange 1304.7742]
- ❖ We found the **26** irrep with the following multiplicity in each sector
 $4 \in [e], \quad 8 \in [\theta], \quad 18 \in [\sigma]$ generalizes $E_8 \times E_8$ results [Fischer, Ramos, Vaudrevange 1304.7742]

S_3 Orbifold: Spectrum

$\text{SO}(26) \times \text{U}(1) \times \text{U}(1)$ irrep.	U sector	$T_{[\vartheta]}$ sector	$T_{[\omega]}$ sector
$\mathbf{26}_{(1,0)}$	1	0	9
$\mathbf{26}_{(-1,0)}$	1	0	9
$\mathbf{26}_{(0,1)}$	1	0	0
$\mathbf{26}_{(0,-1)}$	1	0	0
$\mathbf{26}_{(-1/2, -1/2)}$	0	4	0
$\mathbf{26}_{(1/2, 1/2)}$	0	4	0
$\mathbf{1}_{(0,0)}$	3	0	18
$\mathbf{1}_{(1/2, -1/2)}$	0	8	0
$\mathbf{1}_{(-1/2, 1/2)}$	0	8	0
$\mathbf{1}_{(-3/2, -1/2)}$	0	4	0
$\mathbf{1}_{(3/2, 1/2)}$	0	4	0
$\mathbf{1}_{(1,1)}$	1	0	9
$\mathbf{1}_{(1,-1)}$	1	0	9
$\mathbf{1}_{(-1,1)}$	1	0	9
$\mathbf{1}_{(-1,-1)}$	1	0	9

D_4 Orbifold: Results

- ❖ 4 dim gauge group $G = U(1) \times SO(26)$
- ❖ 4 untwisted moduli in agreement with [\[Fischer, Ramos, Vaudrevange 1304.7742\]](#)
- ❖ **26** irreps with the following multiplicity in each sector:
 $4 \in [e], \quad 4 \in [\theta], \quad 16 \in [\omega], \quad 8 \in [\theta\omega], \quad 10 \in [\theta\omega\theta\omega]$
generalizes results for $E_8 \times E_8$ [\[Fischer, Ramos, Vaudrevange 1304.7742\]](#)

D_4 Orbifold: Spectrum

$\text{SO}(26) \times \text{U}(1)$ irrep	U	$T_{[\vartheta]}$	$T_{[\omega]}$	$T_{[\vartheta\omega]}$	$T_{[\vartheta\omega\vartheta\omega]}$
26 ₀	2	4	16	8	10
26 ₁	1	0	0	0	0
26 ₋₁	1	0	0	0	0
1 ₀	2	16	0	0	20
1 ₋₁	2	16	16	8	20
1 ₁	2	16	16	8	20

$(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$ Orbifold: Results

- ❖ 4 dim gauge group $G = SO(26)$ (max rank reduction from standard embedding)
- ❖ 3 untwisted moduli in agreement with [Fischer, Ramos, Vaudrevange 1304.7742]
- ❖ **26** irreps with the following multiplicity in each sector
 $3 \in [e], \quad 4 \in [\theta], \quad 4 \in [\omega], \quad 10 \in [\rho], \quad 2 \in [\theta\omega],$
 $2 \in [\theta\rho], \quad 2 \in [\omega\rho], \quad 6 \in [\theta\omega\rho^3], \quad 3 \in [\rho^2]$
generalizes results for $E_8 \times E_8$ [Fischer, Ramos, Vaudrevange 1304.7742]

$(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$ Orbifold: Spectrum

SO(26) irrep	U	$T_{[\vartheta]}$	$T_{[\omega]}$	$T_{[\rho]}$	$T_{[\vartheta\omega]}$	$T_{[\vartheta\rho]}$	$T_{[\omega\rho]}$	$T_{[\vartheta\omega\rho^3]}$	$T_{[\rho^2]}$
26	3	4	4	10	2	2	2	6	5
1	3	8	8	40	8	8	8	24	20

