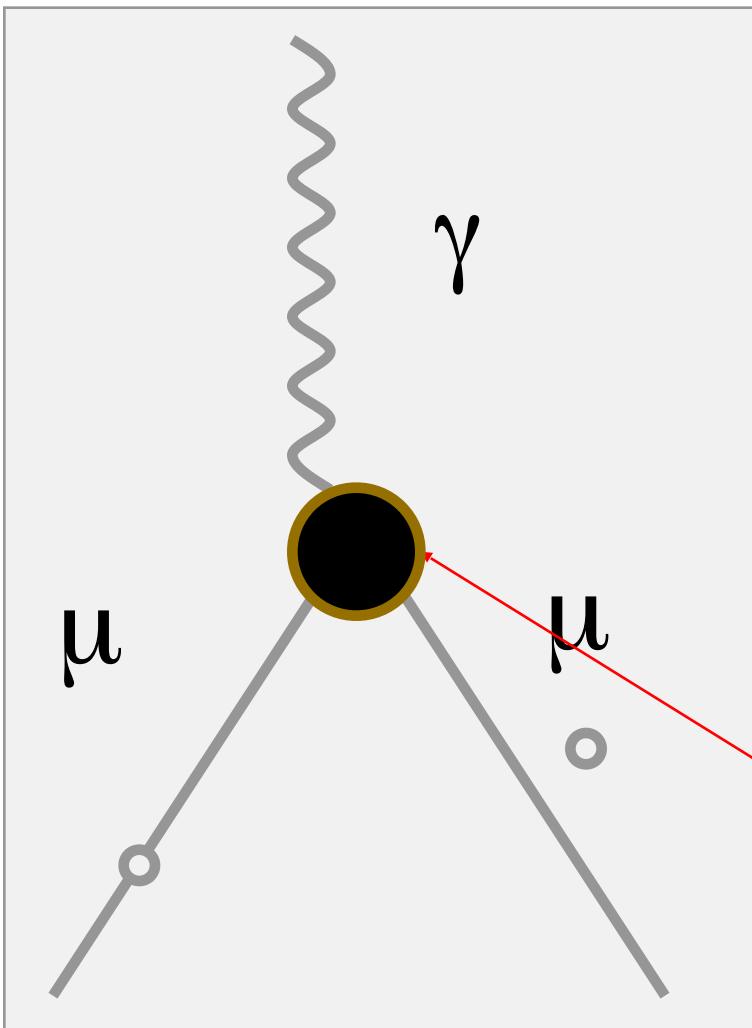


FSR and ρ -width IB corrections beyond scalar QED and their impact on muon g-2

Arxiv: 2510.02723

Genaro Toledo (IFUNAM)


In collaboration with
Francisco Flores Baéz (UANL)
Gabriel López Castro (CINVESTAV)

Outline

- Motivation: Muon g-2
- Hadronic vacuum polarization (HVP) from tau data
- Isospin symmetry breaking (IB) corrections
- Neutral-charged rho meson width difference
 - Radiative corrections, sQED and structure dependence
 - Structure dependent effects on final state radiation (FSR)
- Impact on muon g-2
- Conclusions

Muon g-2

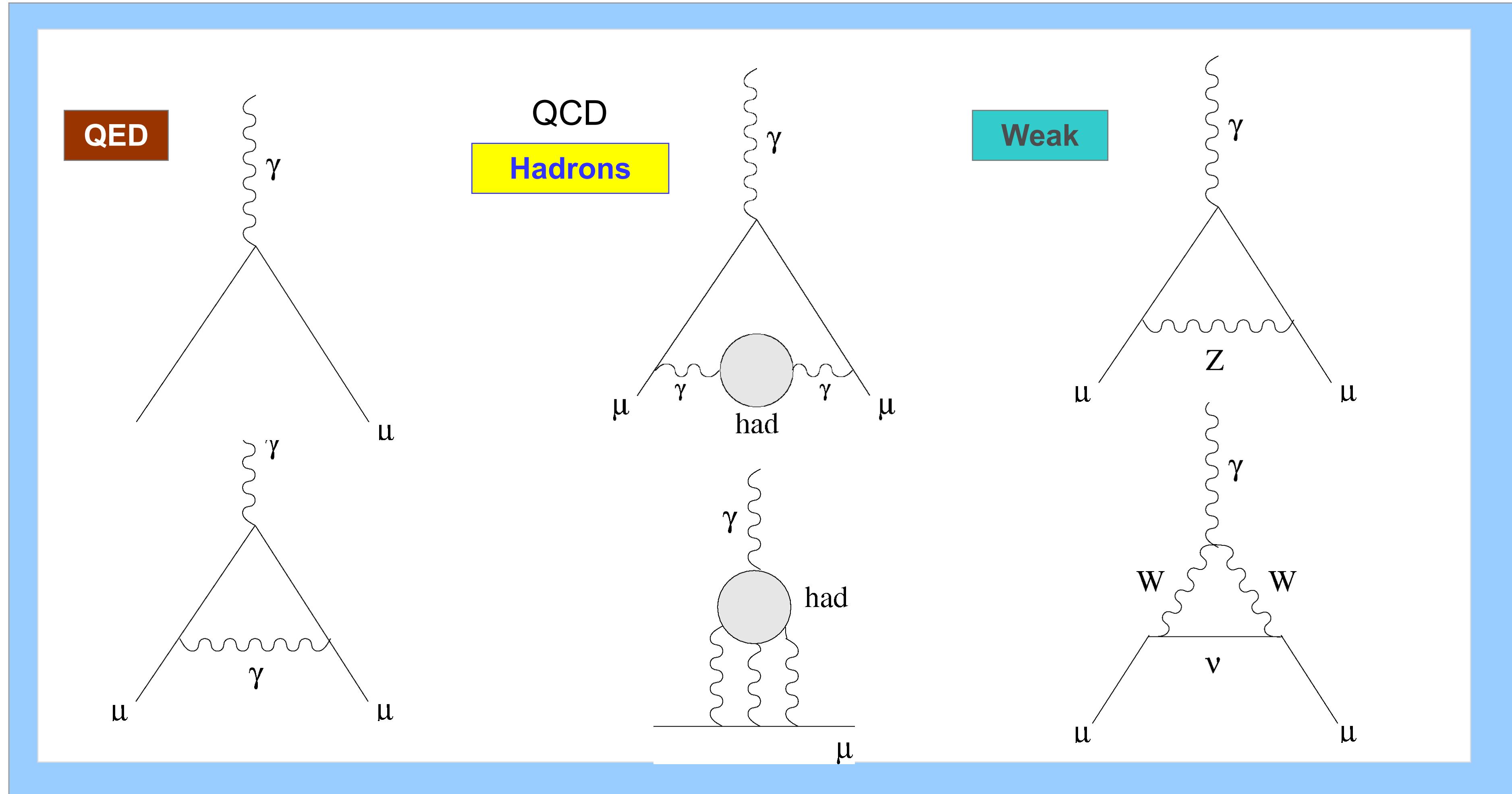
Magnetic dipole moment is related to the intrinsic spin by the gyromagnetic ratio g

