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Motvation

Framework for obtaining B-U ingredients:
-Bigger gauge groups SU(5), SO(10), SU(3)?, etc
-Non SM fields (axions, extra Higgs, leptoquarks,

REIN-)
-SUSY(?) and extra symmetries (R sym, Z,, O, B R S R e, S i
S3 p A5 ’ A(96) - ) [The power of mirror symmetry, Robbert Dijkgraaf]

-Extra dimensions
-Modular symmetries

As nicely presented in talks by Myriam, Catalina, Selim, Le6n, Alexander, Lorenzo,

Melina, Hansel, Satil... and many more (:
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Framework: Heterotic String Theory

We have: We wish:
* 10 dimensional theory “ 4 dimensional theory
* Supersymmetric theory * Supersymmetric theory )
* Fixed gauge group: * SM gauge group:
Eq X Eq or SO(32) SU3) X SU2) X U(1)

The spacetime dimension and the rank of the gauge groups does not match!



Dimensional Reduction

* Need to go from a 10 dim theory to a 4 dim one

* Ansatz %10 = %4 X X6
« In general X, should be a Calabi-Yau manifold

« In this talk, X, is a toroidal orbifold



Orbitolds: an Invitation

* An orbifold is defined as the quotient
O =M/P

* Specially interesting if
M =T° P c SU®3)

» T = RO/
+ Hence, ()= R6/S, S=F KT




Why Non-Abelian P?

+ In Abelian orbifolds, rank(G,p) = 16 = 4 X rank(Ggy,)

“ From the bottom-up perspective, it is possible to obtain rank reduction
from non-Abelian twists Hebecker-Ratz 03060491

* Rank reduction evidence from the top-down approach kenopka 121050401



Which Non-Abelian Point Groups?

« There are 35 inequivalent point groups compatibles with 4 dim. SUSY /' = 1,

Sg Z3 X Sg Zg X Zg Z3 X (Zg X Z4) Z3 X S4
D4 A(27) SL(Z, 3) — 1 Z3 X A4 A(96)
Ay Zy X S3 Zs3 x SL(2,3) Zg X S3 SL(2,3) X Z4
D6 (Z6 X Zz) X Zz (Z4 X Z4) X Z2 A(48) E(36¢)
Zg X Zz Zg X D4 Zg X ((Z6 X Zz) X Zg) GL(Q, 3) A(108)
QDIG Zig X Qg A(Qlﬁ) SL(Q, 3) X Zio PSL(3, 2)
(Zy X Z3) X Zg | Frobenius Tr S4 A(54) (72¢)

[Fischer, Ratz, Torrado, Vaudrevange 1209.3906]

* 331 non equivalent geometries arise from them (twice as many as Abelian ones)

Many other options for Non SUSY orbifolds!
To be discussed on a poster by Isaac Castafieda on Friday ¢



Abelian vs Non-Abelian

+ In the Abelian case, P is a subgroup of the SO(6) Cartan subalgebra

* Not the case in the non-Abelian scenario, i.e. needs a new formalism (&

* This fact gives rise to rank reduction €



Generalization to the Non-Abelian Case

* Tasks:
Embed P in the geometric degrees of freedom SO(6) C SO(8) and in the
gauge degrees of freedom SO(32)
Compute the 4 dim spectrum

* Ditficulties:
Write P elements as rotations (block diagonal matrices, needs an algorithm)
Deal simultaneously with different choices for the Cartan basis wiferent roots systems)

10



P < SO(6)

* To achieve the embedding, we have to assign a twist vector
= (O,Vl, Vs, V3) = ASO(S) to each [g] — v in the SO(8) Cartan basis

« The components of the twist vector of a given g, are such that

g = exp [Zﬂ'ikak] , with J;, SO(6) generators
» S0, we look for a basis f3,, such that g = exp [Zﬂikak]

= Successtully done for S5, D, and (Z4 X Z2) X £,

il



4 D Gauge Group G

+ To achieve P & SO(32), we have to assign a shift vector
¥ = (Vl, V2, e V16) = ASO(BZ) to each e = P Visin the SO(32) Cartan basis

+ Solution: V = (V19 Vs, V3, 0,...,0) [Standard embedding]

« This gives
SO(32) = SO(6) X SO(26) — G X SO(26)

«+ With G, such that rank(G) < 3.

Therefore

rank(G X SO(26)) < 16 &

()



Spectrum: Untwisted Sector

» Work with SO(8) weights, |¢g) and SO(32) roots, |p) that
2

2
R L e e e

2 2

« We build states |g) @ |p), such that
PV, —q-y =U modl - vp ey

* This require us to work with different Cartan bases simultaneously
Trouble!
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Spectrum: Twisted Sectors

+ We look for |g) in the SO(8) weight lattice, and |p) in the SO(32) root lattice

qzh 1 ch ~
suchthat — ——+4+6. =0, ——-1+N+6. =0,
2 2 : 2 .

and they satisfy the physical condition for their respective equivalence class
[g] and its centralizer €' (g)

# This task reduces to the Abelian techniques (if € (g) is Abelian)
Fine!
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Particular Geometries

» We studied the point groups S;, D, and (Z4 X Zz) X £,

* These are completely inequivalent geometries.

