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QCD: Emergent Phenomena

> QCD is characterized by two emergent phenomena: Loop = Y Gi[wuDu+myle; + GG,
. . . j=u.d,s....
confinement and dynamical generation of mass (DGM). ey T
D, =0, +igzA"A,
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* Quarks and gluons not isolated in nature. + Emergence of hadron masses (EHM)
> Formation of colorless bound states: “Hadrons” from QCD dynamics

> 1-fm scale size of hadrons?
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QCD: Emergent Phenomena

» QCD is characterized by two emergent phenomena:
confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?
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* Emergence of hadron masses (EHM)
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QCD: Emergent Phenomena

» QCD is characterized by two emergent phenomena:
confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?
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Mass Budgets

M, 4~ 0.3GeV

» What is the origin of EHM?

... its connection with e.qg.
confinement and DCSB?

> Most of the mass in the
visible universe is contained
within nucleons

2> Their role in the universe is
crucial

> The Pion is the most essential
NG boson of DCSB.

> |t's mere existence is connected with
mass generation in the SM

EHM+HB EHM HB

HB

EHM

EHM+HB
Proton mass budget Pion meson mass budget

m, = 0.938GeV ~ 2M, + M,
mx = 0.14GeV # M, + M,

With the same building blocks, Nature makes one heavy and
one too light. What’s happening?



mg/my ~ 20

Mass Budgets Fic) fr o MM, ~ 1.2

» The same mechanisms that make the proton massive, makes the pion ‘massless’

EHM+HB

HB EHM HB

EHM EHM+HB

Proton mass budget Pion mass budget

m, = 0.938 GeV ~ 2M,, + M, m, = 0.14 GeV # M, + M,

» This dichotomy needs to be understood. EIC, EicC, JLab, Amber...




L. Chang et al.,
Phys.Rev.Lett. 110 (2013) 13, 132001

Valence-quark distribution
amplitudes (DASs)

fraudy () = tr /d k 0y, (kar)ysy - mxar (k- P)
/ N

Light-front momentum fraction Written in terms of BSWF

* 1-dimensional projection of the light-front wavefunction.
* Clear probe of EHM, related with hard exclusive processes, etc.



Pseudoscalars’ DAs

— @}T

';:_‘ 1.0
= HB-skewing
0.5
EHMdilation
0.0
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0.0 0.2 0.4 0.6 0.8 1.0

frudl(x) = tr/ Oy (kar )5y - mxa (k—, P)
dk

* Broad in the light-sector, narrow in the heavy-sector.

Ssbhar in the middle
* Mild skewness for the Kaon, striking for heavy-lights.




Proton DAs

(jkfﬁ — ]Vfd)

v As the pion, the proton DA is broader than its
asympotic counterpart:

c,ogsy = 120z11913
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6 A - : y |
0.2 0.2 1
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u(xy) u(xy)
Asymptotic Proton

Mezrag:2017znp

v Nonetheless, even assuming isospin symmetry, the proton exhibits a non-symmetric DA.

> This signals the formation of non-trivial quark-quark correlations (dynamical diquarks)



(j_;) = (j_;) < |Fa(@®)? L. Chang et al.,
point ik Phys.Rev.Lett. 111 (2013) 14, 141802

Electromagnetlc Elastic Form
Factors (EFFs)

P.FE(Q° )—trcm/ X5 (K + Do, k + pi)T'p (ki; pi) Sh(k) e (Ko; —Po)

i /

All can be written in terms of propagators and vertices

. . . . . . elastic form
* Gives information on momentum/charge distribution. ==

* Pion EFF highly relevant for contemporary physics. S



Elastic Form Factors

B
* Inthe large-Q? regime, QCD 0.6F ]
connects the EFF and DA: N || v e G — Monopole fit
> . EIC projections
' [
6 (:0) ; 6r(4;C) Q 0.4 P}
| S I e 1 CSM prediction
D T lfO.Z-: """"""""""""""""" 1 HS formula
4 e O | ]
N Trlt o Dt ae (025 C) HS formula 0 _l: JLab prOjectionS - AsymptOtIC EFF
(at sufficiently large Q?) . . . . : . .
0 10 20 30 40
* At leading-order: Q%/GeV?2
2 2 Ve 2\ £2 .2 ()2 The asymptotic behavior is weighted by
F ~ 167« w >
Q" Fp(Q7) s(@Q7) fpwp(Q7) f>, @ measure of EHM.