$$\vec{\mu} = g_\mu \frac{e\hbar}{2m_\mu c} \vec{S}$$

$$g_\mu = 2\left(1 + \frac{\alpha}{2\pi} + \dots\right)$$

normal

anomalous

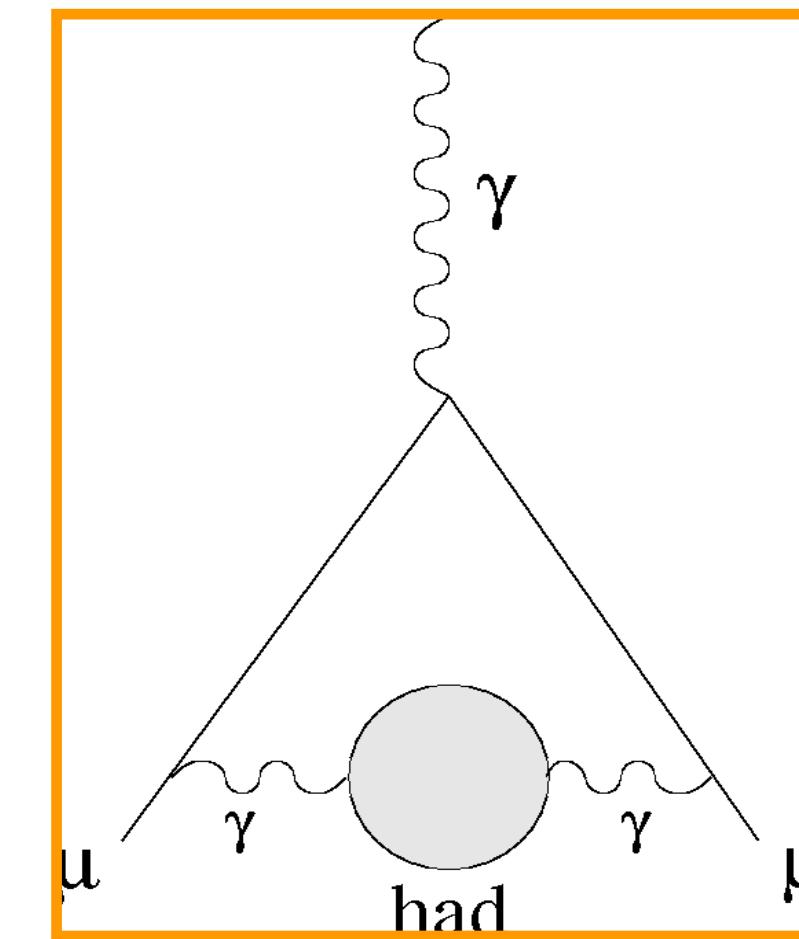

$$\Gamma_\mu = e\gamma_\mu + a_\ell \frac{ie}{2m} \sigma_{\mu\nu} q_\nu$$

It can be studied throughout
the electromagnetic vertex

$$a_\mu \equiv \frac{g - 2}{2}$$

Schwinger '48

Theory



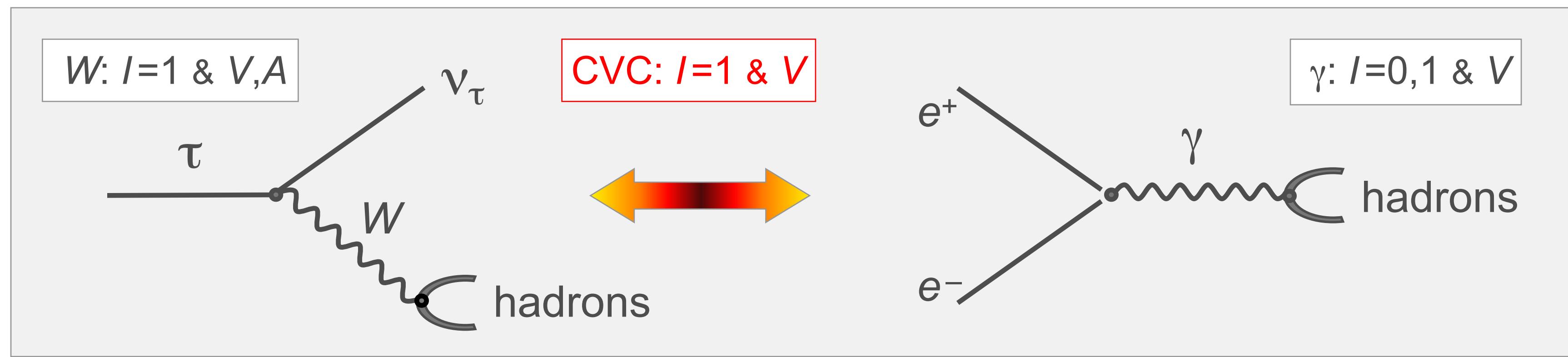
Hadronic Vacuum Polarization

HADRONIC CORRECTIONS

$$a_{\mu}^{\text{had}} = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

Decreases with energy,
Low energy part of integral is important

$$12\pi \text{Im} \Pi_{\gamma}(s) = \frac{\sigma^{(0)}[e^+e^- \rightarrow \text{hadrons}]}{\sigma^{(0)}[e^+e^- \rightarrow \mu^+\mu^-]} \equiv R(s)$$



we can use experimental data from e^+e^- to hadrons!

HVP from τ data

Isospin Symmetry

Assume $\mu = m_d$ connect $|I=1 e^+e^-$ cross section with the vector spectral function of the τ