A Taste of Flavor

- ❖ Traditional flavor symmetries arise from the abelianization of the space group [\[Ramos, Vaudrevange 1811.00580\]](#)
- ❖ $S \rightarrow \mathcal{G}_{\text{flavor}}$
- ❖ Schematically, obtain an abelian subgroup and *mix it* (GAP) with permutations of relevant fixed points of the orbifold

A Taste of Flavor: S_3

- ❖ Through abelianization: $S_3 \rightarrow \mathbb{Z}_3^3 \times \mathbb{Z}_2^3$
- ❖ Its non-trivial conjugacy classes share 4 fixed points, then S_4 is also a symmetry
- ❖ So the traditional flavor symmetry turns out to be
$$\mathcal{G}_{\text{flavor}} = (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes S_4$$

Future Work

Conclusions

- ❖ We successfully extended the Abelian formalism for the non-Abelian case
- ❖ Need to be extended for non-standard embedding
- ❖ We developed an algorithm that works in certain geometries
- ❖ We found rank reduction in every case, without summoning additional mechanisms
 - S_3 : $\text{SO}(32) \rightarrow \text{U}(1) \times \text{U}(1) \times \text{SO}(26)$
 - D_4 : $\text{SO}(32) \rightarrow \text{U}(1) \times \text{SO}(26)$
 - $(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$: $\text{SO}(32) \rightarrow \text{SO}(26)$ **(max rank reduction for standard embedding)**
- ❖ Progress in the computation of flavor symmetries in the making

Thanks for your attention!

Space Group S

- ❖ Conjugacy classes $[g] = \{hgh^{-1} \mid h \in S\}$
- ❖ Fixed points, for each $[g]$ there are some z such that $gz = z$
- ❖ In general, for each $g \in S$ we solve $z = (\mathbb{I} - g)^{-1}n_\alpha e_\alpha$
- ❖ Abelian case also need to embed P in $SO(6)$

Block Diagonalization

- ❖ We developed an algorithm for this task

$$\begin{pmatrix} E_p & F_{q \times p} \\ G_{p \times q} & H_q \end{pmatrix} \rightarrow \begin{pmatrix} D_p & 0_{q \times p} \\ 0_{p \times q} & D_q \end{pmatrix},$$

by solving the equations

$$R(E + FR) = G + HR, \quad (E + FR)X - X(H - RF) = -F,$$

for R and X . [Eisenfeld 76]

Block Diagonalization

- ❖ If there are solutions R and X , the transformation that block diagonalize our original matrix is

$$W = \begin{pmatrix} \mathbb{I}_p & X \\ R & XR + \mathbb{I}_q \end{pmatrix}. \quad [\text{Eisenfeld 76}]$$

This W was found in 12 cases

$$\begin{aligned} \tilde{P} = \{ & S_3, D_4, A_4, D_6, (\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2, \mathbb{Z}_4 \rtimes S_3, S_4, \\ & (\mathbb{Z}_4 \times \mathbb{Z}_4) \rtimes \mathbb{Z}_2, \mathbb{Z}_3 \times (\mathbb{Z}_3 \rtimes \mathbb{Z}_4), \Delta(27), \Delta(54), \Delta(96) \} . \end{aligned}$$

Block Diagonalization

- ❖ One last step

$$\begin{pmatrix} E_p & F_{q \times p} \\ G_{p \times q} & H_q \end{pmatrix} \rightarrow \begin{pmatrix} D_p & 0_{q \times p} \\ 0_{p \times q} & D_q \end{pmatrix} \rightarrow \begin{pmatrix} R(\theta)_2 & 0 & 0 \\ 0 & R(-\theta)_2 & 0 \\ 0 & 0 & \mathbb{I}_2 \end{pmatrix},$$

- ❖ Say that the full transformation is Q , we restricted to the case where Q is orthogonal. This condition reduced our previous list to $P \in \{S_3, D_4, (\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2\}$.