1
1
wWp = %/ dm;tpp(:ﬁ;Qz)
0

PDA > > Factorization/scaling violations are

proof of the validity of QCD itself.



Elastic Form Factors

Cheng:2025yij
> For the proton, different theoretical and phenomenological analysis

suggest a zero-crossing in the GE/GM ratio
S - * This reflection on a destructive
10r\@g 1 interference between the individual
A L NS @ Jones ] . .
U & Gayou ; valence-quark contributions.
e i %’@ = Punjabi ] ) ..
S osf ‘ A Puckett 2010) - * In fact connected with non-trivial effects
%‘Dg : v Puckett (2017) | coming from orbital angular momentum.
= 04[ ]
e } » The location of the zero is highly sensitive
* O to the diquark content of the nucleon.
I 00f | ]
; \; > Modern analyses favor a non-negligible
-0.2} g component of axial-vector diquark:
e T S S B TR TS ~ 25 - 35 0

~ The rest comes from the expected scalar diquark.



KR, L. Chang et al.,
Phys.Rev.D 93 (2016) 7, 074017

Transition Form Factors (TFFs)

* Gives information on momentum/charge distribution.

* Highly relevant for contemporaty physics.



Two-photon TFFs

0.35r
* Inthe large-Q? regime, QCD
connects the TFF and DA: 030 —
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- HS formula
— CSM prediction
- Asymptotic TFF

> The asymptotic behavior is weighted by
fe, @ measure of EHM.

> Factorization/scaling violations are
proof of the validity of QCD itself.



Two-photon TFFs

SCIENCE AT THE
LUMINOSITY FRONTIER:

LABORATORI NAZIONALI DI FRASCAT
DECEMBER 9-13, 2024

* In the large-Q? regime, QCD
connects the TFF and DA: 0.30
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* In the opposing end, the chiral
anomaly entails:

2fpGpo(Q* =0) =1

20 30 40
Q% [GeV?]

> Thus EHM (via DCSB) sets the infrared
scale as well.

> Any deviations from this result are a
measure of EHM+HB interplay.



Example: N — N(1535)

« Transition form factors and helicity amplitudes:

8'2:1 | E . | =13 ] * In the absence of DCSB, the nucleon and its parity partner
0al i ' - 7 would be structurally alike. This is not the case...
% 0.30 %
= Nt . ; . . -
e « Their mass and internal structure is in fact quite different.
8'(1): We need to elucidate how and why.
_0'1 | > Something not trivial is happening internally.
100  Nucleon TFFs provide stringent constraints to the
. 50t wavefunctions.
>
(,% 0 If one varies gpg — gpr(l £ 0.5), then my(1535)
< ot = (1.67.1.82) GeV and o ,
>0 (1.67. ) N(1535)5 | s ai a3 | p v 02
—100} goe 1.5 ]0.76 0.27 0.18/0.49  0.12 0.08

gop 1.0 |0.66 0.20 0.14/0.68  0.11 0.09
gop 0.5 [0.35 0.04 0.00/0.92 —0.05 0.18

X
Raya:2021pyr T = QQ/T?LQ, m=(m4y++m_)/2:



M. Ding et al., PRD 101 5, 054014 (2020)
Z-F Cui et al., EPJC 80 11, 1064 (2021)

Distribution functions (DFs)
C>CH

CH
@ @ g\esolution Scale >

|

Evolution equations

B W
parton (qj X

distributions Y } ; ; . ; .
- * Yields e.g. information on momentum distribution.

. e, - Evolution disentangles valence, sea and gluon contributions.



m-K DFs: hadronic scale

* Fully-dressed valence quarks

@ @ (quasiparticles)

CH : hadronic scal 5
: hadronic scale 5

(M, =M, ~H %

- At this scale, all properties of the hadron are
contained within their valence quarks.