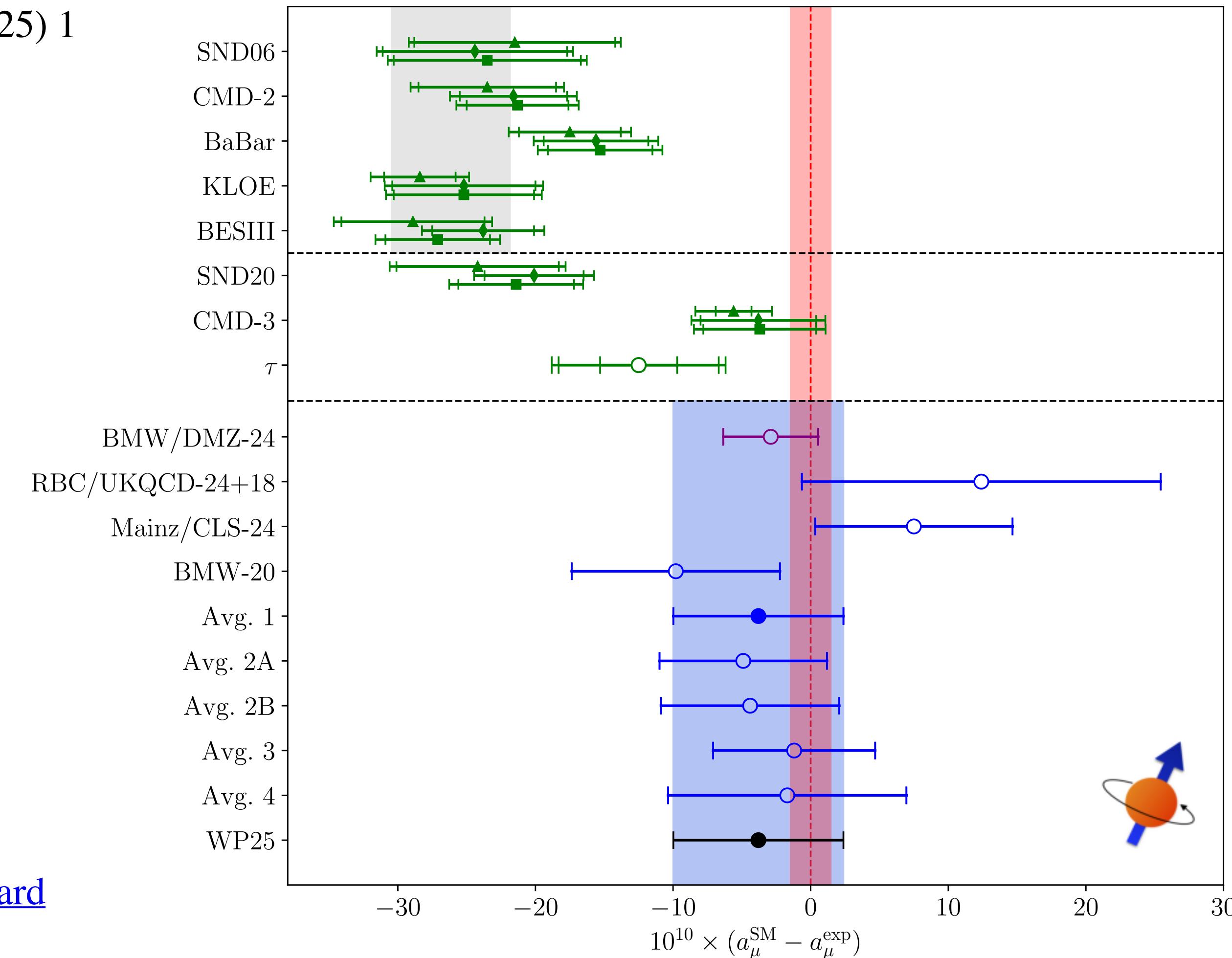
$$\tau \rightarrow \pi \pi \nu$$

Current status

The anomalous magnetic moment of the muon in the Standard Model: an update

R. Aliberti • *Phys.Rept.* 1143 (2025) 1

THEORY INITIATIVE


EXPERIMENT

Muon g-2 Collaboration: D. P. Aguillard

[arXiv:2506.03069v1](https://arxiv.org/abs/2506.03069v1) [hep-ex]

The new experimental world average

$$a_\mu(\text{exp}) = 116\,592\,0715(145) \times 10^{-12} \text{ (124 ppb)}$$

HVP evaluation using tau data

The leading order HVP contribution using tau data requires to account for the IB correction

$$\Delta a_\mu^{HVP}[\pi\pi, \tau] = \frac{\alpha^2 m_\tau^2}{6|V_{ud}|^2 \pi^2} \frac{\mathcal{B}_{\pi\pi^0}}{\mathcal{B}_e} \int_{4m_\pi^2}^{m_\tau^2} ds \frac{K(s)}{s} \frac{dN_{\pi\pi^0}}{N_{\pi\pi^0} ds} \left(1 - \frac{s}{m_\tau^2}\right)^{-2} \left(1 + \frac{2s}{m_\tau^2}\right)^{-1} \left[\frac{R_{\text{IB}}(s)}{S_{\text{EW}}} - 1 \right]$$

↑ QED Kernel function
 ↑ Described by data

The **isospin breaking corrections** are given by

$$R_{\text{IB}}(s) = \frac{\text{FSR}(s) \beta_{\pi^+ \pi^-}^3(s)}{G_{\text{EM}}(s) \beta_{\pi^\pm \pi^0}^3(s)} \left| \frac{F_\pi^V(s)}{f_+(s)} \right|^2$$