Dealing with Different Cartan Basis Choices

- ❖ Take two different choices for the $SO(6)$ Cartan basis,
 $H = \{H_1, H_2, H_3\}$ and $H' = \{H'_1, H'_2, H'_3\}$ ordered bases
- ❖ Each H_i and H'_i have identical roles
- ❖ H and H' give rise to different root systems
 $R = \{R_1, R_2, \dots, R_6\}$ and $R' = \{R'_1, R'_2, \dots, R'_6\}$
- ❖ $\forall H_i$, there are $R_l, R_m \in R$ such that R_l is the raising operator and R_m is the lowering operator for H_i
- ❖ This is also true for some $R'_l, R'_m \in R'$ for each H'_i

Dealing with different Cartan bases

- ❖ Solution: We propose a *bijection* $R_l \sim R'_l \quad R_m \sim R'_m$
- ❖ With this, we can manipulate twist and shift vectors in different basis! 😊

Abelian Techniques

- ❖ P is contained in the $SO(6)$ Cartan subalgebra H , i.e. every $g \in P$ is an exponential map of linear combinations of elements of H , say
$$g = \exp \left[2\pi i \alpha_j H_j \right].$$
- ❖ Every conjugación class is define by a twist vector
 $v = (\alpha_1, \alpha_2, \alpha_3), \quad v \text{ is in the } SO(6) \text{ Cartan basis}$ such that
$$\alpha_1 + \alpha_2 + \alpha_3 = 0.$$
- ❖ This define the embedding of P in the geometric dof

Abelian Techniques

- ❖ To embed S in the gauge dof, we map $(\theta^k, n_\alpha e_\alpha) \rightarrow (kV, n_\alpha A_\alpha)$,
 V is the so called shift vector, and A_α are Wilson loops
 V is such that $NV \in \Lambda$, Λ the $SO(32)$ weight lattice
- ❖ Modular invariance requires
 $N(V^2 - v^2) = 0 \bmod 2$, (no Wilson loops)

Simplest solution: standard embedding

$$V = (v^1, v^2, v^3, 0^{13}).$$

V is in the G Cartan basis

Abelian Techniques

- ❖ For computing the spectrum, there are two cases
- ❖ Untwisted sector $[e]$

States $|q\rangle_R \otimes |p\rangle_L$, such that $0 = \frac{q^2}{2} + N - 1/2$, $0 = \frac{p^2}{2} + \tilde{N} - 1$.

Solutions if $N = 0$ y $q^2 = 1$

while $\tilde{N} = 1$ y $p = (0^{16})$ (Cartan generators, sugra multiplet, modules)
or $\tilde{N} = 0$ y $p^2 = 2$ (every other gauge group generators)

Physical states, those that $p \cdot V_g - q \cdot v_g = 0, \text{ mod } 1 \quad \forall g \in S$

Abelian Techniques

- ❖ Twisted sectors $[g]$

States $|q_{sh}\rangle_R \otimes |p_{sh}\rangle_L$ such that $\frac{q_{sh}^2}{2} - \frac{1}{2} + \delta_g = 0$, $\frac{p_{sh}^2}{2} - 1 + \tilde{N} + \delta_g = 0$,

$$q_{sh} = q + \nu_g, \quad p_{sh} = p + V_g.$$

q and p in $\Lambda_{SO(8)}$ and $\Lambda_{SO(32)}$ respect.

