

Can non-linear boundary conditions lead to new non-perturbative physics?

DAVID DUDAL

KU Leuven–Kulak, Belgium

*Talk at “6th Workshop on Nonperturbative Aspects of QCD”, Valparaíso,
01/12/2025*

Based on

- ▶ F. Canfora, D. Dудal, T. Oosthuyse, P. Pais, L. Rosa and S. Stouten, “Non-perturbative corrections to the Casimir energy for a toy scalar field theory with non-linear boundary conditions”, to appear (2025 or 2026).
- ▶ But the answer is YES! 😊

Overview

Motivation for this work

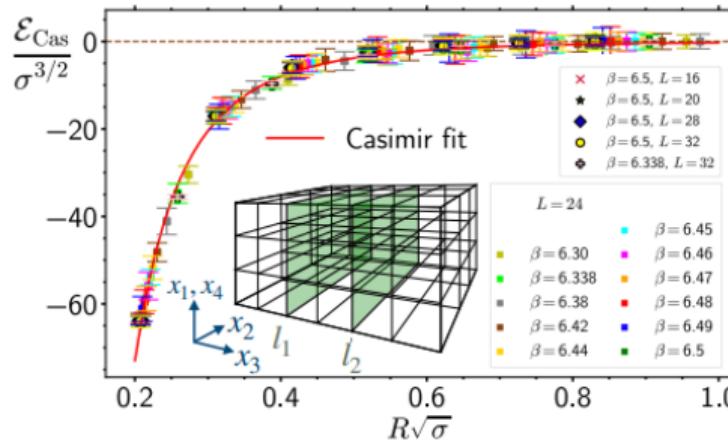
A scalar toy model

Non-linear Dirichlet boundary conditions

Non-linear Neumann boundary conditions

Non-Abelian Casimir energy: lattice results

Consider pure 4D $SU(2)$ Yang-Mills, 2 parallel plates at $z = 0$, $z = R$ and impose $n_\mu \tilde{F}_{\mu\nu}|_{\text{bdy}} = 0$, with $n_\mu = (0, 0, 0, 1)$.



$$\mathcal{E}_{\text{Cas}} = -C_0 \frac{2(N_c^2 - 1)m_{\text{gt}}^2}{8\pi^2 R} \sum_{n=1}^{\infty} \frac{K_2(2nm_{\text{gt}}R)}{n^2}.$$

Figure taken from Chernodub et al, Phys. Rev. D 108 (2023) 1, 014515. The Casimir energy can be fitted with a gluon mass scale $m_{\text{gt}} = 0.49(5)$ GeV. This is *not* a glueball mass scale! Interestingly, in the very same ballpark of dynamical gluon masses appearing in a pleiad of other works, see other talks during this meeting, in particular that of Sebbe Stouten on Wednesday! $C_0 = 5.60(7)$ is a phenomenological fitting constant.

Similar results reported for $SU(3)$ and/or 3D, see Ngwenya et al, 2507.21333 [hep-lat].

Role non-linear boundary conditions

Notice that

$$n_\mu \tilde{F}_{\mu\nu}^a \Big|_{\text{bdy}} = n_\mu \epsilon_{\mu\nu\rho\sigma} (\partial_\rho A_\sigma^a - \partial_\sigma A_\rho^a - g f^{abc} A_\rho^b A_\sigma^c F) \Big|_{\text{bdy}} = 0.$$

These conditions are gauge invariant (albeit that $n_\mu \tilde{F}_{\mu\nu}^a$ is not), but also non-linear.

Non-linear terms usually mean interaction terms, but how to take into consideration these boundary interactions in a path integral approach? And what are the potential consequences?

Overview

Motivation for this work

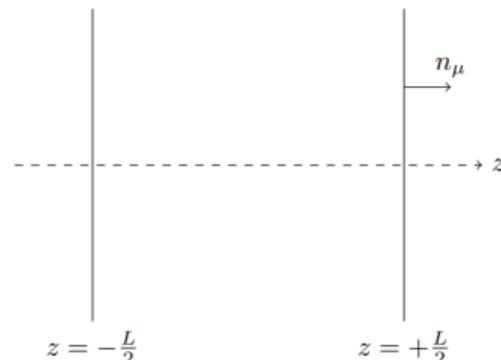
A scalar toy model

Non-linear Dirichlet boundary conditions

Non-linear Neumann boundary conditions

Non-linear boundary conditions

Consider a free massive scalar in the following geometry



We impose non-linear boundary conditions

$$\text{Dirichlet: } \phi + \frac{g}{2} \phi^2 \Big|_{z=\pm L/2} = 0, \quad \text{or} \quad \text{Neumann: } \partial_z \phi + \frac{g}{2} \phi^2 \Big|_{z=\pm L/2} = 0$$

via

$$\int d^4x \left[-\frac{1}{2} \phi (\partial^2 - m^2) \phi - b \delta \left(z + \frac{L}{2} \right) \left((\partial_z) \phi + \frac{g}{2} \phi^2 \right) - \bar{b} \delta \left(z - \frac{L}{2} \right) \left((\partial_z) \phi + \frac{g}{2} \phi^2 \right) \right].$$

$b(\bar{x})$ and $\bar{b}(\bar{x})$ are auxiliary fields imposing the boundary conditions. We set $\bar{x} = (t, x, y)$.

What happens at the quantum level?