Final state radiation in e^+e^-

Form factor

Long distance Electromagnetic

Phase space

S_{EW} Short distance EW correction

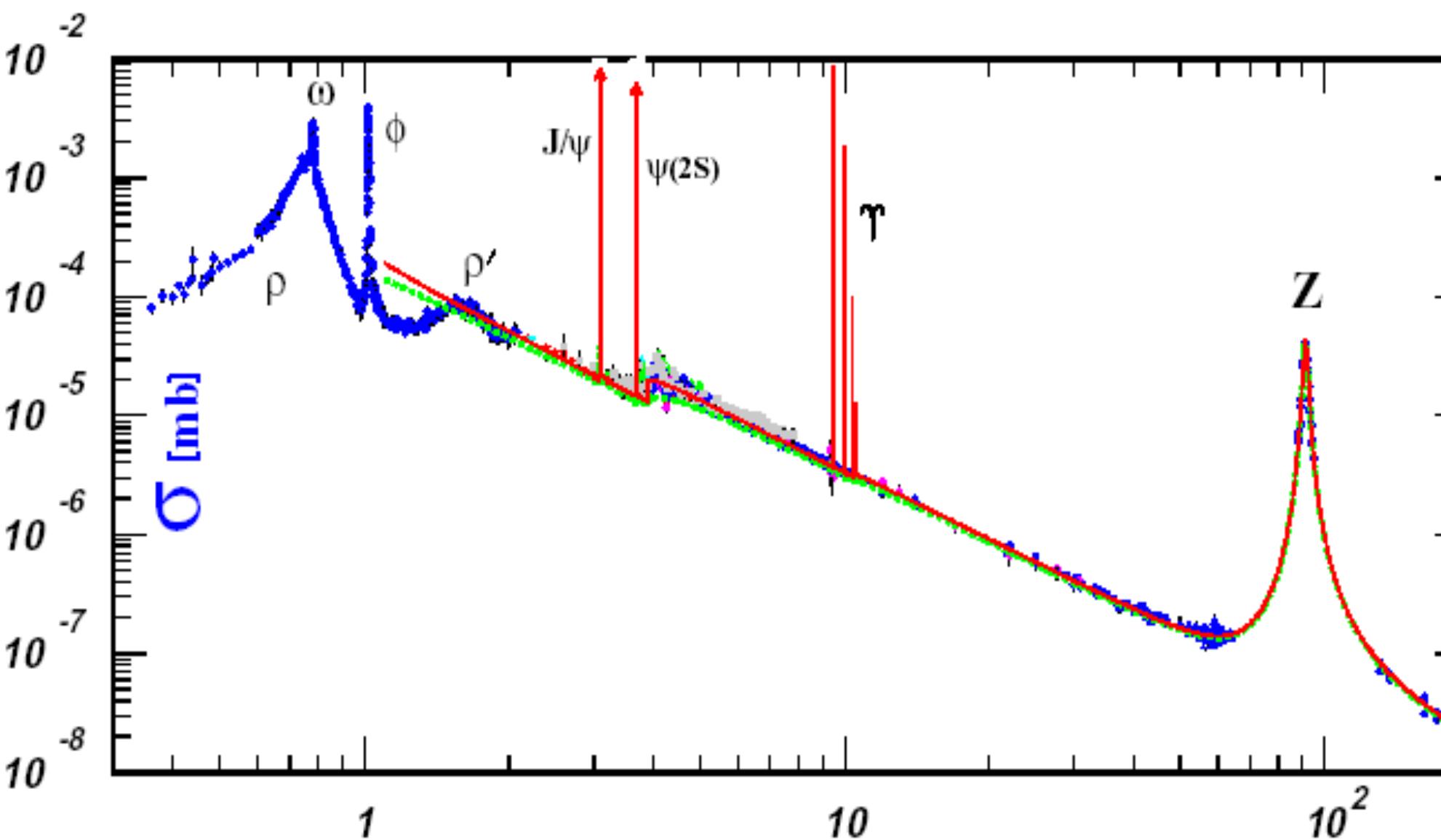
HVP contribution status

$\Delta a_\mu^{HVP}[\pi\pi, \tau]$ in $10^{(-10)}$ units

	Phase space	S_{EW}	G_{EM}	FSR	$\rho-\omega$ mixing
Phase space	-7.88	-7.52	-	-7.7(2)	
S_{EW}	-12.21(15)	-12.16(15)	-	-12.2(1.3)	
G_{EM}	-1.92(90)	$-1.67^{+0.60}_{-1.39}$	-	-2.0(1.4)	
FSR	4.67(47)	4.62(46)	4.42(4)	4.5(3)	
$\rho-\omega$ mixing	4.0(4)	2.87(8)	3.79(19)	3.9(3)	

M. Davier, étal EPJC 84, 721 (2024),
M. Davier, étal , EPJC 66, 127 (2010)

Lopez Castro, Miranda, and Roig,
PRD 111, 073004 (2025)


G. Colangelo, étal JHEP 10, 032 (2022)
M. Hoferichter, étal PRL 131, 161905 (2023)

Theory initiative update
Arxiv: 2505.21476

FSR computed using sQED, first introduced in 2010 by M. Davier, étal EPJC 66, 127 (2010).
Uncertainty associated to the missing structure effects

Weak / Electromagnetic form factor correction

ρ is the dominant contribution

The form factor parameterize the distribution for each case

$$F_0(s) = f_{\rho^0}(s) \left[1 - \delta_{\rho\omega} \frac{s}{m_\omega^2 - s - im_\omega \Gamma_\omega(s)} \right]$$
$$F_-(s) = f_{\rho^-}(s),$$

Phys.Rev.D76:096010,2007

Phys.Rev.D76:033001,2007

G. Toledo

HVP contribution status. Form Factors

$\Delta a_\mu^{HVP}[\pi\pi, \tau]$ in $10^{(-10)}$ units

	ΔM_ρ	$0.20^{(+27)}_{(-19)}(9)$	$1.95^{+1.56}_{-1.55}$	
	$\Delta\Gamma_\rho(\Delta M_\pi)$	$4.09(0)(7)$	3.37	
$\frac{F_\pi^V}{f_+}$ (w/o $\rho-\omega$)	$\Delta\Gamma_\rho(\pi\pi\gamma)$	$-5.91(59)(48)$	$-6.66(73)$	
	$\Delta\Gamma_\rho(g_{\rho\pi\pi})$	—	—	
Total		$-1.62(65)(63)$	$(-1.34)^{+1.72}_{-1.71}$	$-1.5(4.7)$

M. Davier, étal EPJC 84, 721 (2024),
M. Davier, étal , EPJC 66, 127 (2010)

Lopez Castro, Miranda, and Roig,
PRD 111, 073004 (2025)

Theory initiative update
Arxiv: 2505.21476

Corrections computed using different FF parameterizations

$\rho \rightarrow \pi\pi(\gamma)$ decay, affecting the rho width difference, computed using sQED, structure dependent effects expected, 10% uncertainty assigned

PHYSICAL REVIEW D 76, 096010 (2007)

Width difference of ρ vector mesons

F. V. Flores-Baéz and G. López Castro
Departamento de Física, Cinvestav, Apartado Postal 14-740, 07000 Mexico DF, Mexico

G. Toledo Sánchez
Instituto de Física, Universidad Nacional Autónoma de México, 04510 Mexico DF, Mexico
(Received 27 August 2007; published 29 November 2007)

The rho width difference gives the most important contribution to FF

The ρ width difference

$$\Delta\Gamma_\rho \equiv \Gamma_{\rho^0} - \Gamma_{\rho^+}$$

$$\Delta m_\rho \equiv m_{\rho^+} - m_{\rho^0}$$

Data based

$$\Delta\Gamma_\rho = (0.3 \pm 1.3) \text{ MeV}$$

$$\Delta m_\rho = (+0.7 \pm 0.8) \text{ MeV}$$

S. Navas et al. [Particle Data Group],
PRD 110 (2024)

$$\Delta\Gamma_\rho = (-0.58 \pm 1.04) \text{ MeV}$$

$$\Delta m_\rho = (+0.30 \pm 0.53) \text{ MeV}$$

Davier, Malaescu, and Zhang
ArXiv:2504.13789v1 (2025)

Theoretical, EM radiative corrections, sQED

$$\Delta\Gamma_\rho = (+0.76 \pm 0.20) \text{ MeV}$$

radiative correction Δm_π

+1.82 ($\pm 10\%$) -1.06 structure

Flores-Baez, Castro and Toledo
PRD 76, 096010 (2007)

Approximations: Structureless pion and rho photon interactions (sQED)

Only convection-convection terms in virtual corrections

The ρ width difference

The rho width difference can be split into $\Delta\Gamma_\rho = \Delta\Gamma_\rho[\pi\pi(\gamma)] + \Delta\Gamma_\rho(\text{rest})$

where $\Delta\Gamma_\rho(\text{rest})$ includes all the measured channels, except the two pions and the corresponding radiative channel

$$\rho^0 : l^+l^-, \pi^0\gamma, \eta\gamma, 3\pi, 4\pi$$

$$\rho^+ : \pi^+\gamma$$

$$\text{BR}(\rho^0 \rightarrow \text{rest}) = (1.04 \pm 0.10) \times 10^{-3}$$

$$\text{BR}(\rho^+ \rightarrow \text{rest}) = (4.53 \pm 0.46) \times 10^{-4},$$

S. Navas et al. [Particle Data Group],
PRD 110 (2024)

Thus, for a common neutral and charged rho width (for example 150 MeV)

$$\begin{aligned}\Delta\Gamma_\rho(\text{rest}) &= \Gamma_{\rho^0} \times \text{BR}(\rho^0 \rightarrow \text{rest}) - \Gamma_{\rho^+} \times \text{BR}(\rho^+ \rightarrow \text{rest}) \\ &= (0.088 \pm 0.017) \text{ MeV},\end{aligned}$$