- ❖ Physical states if

$$p_{sh} \cdot V_h - R \cdot \nu_h = 0, \text{ mod } 1 \quad \forall g \in \mathcal{C}_S(g),$$

$$\text{with } R^i = q_{sh}^i - \tilde{N}^i + \tilde{N}^{*\bar{i}}, \quad i \in \{0, 1, \dots, 3\}.$$

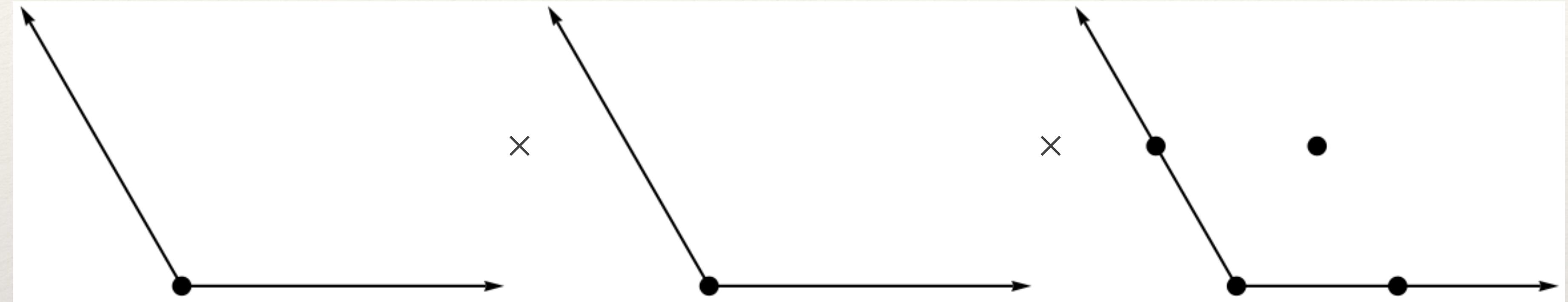
States in this sectors are **matter fields**

S_3 Orbifold

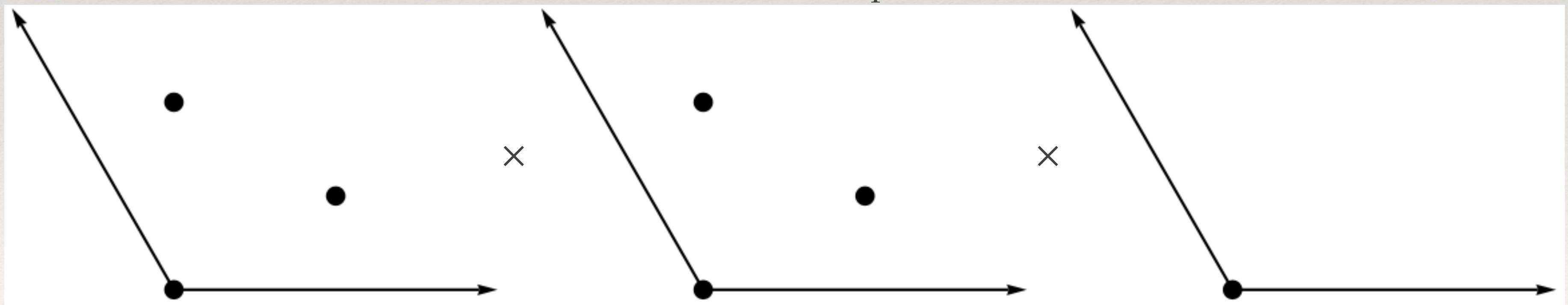
- ❖ S_3 has two generators, of order 2 and 3 respect. Say $\{\theta, \omega\}$
- ❖ S_3 is the symmetry group of an equilateral triangle
- ❖ It has two non trivial conjugation classes: $[\theta]$ y $[\omega]$
- ❖ This orbifold has 13 fixed points, 4 related to the $[\theta]$ sector and 9 for the $[\omega]$ sector