Therefore, their study will allow us to check our method in truly different

scenarios and verify that rank reduction is indeed a generic feature of non-
Abelian orbifolds
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S, Orbifold: Results

+ 4 dim gauge group: G = SO(26) X U(1) x U(1)

+ 4 untwisted moduli (= modular symmetries?) in agreement with [Fischer, Ramos, Vaudrevange 1304.7742]

+ We found the 26 irrep with the following multiplicity in each sector
4 = [6 ] : 8 = [9 ] - 1 8 = [0 ] generalizes Eg X Eg results [Fischer, Ramos, Vaudrevange 1304.7742]
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S, Orbifold: Spectrum

SO(26) x U(1) x U(1) irrep. | U sector | Tjy sector | T, sector
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D, Orbifold: Results

+ 4 dim gauge group G = U(1) X SO(26)
* 4: untWIStEd mOdu11 in agreement with [Fischer, Ramos, Vaudrevange 1304.7742]

« 26 irreps with the following multiplicity in each sector:

4delel], 4€[0], 16 e|lw], 8 €l|Ow], 10 € |[0wlw]

generalizes results for Eg X Eg [Fischer, Ramos, Vaudrevange 1304.7742]
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D, Orbilold: Spectrum

SO(26) x U(1) irrep | U | Tiyy | Tiw) | Tiww] | Tiwow
26 2 | 4 16 8 10
264 1 0 0 0 0
26_1 1| O 0 0 0
1 2 | 16 0 0 20
1_4 2 | 16 | 16 8 20
14 2 | 16 | 16 8 20
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(Z4 X Zz) X Z, Orbifold: Results

+ 4 dim gauge group G = SO(26) (max rank reduction from standard embedding)
* 3 untWIStEd mOdu11 in agreement with [Fischer, Ramos, Vaudrevange 1304.7742]

« 26 irreps with the following multiplicity in each sector
dedel, 4a€ 0L aeiml, WEigl ~ 00,

2 €[0pl, 2€[wpl, 6€[0wp’]l, 3€l[p”]

generalizes results for Eg X Eq [Fischer, Ramos, Vaudrevange 1304.7742]]
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(Z4 X Zz) X Z, Orbifold: Spectrum

SO(26) irrep | U | Tjy) | Tiw) | Tig) | Tiow) | Tiog) | Tiwa) | Tiowp?) | Tio?
26 4 a4 lw0] 2 2] 2] 6 |5
1 s | 8 |40 | 8 | 8 | 8 [ 24 | 20
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A Taste of Flavor

* Traditional flavor symmetries arise from the abelianization of the space

SIOUP [Ramos, Vaudrevange 1811.00580]
20— C“gﬂavor

« Schematically, obtain an abelian subgroup and mix it (GAP) with
permutations of relevant fixed points of the orbifold
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A Taste of Flavor: $;

2 Through abelianization: S3 ) Z% X Z%

« Its non-trivial conjugacy classes share 4 fixed points, then S, is also a
symmetry

“ So the traditional flavor symmetry turns out to be

cgﬂavor = (ZZ X ZZ) X S4

25



Future Work
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Conclusions

* We successfully extended the Abelian formalism for the non-Abelian case
* Need to be extended for non-standard embedding
* We developed an algorithm that works in certain geometries

* We found rank reduction in every case, without summoning additional mechanisms
S SO@B2) — U(l) X U(l) X SO(26)
D,: SO(32) - U(1) x SO(26)
(Z4 X Zz) X Z5: SO(32) = SO(26) (max rank reduction for standard embedding)

* Progress in the computation of flavor symmetries in the making

25



Thanks for your attention!
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Space Group S

« Conjugacy classes [g] = {hgh_l hesS }
+ Fixed points, for each [g] there are some z such that gz =z

« In general, for each g € § we solve z = ([ — g)_lnaea

+ Abelian case also need to embed P in SO(6)

27



Block Diagonalization

* We developed an algorithm for this task
£y Foxp = Dy, Ugep
Gpxq  Hg Opxg Dy
by solving the equations

R(E+ FR) = G + HR, (E+ FR) X —X(H—-RF)=-F,
for R and X. [Eisenfeld 76]
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Block Diagonalization

« If there are solutions R and X, the transformation that block diagonalize our
original matrix is

I]p X
= R XR 4 ”q . [Eisenfeld 76]

This W was found in 12 cases

PN D A I X )R e D
(Zy X Zy) X Zn, Zy X (25X Z,), AR2T), A(54), A(96)} .