At the precision level of a few tenths of a percent,
the widths of rho mesons are driven by the $\rho \rightarrow \pi\pi(\gamma)$ decay

Contributions to $\Delta\Gamma_\rho[\pi\pi(\gamma)]$

The neutral and charged photon inclusive rho to two pions width are given by

$$\Gamma[\rho^+ \rightarrow \pi^+ \pi^0(\gamma)] = \frac{g_+^2 m_{\rho^+}}{48\pi} \beta_+^3 (1 + \delta_+)$$

$$\Gamma[\rho^0 \rightarrow \pi^+ \pi^-(\gamma)] = \frac{g_0^2 m_{\rho^0}}{48\pi} \beta_0^3 (1 + \delta_0)$$

where δ_+ and δ_0 account for the radiative correction

Thus, the rho width difference can be set, in terms of the IB parameters, as

$$\Delta\Gamma_\rho[\pi\pi(\gamma)] = \Gamma(\rho^0 \rightarrow \pi^+ \pi^-) \left[\delta_0 - \delta_+ - \frac{\Delta m_\rho}{m_{\rho^0}} - \frac{6m_+^2}{m_{\rho^0}^2 \beta_0^2} \left(\frac{\Delta}{m_+} + \frac{2\Delta m_\rho}{m_{\rho^0}} \right) - \frac{2\delta g}{g_0} \right]$$

where

$$\Delta \equiv m_+ - m_0$$

$$\Delta m_\rho \equiv m_{\rho^+} - m_{\rho^0}$$

$$\delta g \equiv g_+ - g_0$$

Thus, the radiative corrections δ_+ and δ_0 for charged and neutral rho are needed

Previous analysis

PHYSICAL REVIEW D 76, 096010 (2007)

Width difference of ρ vector mesons

$$\rho \rightarrow \pi\pi(\gamma)$$

F. V. Flores-Baéz and G. López Castro

Departamento de Física, Cinvestav, Apartado Postal 14-740, 07000 Mexico DF, Mexico

G. Toledo Sánchez

Instituto de Física, Universidad Nacional Autónoma de México, 04510 Mexico DF, Mexico

(Received 27 August 2007; published 29 November 2007)

Real photon emission: sQED + Model dependent

Virtual photon emission: $\rho^0 \rightarrow \pi^+\pi^-(\gamma)$ sQED

$\rho^+ \rightarrow \pi^+\pi^0(\gamma)$ sQED (convection terms only)

Meister and Yennie, PR 130, 1210 (1963)

Queijeiro and García, PRD 38, 2218 (1988)

$$\rho\rho\gamma \text{ vertex} \quad \Gamma^{\mu\nu\alpha} = (2P - K)^\alpha g^{\mu\nu} + 2(k^\mu g^{\nu\alpha} - k^\nu g^{\mu\alpha}) - \cancel{P^\mu g^{\nu\alpha}} - \cancel{(P - k)^\nu g^{\mu\alpha}}$$

IR Finite

UV Finite with convection

Radiative correction for the neutral and charged processes and their difference, at $m_\rho = 775$ MeV

$$\delta_+ = -4.15 \times 10^{-3} \quad \delta_0 = 8.05 \times 10^{-3} \quad \delta_0 - \delta_+ = 12.2 \times 10^{-3}$$

New analysis

F. V. Flores-Baez, G. L. Castro and G. Toledo
Arxiv: 2510.02723

Improvements

- Structure effect via a form factor
- Full EM vertex of the ρ , not only convection term

Byproduct

- Implications for FSR

Real photon emission not modified

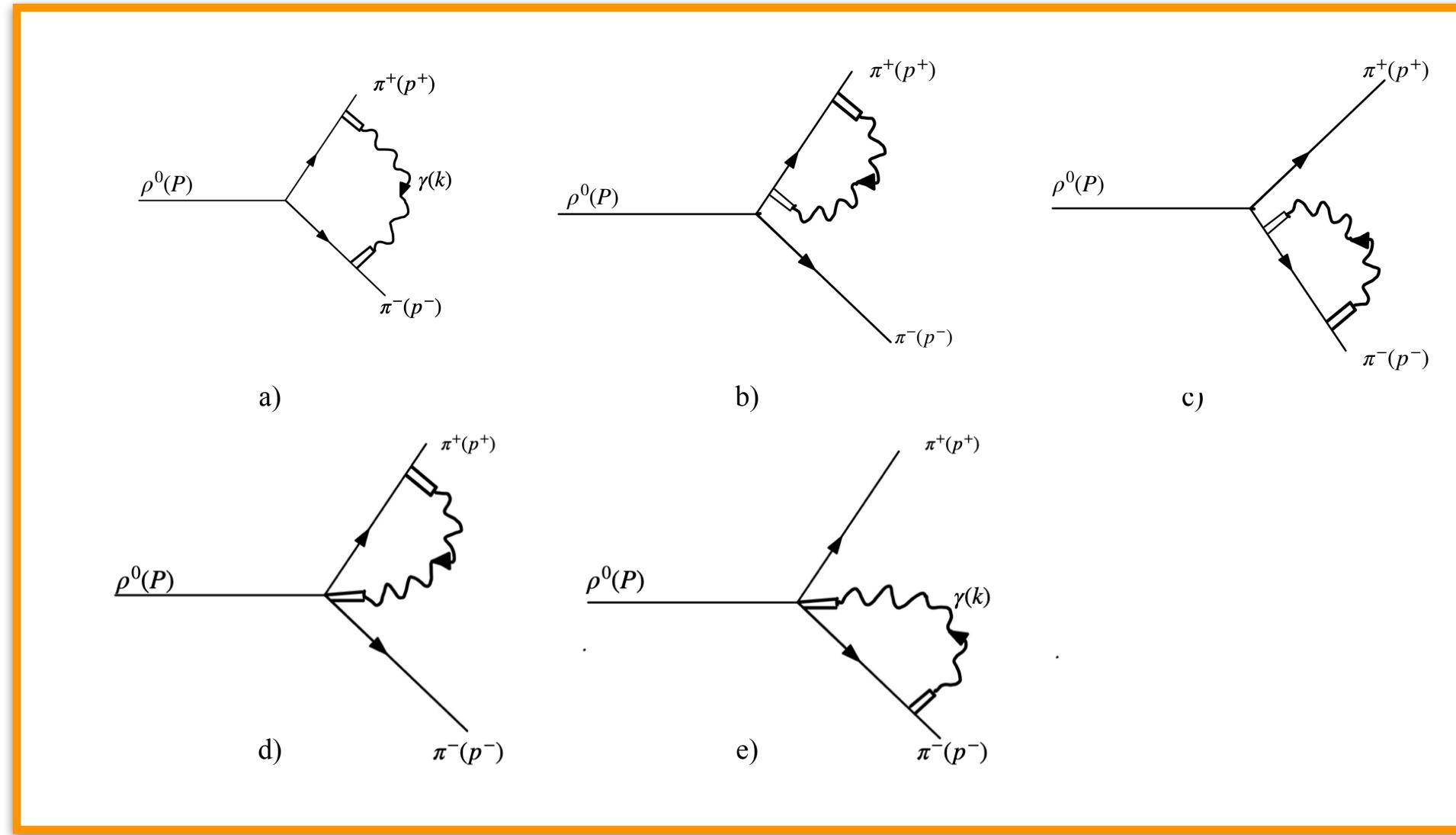
Structure effect

Beyond sQED by modifying the photon propagator in loops $\frac{1}{k^2} \rightarrow \frac{1}{k^2} [F_V(k^2)]^2$ makes virtual corrections finite

$$\text{where } F_V(k^2) \equiv \frac{M_V^2}{M_V^2 - k^2} \quad \text{and} \quad M_V^2 = m_\rho^2 - im_\rho\Gamma_\rho$$