S_3 Orbifold

❖ Fixed points



theta sector fixed points



omega sector fixed points

S_3 Orbifold

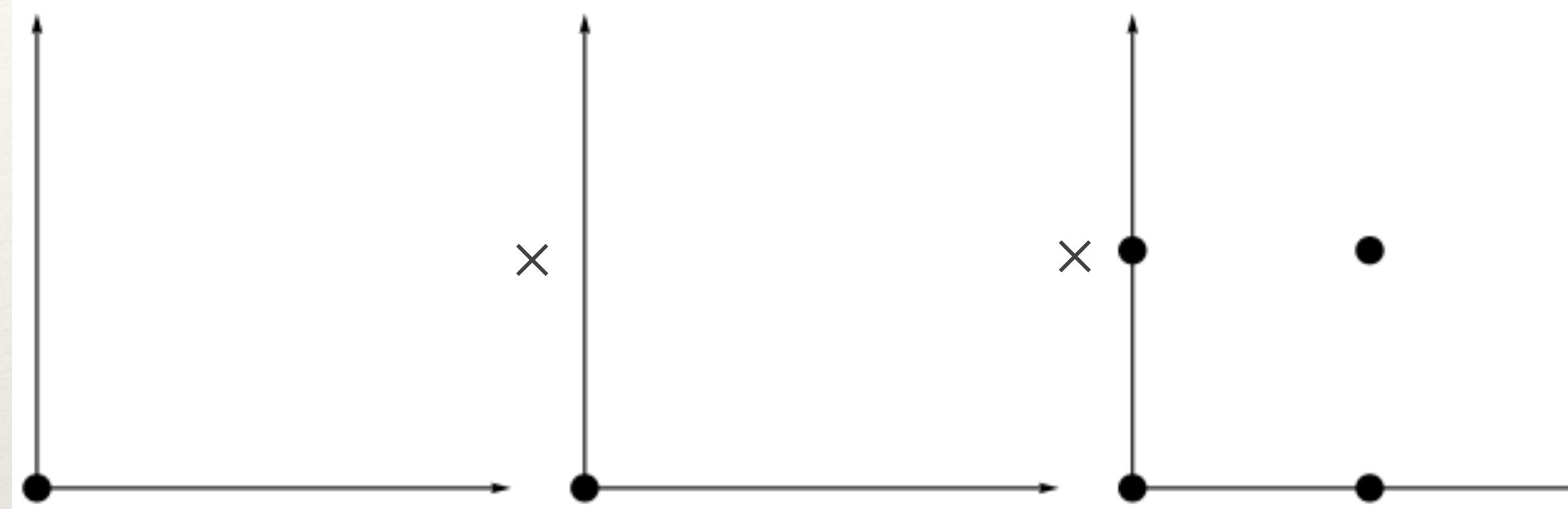
- ❖ Through one single basis transformation, we found

$$\theta = \exp \left[\frac{2\pi i}{2} (J_{4,6} - J_{7,8}) \right], \quad \omega = \exp \left[\frac{2\pi i}{3} (J_{3,4} - J_{5,6}) \right]$$