> Equally massive quarks symmetric distributions
and equitable distribution of momentum fraction:

<x>"=0.5, ur(z; () = uz (1 — ;)

» The kaon distributions are only-shifted by a few-

percentage. _
<x>7 =048, <x>7 = 0.52

qsf e i Uy
— -
1.5 g
/< HB-skewing
EHMdilation

0.0 0.2 0.4 0.6 0.8 1.0

" /

Endpoint smoothness is a reflection of
the underlying interaction

1/(k*)7 = (1 —2)*

Farrar:1975yb Berger:1979du Holt:2010vj




Pion DFs: Lattice & Experiment e~

d At 5.2 GeV, the experimental scale, our O At 2 GeV, the valence DF shows agreement
predictions matches that from Aicher et al. with lattice moments:
Aicher:2010chb G (x) (:1; > <x3>g
0111011> = 0. 45( ), <Tsea> = 0.14(2) Ref. [34] | 0.24(2) 0.09(3)  0.053(15)
o5 1 | ' o ety Ref. [35]|0.27(1) 0.13(1)  0.074(10)
O Ref. [36] | 0.21(1) 0.16(3)
= X (%) Herein |0.24(2) 0.098(10) 0.049(07)

— Lattice CS

O The Gluon DF profiles matches lattice expectations:

IS
. ~
0 _
(@)}
v
= 1072
0.0 0.2 0.4 0.6 0.8 1.0 e —  Cui 2020 .
X ':9 1074 —---- Fan 2021 NN

O An agreement with novel lattice “Cross N . 6 B
Section” results is also obtained. ... ..010001 02 04 06 08 1




Pion vs Proton Y. Lu ot al.

Phys.Lett.B 830 (2022) 137130

> The (nearly) massless pion DFs differs vastly from ' S 4 in proton |
the massive proton. For instance: 3 3-0: Y d in proton |
. . . ™ 20" uin pion
* Counting rules entail large-x behaviors (1-x)> and =35 =7
(1-x)? for the pion and proton, respectively. S 10 R
v The momentum fractions at ¢: (M, = M,) 0.0t="

00 02 04 06 08 10

o _ fH _ CH _
(x)up = 0.687, (x)d,, =0.313, (x);, =0.5 B 1o
= Uy (x) # 2dy(x) EHM induced diquark correlations 3 08} uin proton -
inside the proton: o= 5.8l d in proton ]
> No equitable distribution of momentum! :::_ Bl i X uinpion
g 04} e W
v Differences are preserved after evolution. > 5502 [/
5 L
0.0r




Yin-Zhen Xu et al.,
Eur.Phys.J.C 84 (2024) 2, 191

Gravitational
Form Factors (GFFs)

[AOS? = { 9}

* Gives information on mass/pressure distribution.

©

©)

» Afirst step towards nucleon GFFs



Gravitational form factors

» The expectation value of the energy-momentum tensor (EMT) in the pseudoscalar
meson defines the gravitational form factors:

1
AL, (K, Q) =2K,K,A%(Q7) + 51040y - Q%6,, 1D (Q%) + 2mpd ¢ (Q7)

» Where symmetry principles entail:

P — HIP_{]
A (0) =1 DY (0) ~1
Momentum Soft-pion
conservation theorem

c'(QH) =0

EMT
conservation

» The deviation from D(0)=-1, is a manifestation of the interplay between Higgs and

QCD mass generation mechanisms.

Polyakov:2018zvc



Gravitational form factors

» The expectation value of the energy-momentum tensor (EMT) in the nucleon defines
the gravitational form factors:

1
mxApy (K. Q) = =A(p ) [KuKy AN Q%) +iK (u0)pQpd" (Q7) + 7(QuQy = Q*6,) DV 1A (i)

» Where symmetry principles entail:

A¥0) =1 JN0) = 1/2 &(0* =0
Momentum Spin sum-rule EMT
conservation conservation

» There is no constraint on D(0), the so called D-term, which is often referred to as
“The Last Unknown Global Property of the Nucleon”.

Polyakov:2018zvc



Pion GFFs

Tg1/’7“p ~ TF/TQQ ~ 0.7

- For m (K) it is found: rj, = 0.81fm (0.63fm) > rj = 0.64fm (0.58 fm) > r,, =0.47 fm (0.40 fm).
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~ The Kaon, albeit more compressed, exhibit

T /Tr = 0.85(6)

similar patters.

(charge) (mass)
~ Agreement with Lattice QCD is also
obtained: Hackett:2023nkr
{ 6
1.0 g 92
»A 1
08 ‘.{} \ii‘i.,i
3 % b e
=< 0.6 17, iy
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04 EEEE% } } { Tt
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0.0t ‘ ‘ ‘ ‘ | ‘ g
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x = Q%/m?>.