Consider the GVMD by Ignatov et al, where up to three resonances were used to fit the pion form factor and explain pi pi charge asymmetry

Ignatov and Lee, PLB 833,137283(2022)


Colangelo, Hoferichter, Monnard, and Ruiz de Elvira, JHEP 08, 295 (2022)

We consider three resonances, the ρ, ρ', ρ'' with the mass and width as given in the GVMD

Neutral rho meson

$$\rho^0 \rightarrow \pi^+ \pi^- (\gamma)$$

Structured vertices

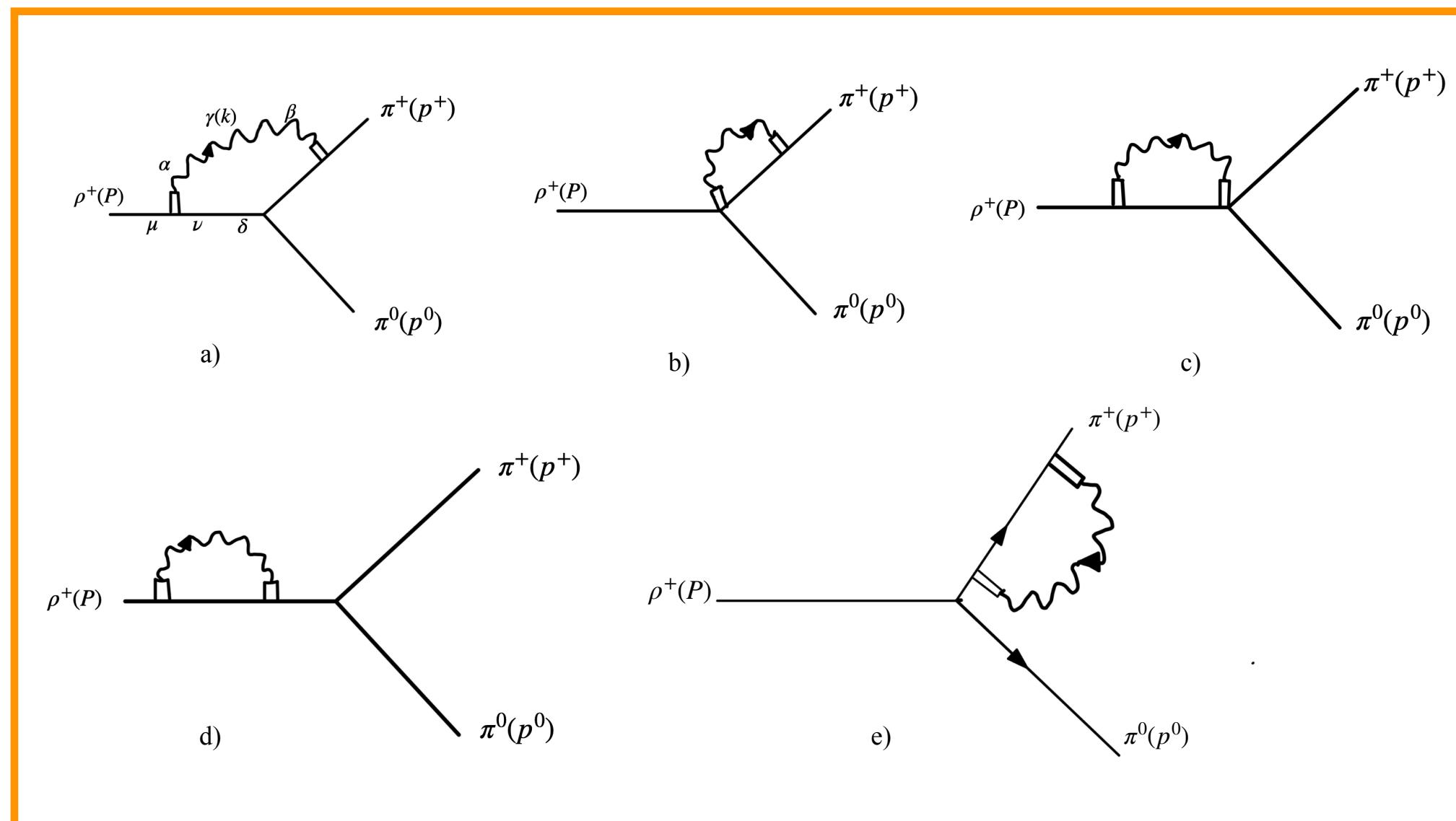
$$\delta_0 = 8.05 \times 10^{-3}$$

Flores-Baez, Castro and Toledo
PRD 76, 096010 (2007)

now

$$\delta_0 = 6.04 \times 10^{-3}$$

Contact vertex fixed by gauge invariance


Real photon emission same as in the previous analysis, verified

Infrared and UV finite upon inclusion of real photon emission contribution

Charged rho meson

$$\rho^+ \rightarrow \pi^+ \pi^0(\gamma)$$

Structured vertices

$$\delta_+ = -4.15 \times 10^{-3}$$

Flores-Baez, Castro and Toledo
PRD 76, 096010 (2007)

now

$$\delta_+ = +2.10 \times 10^{-3}$$

Radiative correction as a function of energy
Convection term considered to make UV finite
(previous).
VMD (new)

$\rho\rho\gamma$ vertex

$$\begin{aligned} \Gamma^{\mu\nu\alpha} = & (2P - K)^\alpha g^{\mu\nu} + 2(k^\mu g^{\nu\alpha} - k^\nu g^{\mu\alpha}) \\ & - P^\mu g^{\nu\alpha} - (P - k)^\nu g^{\mu\alpha} \end{aligned}$$