29



Block Diagonalization

“ One last step
R(0), 0 0
& | D, O
( S e T e I R e )
GPXCI Hq OPXQ Dq 0 0 |]2

« Say that the full transformation is O, we restricted to the case where Q is orthogonal.

This condition reduced our previous list to
P€E{8,D,(Z,XxZ) N Z,}.
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Dealing with Ditferent Cartan Basis Choices

+ Take two different choices for the SO(6) Cartan basis,
i = {Hl, Hz, H3} and H' = {H;, Hé, Hé} ordered bases

+ Bach H; and H; have identical roles

+ H and H' give rise to different root systems
R={R,R,,....,Rc} and R'= {R,R;, ..., R}

« VH, there are R,, R, € R such that R, is the raising operator and R, is the
lowering operator for H,

« This is also true for some R}, R/, € R’ for each H;
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Dealing with different Cartan bases

« Solution: We propose a bijection Ry~ R, R, ~ R,

« With this, we can manipulate twist and shift vectors in different basis!
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Abelian Techniques

« P is contained in the SO(6) Cartan subalgebra H, i.e. every g € P is an
exponential map of linear combinations of elements of H, say

2 —=exp [ZﬂiajHj] .

* Every conjugacion class is define by a twist vector
v =(a;, &, a3), Vvisinthe SO(6) Cartan basis
such that
a;+ o, +a; =0.

# This define the embedding of P in the geometric dof
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Abelian Techniques

+ To embed S in the gauge dof, we map
(Hk, naea) =3 (kV, naAa),
Vis the so called shift vector, and A, are Wilson loops
Vis such that NV € A, A the SO(32) weight lattice

* Modular invariance requires
N (V2 = v2) = (0 mod 2, (no Wilson loops)

Simplest solution: standard embedding
V= (vl, vz, v3,()13) : V is in the G Cartan basis
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Abelian Techniques

* For computing the spectrum, there are two cases

+ Untwisted sector [e]

2 2
B e
States |q)R® |p)L, such that 0 = 2 + N 12 () = = + N — 1.

Solutions if N =0y g* = 1

while N = 1 y p = (0'°) (Cartan generators, sugra multiplet, modules)
or N =0y p* = 2 (every other gauge group generators)

Physical states, those thatp -V, —qg-v, =0, modl VgeS§

35



Abelian Techniques

« Twisted sectors [ 2]

q$h>R ®

gn =49+ Ve Pp=pt+V,.
g and p in Ag gy and Agg 3y, respect.

1
pSh>L such that @ ——+6,=0,

&2

States

“ Physical states if
psh Vh R - Vh — O mOdl Vg = %S (g)
with Ri=¢g), —N'+ N, ie L.

States in th1s Sectors are matter fields

36



S, Orbifold

+ S5 has two generators, of order 2 and 3 respect. Say {0, w}
# S, is the symmetry group of an equilateral triangle

« It has two non trivial conjugation classes: [0] y [@]

+ This orbifold has 13 fixed points, 4 related to the [0] sector and 9 for the [w]
sector

B



S, Orbifold

* Fixed points

theta sector fixed points

e

omega sector fixed points
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S, Orbifold

* Through one single basis transformation, we found

27l 27l

0 = exp [T <]4,6 =~ J7,8>]’ g =) [T (J3,4 = ]5,6)]
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D, Orbifold

« D, has 2 order 2 generators, {0, w}
« D, is the symmetry group of a square

+ 4 non trivial conjugacy classes: [0], [w], |[Ow], [fwOw]

* 34 fixed points
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D, Orbifold

@ -

@ -

theta*omega sector fixed points

-

theta sector fixed points

-
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omega sector fixed points

L . L

theta*omega*theta*omega sector fixed points




D, Orbifold

* We require two different transformaciones to arrive to the following
expressions

e 27Tl

0 = exp [7 (J36 = J7,8>] , & [T (Va6 = J7,8)] ’

Y ori 27l

0w = exp [T (—J3,4 * J5,6)] , OwOw = exp [7 ( i J5,6)].
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(Z4 X Z4) X Z, Orbifold

+ 3 generators with order 4, 2 and 2 respect. { p, 0, a)}

« This group can be understood as a discrete version of SU(2)

+ 8 non trivial conjugacy classes: [p], [0], [w], [Bw], [0p], [wp], [Bwp?], [p*]
* 35 fixed points
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(Z4 X Z4) X Z, Orbifold

+ We found 5 different transformations that lead us to

5 Lo 27l
p = €Xp [T (J56 J4,7)]» 0 = exp o (J34 - J7,8>]’
9z 27Tl
@ = CXP [T <J3,7 o J4,8)] : 0w = CXP [T (_J4,5 2 J6,7 r 2J3,8>] -
) 27
Op = exp [T (3.4 + Jo7 = 2Js 8)] =k [7 (J34 - ]6,8)]