Nucleon GFFs

Z-Q Yao et al.,
Eur.Phys.J.A 61 (2025) 5, 92

» Our prediction is compatible with more recent lattice expectations:

Hackett:2023rif

herein A(0) J(0) —D(0)
Total 1.00 0.50 3.114(10)+
q 0.584(13) 0.292(06) + 1.820(43)+
g 0.416(13)+ 0.208(06)+ 1.294(33)+
1QCD | A(0) J(0) —D(0)
Total | 1.011(37) 0.506(25) 3.87(97)
q ‘ 0.510(25) 0.251(21) 1.30(49)

q 0.501(27) 0.255(13) 2.57(84)

>

The symmetry-preserving treatment guarantees the
mass and spin sum rules

At 2 GeV, our prediction features slightly smaller gluon
contribution

As with the 1r-K, charge effects span
over a larger domain that mass effects: Tmass = 0.81(5)7en

Q%IGeV?

Q%/GeV? QP1GeV?




Spatial Distributions

- For m (K) it is found: rj, = 0.81fm (0.63fm) > rj = 0.64fm (0.58 fm) > r,, =0.47 fm (0.40 fm).

(mechanical) (charge) (mass)
0.6:: s e R 2 5}
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~ & R v 2.0r
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0.11 N 0.5+
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b,/fm

> The Kaon, albeit more compressed, exhibit » The proton is spatially more extended.
. . B - 1 ) ~ =
similar patters. 7“1{/7"7? _ 0.85(6) Tp/’rﬂ ~ 1.95



m-K Pressures

1 o0
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Nucleon Pressures Z-Q Yao et al.

Eur.Phys.J.A 61 (2025) 5, 92

> Nucleon pressures follow the same patterns as in the pion.

A 0.025F ] B 0.08}
0.020} == Total ] == Total

=t pl ] 0.06} = g
= 0.015} il 1 BePiL: ¢
= 4 ? E i - g
= o.010f F - Total 11/2 > -« Total /2
O G 0.04
T o0.005f =
NQ NE’
L [

0.000 H ~ 002 |/

-0.005F} :

-0.010}, , . . . | nons ‘ . . ,

0.0 0.5 1.0 1.5 2.0 25 0.0 05 1.0 15 20 25
rifm rffm

~ Although only about half as large as those in the pion, the nucleon pressures

are comparable to those found in the core of neutron stars. 0B P
~ a



Pion and Proton
GPDs



Pion and Proton GPDs

> Pion and Proton GPDs, at the hadronic scale, inherit the dilation/compression patterns of the DF.

> In the isospin symmetric limit, the pion GPD - GPDs encode many aspects of the
is symmetric in the forward limit. hadron internal structure.
> 1
Not the case for the proton... ge(x) = Hji(x,0,0) Fp = f dx Hy(x,€,A%)
-1

dx xHi(x,€,A%)

SH CH _ CH _ 1
(JC)u,, = 0.687, <x>d,, =0.313, (x);, =0.5 ggq(A2)+§29fq(Az) :f

-1




Impact parameter space GPDs

1.2

“ dA
WP, b Lop) = f 2 Mo, A) H (6 0,~A% o
0

Tr:ud - K =us

Toix,by) [GeV] 08 | Tilxby) [GeV]

1.2

B0
0.6 |

> Tends to the non-relativistic e . —_—
limit: x™> . 1/2 | : B : &

+0.9

g 0.7

> Clearly, the heavier system is
more compressed

b, [fm]

> Narrower and higher-peak

D =dc
Iplx.by) [GeV]
14,35
§3.77

B3
B

2.03
1.45
0.87
0.29

- Marked asymmetry in heavy-
light systems.

Inixby) [GeV]

3.0
B25

20
1.8
1.0
0.5

b [fm]

> Heavy-quark carries
almost all the momentum

> Light-quark effectively
orbits the heavy one.




Final Highlights

—

Impact parameter space GPDs

st [ Bao oo

* Clearly, the heavier systemis.
more compressed

+ Nartower and higher-peak

> Tends to the non-relativistic
limit x== . 1j2

* Marked asymmetry in heavy-
light sys:ems.
* Heavy-quark carries b
almost all the momentum
» Light-quark effectively Y
otbits the heavy one.




Final Highlights

> The emergent phenomena in QCD produces unique outcomes:

« Confinement, dynamical mass generation, and a peculiar effective coupling.

* These orchestrate the formation of hadrons and their properties, and are responsible for almost
all of the mass of the VM.