Real photon emission same as in the previous analysis, verified

Infrared and UV finite

Radiative correction

$m_{\rho^{+,0}}$ (MeV)	$\delta_0 (\times 10^{-3})$	$\delta_+ (\times 10^{-3})$	$\delta_0 - \delta_+ (\times 10^{-3})$
772.0	6.05(2)	2.08(5)	3.973(54)
772.5	6.05(2)	2.08(5)	3.968(54)
773.0	6.05(2)	2.09(5)	3.963(54)
773.5	6.05(2)	2.09(5)	3.957(54)
774.0	6.04(2)	2.09(5)	3.952(54)
774.5	6.04(2)	2.09(5)	3.947(54)
775.0	6.04(2)	2.10(5)	3.941(54)
775.5	6.03(2)	2.10(5)	3.936(54)
776.0	6.03(2)	2.10(5)	3.931(54)
776.5	6.03(2)	2.10(5)	3.925(54)
777.0	6.03(2)	2.11(5)	3.920(54)
777.5	6.02(2)	2.11(5)	3.915(54)
778.0	6.02(2)	2.11(5)	3.909(54)

Radiative correction for the neutral and charged processes and their difference, as a function of the ρ mass, in the region around the physical value

Compared to the previous value at the same energy

$$\delta_0 = 8.05 \times 10^{-3} \quad \delta_+ = -4.15 \times 10^{-3} \quad \delta_0 - \delta_+ = 12.2 \times 10^{-3}$$

Flores-Baez, Castro and Toledo
PRD 76, 096010 (2007)

G. Toledo

Contributions to $\Delta\Gamma_\rho[\pi\pi(\gamma)]$

The rho width difference, in terms of the IB parameters, is

$$\Delta\Gamma_\rho[\pi\pi(\gamma)] = \Gamma(\rho^0 \rightarrow \pi^+\pi^-) \left[\delta_0 - \delta_+ - \frac{2\delta g}{g_0} - \frac{\Delta m_\rho}{m_{\rho^0}} - \frac{6m_+^2}{m_{\rho^0}^2\beta_0^2} \left(\frac{\Delta}{m_+} + \frac{2\Delta m_\rho}{m_{\rho^0}} \right) \right]$$

Width difference contribution + 0.5911 MeV + - 0.19 MeV + - 1.1 MeV → ΔΓ_ρ[\pi\pi(γ)] = - 0.709 MeV

± 0.22 not included before

For $\Gamma(\rho^0 \rightarrow \pi^+\pi^-) = 150$ MeV

vs previous +1.82 ($\pm 10\%$) + - 1.1 MeV

$\Delta = 4.5936$ MeV

structure uncertainty now accounted

$\Delta_\rho = (+0.7 \pm 0.8)$ MeV

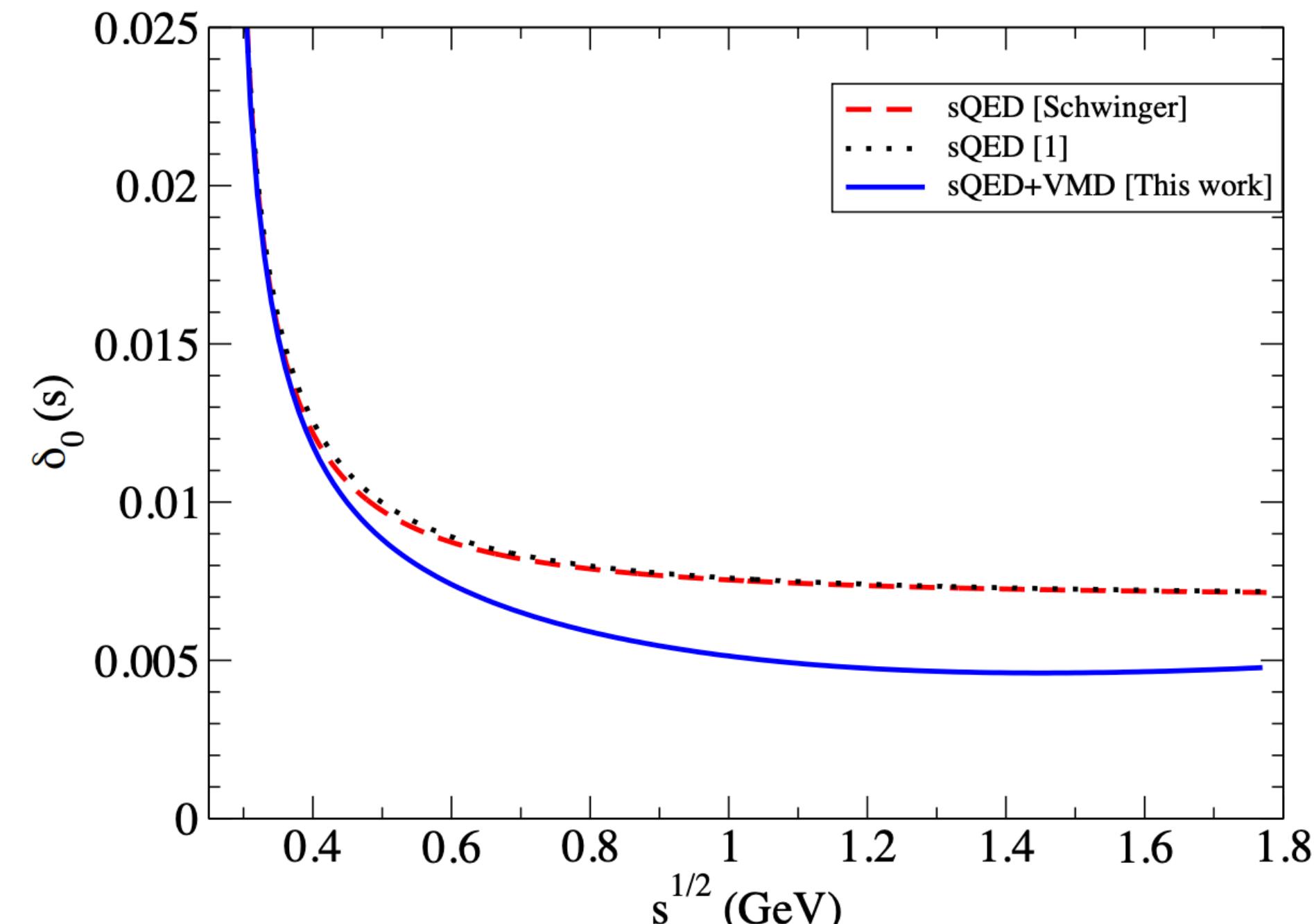
S. Navas et al. [Particle Data Group],
PRD 110 (2024)

Adding the difference from other channels, we obtain the total width difference

$$\Delta\Gamma_\rho = \Delta\Gamma_\rho[\pi\pi(\gamma)] + \Delta\Gamma_\rho(\text{rest}) = -0.621 \pm 0.22 \text{ MeV}$$

This can be compared with

$$\Delta\Gamma_\rho = (-0.58 \pm 1.04) \text{ MeV}$$


Davier, Malaescu, and Zhang
ArXiv:2504.13789v1 (2025)