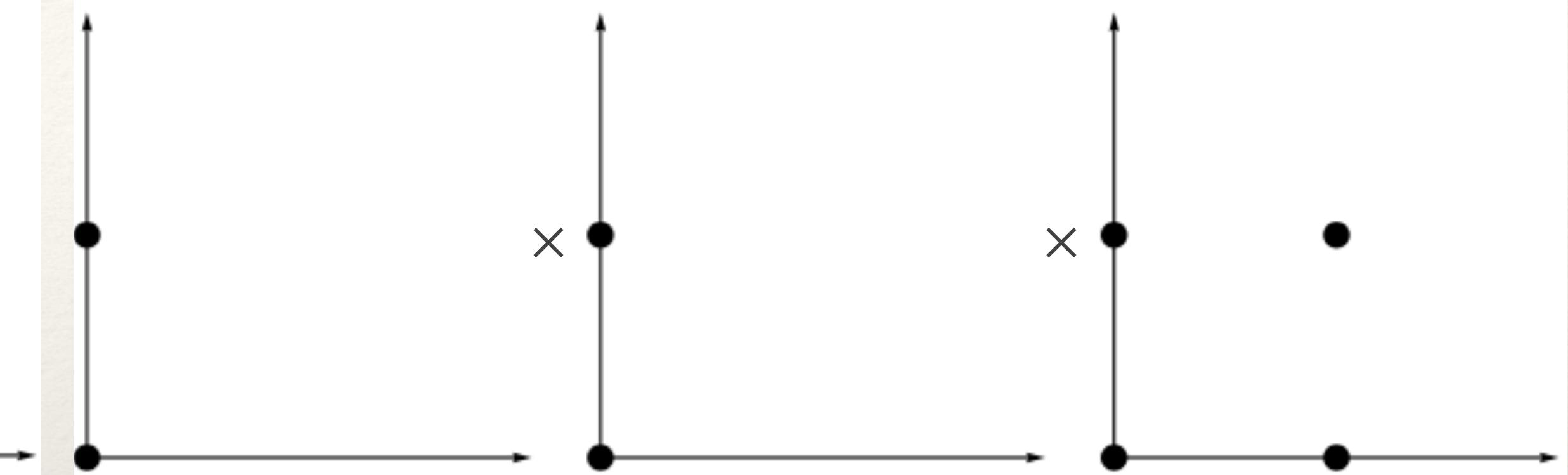
D_4 Orbifold

- ❖ D_4 has 2 order 2 generators, $\{\theta, \omega\}$
- ❖ D_4 is the symmetry group of a square
- ❖ 4 non trivial conjugacy classes: $[\theta]$, $[\omega]$, $[\theta\omega]$, $[\theta\omega\theta\omega]$
- ❖ 34 fixed points