> Nucleons and pseudoscalar mesons take center stage in elucidating these aspects

0 BT

/ xmmm

i JPARC

Iapan Proton Accelerator Research Complex

m

Apparatus for Meson and Baryon
Experimental Research

* Other hadrons provide a complementary picture. R

EIC Yellow Report

» Excited and Exotic states push the limits of our Wj@‘
understanding of how the strong force binds matter together. o Be el

» Experimental facilities around the globe are set to examine
these aspects at an unprecedented level.

~ Convenient.. as theory has evolved to the point where all sorts of Jefferéon Lab
quant|t|es are Within reaCh jomas Jefferson National Accelerator Facility






Elastic Form Factors

> For the proton, different theoretical and phenomenological analysis
* This reflection on a destructive

suggest a zero-crossing in the GE/GM ratio
' interference between the individual
valence-quark contributions.

In fact connected with non-trivial effects

1.0}
0.8l ] .
: coming from orbital angular momentum
N * The location of the zero is highly sensitive
to the diquark content of the nucleon.

S
& o6l
S| %
"y 0.4+ 1
¢ o ¢ / |
= i > Modern analyses favor a non-negligible
component of axial-vector diquark:

I @@,’
02 @v'f ® Madey .
L/ & Riordan :
L - ~25-35%
0 2 4 6 8 10 12
ie rest comes from the expected scalar diquark



Continuum Schwinger Methods
(CSM)




Dyson-Schwinger Equations

Example DSEs

Equations of motion of a quantum field theory Quark propagator:

Relate Green functions with higher-order Green functions NI 1, m
m) Infinite tower of coupled equations.
~ Systematic truncation required

Gluon propagator:

AN

No assumptions on the coupling for their derivation.

:> v Capture both perturbative and
non-perturbative facets of QCD

AN

Not limited to a certain domain of current quark masses

AN

Maintain a traceable connection to QCD.

C.D. Robert and A.G. Williams, G. Eichmann, H. Sanchis-Alipus et al.
Prog.Part.Nucl.Phys. 33 (1994) 477-575 Prog.Part.Nucl.Phys. 91 (2016) 1-100



Baryons: Faddeev equation

e Strong evidence anticipates the formation of dynamical quark-quark correlations (diquarks)

within baryons, for instance:

> The primary three-body force binding the quarks within the baryon vanishes when
projected onto the color singlet channel. Eichmann:2016yit

e

i.e. a 3-gluon vertex attached to each
guark once (and only once)

> The dominant 3-gluon contribution is
the one attaching twice to a quark

> This produces a strengthening of
guark-quark interactions

Barabanov:2020jvn

) DD1
1«-* 4~
D= X ¢D+IO+., :



Baryons: Faddeev equation

e Strong evidence anticipates the formation of dynamical quark-quark correlations (diquarks)
within baryons, for instance:

Barabanov:2620jvn > The primary three-body force binding the quarks within the baryon vanishes when

projected onto the color singlet channel.

> The attractive nature of quark-antiquark correlations in a color-singlet meson, is also
attractive for 3r quark-quark correlations within a color singlet baryon.

Non-pointlike diquarks: @
e Color anti-triplet

* Fully interacting
 Origins related to =
EHM phenomena >

Dyamical Quark-diquark picture




Baryons: Quark-diquark picture

> The attractive nature of quark-antiquark correlations in a color-singlet meson, is also
attractive for 3C quark-quark correlations within a color singlet baryon.

> Due to charge conjugation properties, a J* diquark partners with an analogous J” meson.

> We can thus establish a connection between the meson and diquark Bethe-Salpeter equations:

m [GeV] Diquarks d4 )\a )\a
q 2
v Fga(p: P) = — /Wg Dyuv(p — q)?'m 5(q+ P)lqa(q: P)S(q) 5 Yo
i mn
o Foo(p: P)CT = 1/ P9 2p (o= @) S(q+ P)Fag(a: P)CTS(q) o
i qq\P; =73 (277)4 g YurlP—4q 5 Y 249 qq\ 4, q 5 Yo
oo L Less tightly ‘bound’

Non-pointlike diquarks:
o Miyd),, = 0.7—0.8 GeV, M}y, = 0.9—1.1GeV
e Color anti-triplet

* Fully interacting > Stressing the fact that the diquarks have a finite size:

* Origins related to Mud]y 2 Fyrs

r =r
EHM phenomena Ui B8

Barabanov:2020jvn

« Computed ‘masses’ should be interpreted as correlation lengths:
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