FSR

The $\rho^0 \rightarrow \pi^+\pi^-(\gamma)$ decay is related to the FSR contribution in the $e^+e^- \rightarrow \pi^+\pi^-$ process. Thus, our result for $\delta_0(s)$ incorporates the structure on the FSR in the VMD approach

$$FSR(s) = 1 + \delta_0(s)$$

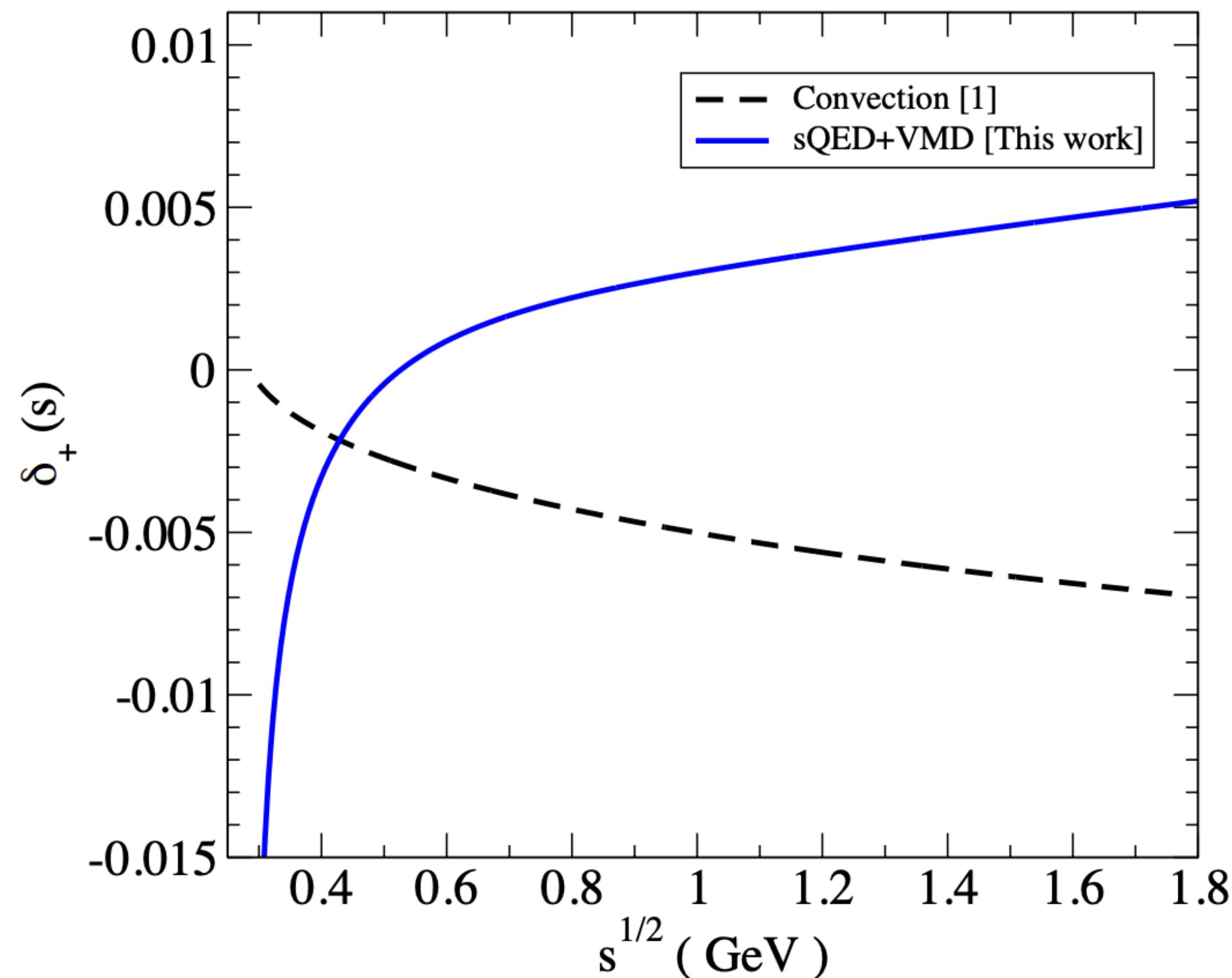
Radiative correction δ_0 as a function of energy

Cross-check: Our result matches the one by [Schwinger](#) ([Drees-Hikasa](#)) for sQED. This allows to identify the additional structure effects on VMD

J. S. Schwinger
Particles, Sources and
Fields, vol. 3 (AW, 1989)

M. Drees and K. Hikasa
Phys.Lett.B252 127 (1990)

Flores-Baez, Castro and Toledo
PRD 76, 096010 (2007)


G. Toledo

δ_+

$\rho\rho\gamma$ vertex

$$\Gamma^{\mu\nu\alpha} = (2P - K)^\alpha g^{\mu\nu} + 2(k^\mu g^{\nu\alpha} - k^\nu g^{\mu\alpha})$$

$$-P^\mu g^{\nu\alpha} - (P - k)^\nu g^{\mu\alpha}$$

Radiative correction δ_+ as a function of energy
Convection term considered to make UV finite (previous).
VMD (new) incorporates the full vertex structure

Estimated impact on $\Delta a_\mu^{HVP}[\pi\pi, \tau]$

$$\Delta a_\mu^{HVP}[\pi\pi, \tau] = \frac{\alpha^2 m_\tau^2}{6|V_{ud}|^2 \pi^2} \frac{\mathcal{B}_{\pi\pi^0}}{\mathcal{B}_e} \int_{4m_\pi^2}^{m_\tau^2} ds \frac{K(s)}{s} \frac{dN_{\pi\pi^0}}{N_{\pi\pi^0} ds} \left(1 - \frac{s}{m_\tau^2}\right)^{-2} \left(1 + \frac{2s}{m_\tau^2}\right)^{-1} \left[FSR(s) \left| \frac{F_\pi^V(s)}{f_+(s)} \right|^2 - 1 \right]$$

We compute the corrections using data (uncorrelated)

For the FF we use Gounaris-Sakurai parameterization. Radiative corrections are taken at $m_\rho = 775$ MeV

$$\Delta a_\mu^{HVP}[\pi\pi, \tau] (\times 10^{-10})$$

Source	FSR [$\times 10^{-10}$]	$\Delta \Gamma_\rho(\pi\pi(\gamma)) [\times 10^{-10}]$ due to $\delta_0 - \delta_+$
Schwinger [18, 22]	+4.67(47) [7]	-5.91(59) [7]
δ_0 (sQED) [1]	+4.64(46)	-5.97(60)
This work	+3.77(2)	-1.91(4)

For FSR we obtain around 15% reduction respect to sQED

For FF we obtain around 50% reduction respect to sQED

Conclusions

- HVP from tau data requires to properly account for all the IB corrections
- The rho width difference $\Delta\Gamma_\rho$ is a key ingredient in the form factor IB estimates.
- We have computed the $\rho \rightarrow \pi\pi(\gamma)$ radiative corrections, including the structure dependence.
- As a byproduct, the structure dependent effects on FSR was obtained
- We estimated the impact on $\Delta a_\mu^{HVP}[\pi\pi, \tau]$. Hadrons structure is now theoretically accounted.

THANK'S

Aún hay otras
Alhóndigas
por incendiar !

G. Toledo