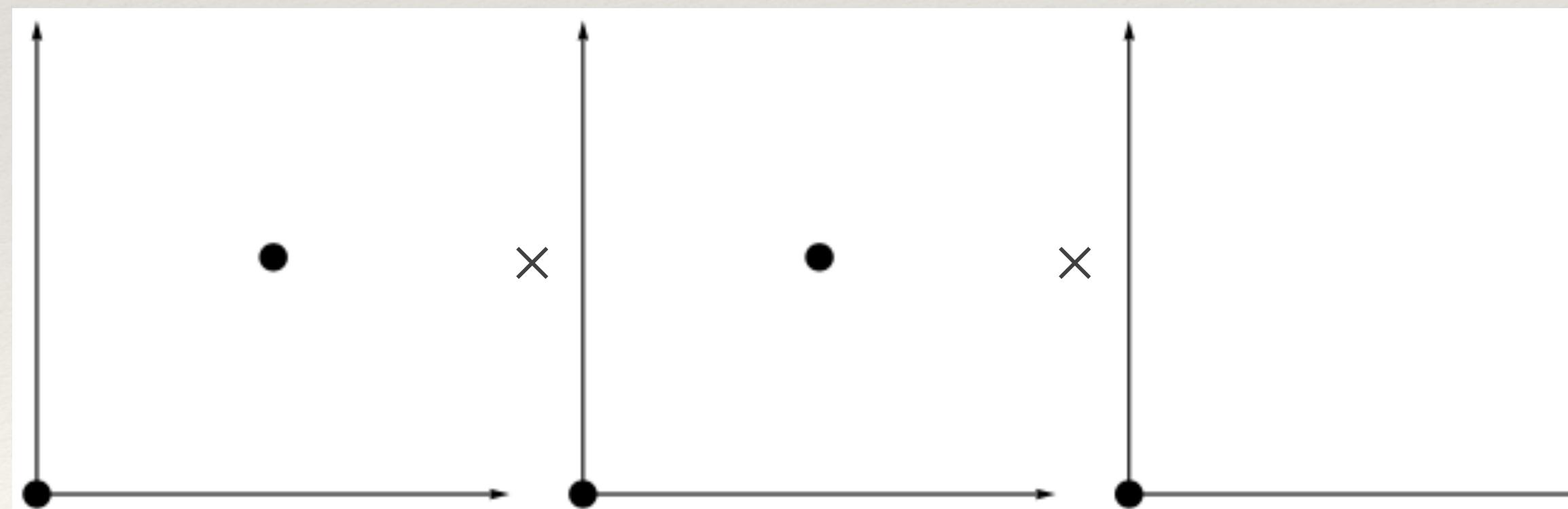
D_4 Orbifold



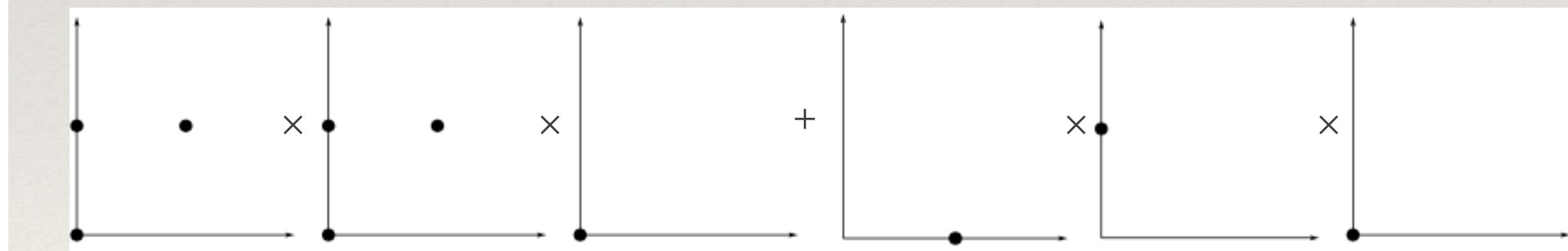
theta sector fixed points



omega sector fixed points



theta*omega sector fixed points



theta*omega*theta*omega sector fixed points

D_4 Orbifold

- ❖ We require two different transformaciones to arrive to the following expressions

$$\theta = \exp \left[\frac{2\pi i}{2} (J_{3,6} - J_{7,8}) \right], \quad \omega = \exp \left[\frac{2\pi i}{3} (J_{4,6} - J_{7,8}) \right],$$

$$\theta\omega = \exp \left[\frac{2\pi i}{4} (-J_{3,4} + J_{5,6}) \right], \quad \theta\omega\theta\omega = \exp \left[\frac{2\pi i}{2} (J_{3,4} - J_{5,6}) \right].$$

$(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$ Orbifold

- ❖ 3 generators with order 4, 2 and 2 respect. $\{\rho, \theta, \omega\}$
- ❖ This group can be understood as a discrete version of $SU(2)$
- ❖ 8 non trivial conjugacy classes: $[\rho], [\theta], [\omega], [\theta\omega], [\theta\rho], [\omega\rho], [\theta\omega\rho^3], [\rho^2]$
- ❖ 35 fixed points

$(\mathbb{Z}_4 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$ Orbifold

- ❖ We found 5 different transformations that lead us to

$$\rho = \exp \left[\frac{2\pi i}{4} (J_{5,6} - J_{4,7}) \right],$$

$$\theta = \exp \left[\frac{2\pi i}{2} (J_{3,4} - J_{7,8}) \right],$$

$$\omega = \exp \left[\frac{2\pi i}{2} (J_{3,7} - J_{4,8}) \right],$$

$$\theta\omega = \exp \left[\frac{2\pi i}{4} (-J_{4,5} - J_{6,7} + 2J_{3,8}) \right],$$

$$\theta\rho = \exp \left[\frac{2\pi i}{4} (J_{3,4} + J_{6,7} - 2J_{5,8}) \right],$$

$$\omega\rho = \exp \left[\frac{2\pi i}{2} (J_{3,4} - J_{6,8}) \right],$$

$$\theta\omega\rho^3 = \exp \left[\frac{2\pi i}{4} (J_{4,5} - J_{6,7}) \right],$$

$$\rho^2 = \exp \left[\frac{2\pi i}{2} (J_{5,6} - J_{4,7}) \right].$$