Dynamical boundary mass

We study 2 classes of boundary conditions:

$$(\text{Dirichlet}) \quad \phi + \frac{g}{2} \phi^2 \Big|_{z=\pm L/2} = 0 \quad \text{or} \quad (\text{Neumann}) \quad \partial_z \phi + \frac{g}{2} \phi^2 \Big|_{z=\pm L/2} = 0$$

By integrating out the 4D scalar field, a 3D effective (dynamical!) theory for the boundary dynamics is built in terms of the (b, \bar{b}) -fields.

We allow for a dynamically generated boundary mass, via non-trivial VEVs

$$\begin{cases} b = b_0 + \beta & ; \quad b_0 = \langle b \rangle \\ \bar{b} = \bar{b}_0 + \bar{\beta} & ; \quad \bar{b}_0 = \langle \bar{b} \rangle \end{cases}$$

to be extracted from the quantum effective potential.

Two-point Green's function, first without boundary conditions

Relevant quadratic part of the action:

$$S_2 = \int d^4x \left[-\frac{1}{2}\varphi(\partial^2 - m^2)\varphi + \Delta(z)\varphi^2 \right],$$

with

$$\Delta(z) = -\frac{g}{2} (b_0\delta_+ + \bar{b}_0\delta_-), \quad \delta_{\pm} \equiv \delta(z \pm L/2)$$

the boundary mass part!

The Green's function obeys, in mixed coordinates,

$$(-\partial_z^2 + k^2 + m^2 + \Delta(z)) G(\bar{k}, z, z') \equiv \mathcal{M}(z) G(\bar{k}, z, z') = \delta(z - z').$$

For $\Delta(z) = 0$:

$$G_0(\bar{k}, z, z') = \frac{1}{2\sqrt{k^2 + m^2}} e^{-|z-z'|\sqrt{k^2 + m^2}}.$$

Two-point Green's function, first without boundary conditions

For $\Delta(z) \neq 0$; Dyson-Schwinger equation:

$$G(z, z') = G_0(z, z') - \int dx G_0(z, x) \Delta(x) G(x, z')$$

or, concretely

$$G(z, z') = G_0(z, z') + g b_0 G_0(z, -L/2) G(-L/2, z') + g \bar{b}_0 G_0(z, L/2) G(L/2, z')$$

After some manipulations, exact solution:

$$\begin{cases} G(-L/2, z') = -\frac{g \bar{b}_0 e^{-\sqrt{k^2+m^2}(L+|L/2-z'|)} + e^{-\sqrt{k^2+m^2}|L/2+z'|}(-g \bar{b}_0 + 2\sqrt{k^2+m^2})}{g^2 b_0 \bar{b}_0 e^{-2L\sqrt{k^2+m^2}} - (gb_0 - 2\sqrt{k^2+m^2})(g \bar{b}_0 - 2\sqrt{k^2+m^2})} \\ G(+L/2, z') = -\frac{g b_0 e^{-\sqrt{k^2+m^2}(L+|L/2+z'|)} + e^{-\sqrt{k^2+m^2}|L/2-z'|}(-g b_0 + 2\sqrt{k^2+m^2})}{g^2 b_0 \bar{b}_0 e^{-2L\sqrt{k^2+m^2}} - (gb_0 - 2\sqrt{k^2+m^2})(g \bar{b}_0 - 2\sqrt{k^2+m^2})} \end{cases}.$$

Overview

Motivation for this work

A scalar toy model

Non-linear Dirichlet boundary conditions

Non-linear Neumann boundary conditions

The effective potential, now with boundary conditions

We must compute

$$\begin{aligned}
 & \int [\mathcal{D}\varphi][\mathcal{D}\beta][\mathcal{D}\bar{\beta}] \exp \left[-S_2 - \int d^4x \varphi ((b_0 + \beta)\delta_+ + (\bar{b}_0 + \bar{\beta})\delta_-) \right] \\
 &= \int [\mathcal{D}\beta][\mathcal{D}\bar{\beta}] \exp \left[\frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} dz dz' \left(J(\vec{k}, z) G(z, z') (2\pi)^3 \delta^3(\vec{k} - \vec{k}') J(\vec{k}', z') \right) \right] \\
 & \quad \times \exp \left(-\frac{1}{2} \ln \det \mathcal{M} \right)
 \end{aligned}$$

with

$$J(\vec{k}, z) = \left(b_0 (2\pi)^3 \delta^{(3)}(\vec{k}) + \beta(\vec{k}) \right) \delta_+ + \left(\bar{b}_0 (2\pi)^3 \delta^{(3)}(\vec{k}) + \bar{\eta}(\vec{k}) \right) \delta_-$$

the “source term”.

The $\det \mathcal{M}$

Consider the “Schrödinger equation”

$$\mathcal{M}u_n = \lambda_n u_n,$$

in particular, its zero mode $\lambda_0 = 0$. As normalizable solution, we find

$$u_0(z) = \begin{cases} ae^{\sqrt{k^2+m^2}z} & \text{for } z < -L/2 \\ be^{-\sqrt{k^2+m^2}z} + ce^{\sqrt{k^2+m^2}z} & \text{for } -L/2 < z < L/2 \\ de^{-\sqrt{k^2+m^2}z} & \text{for } L/2 < z \end{cases}$$

“Gluing” at the boundaries: $u_0(z)$ continuous, and jumps in its derivatives:

$$\begin{cases} u_0(-L/2 - \varepsilon) - u_0(-L/2 + \varepsilon) = 0 \\ u_0(+L/2 + \varepsilon) - u_0(+L/2 - \varepsilon) = 0 \\ u'_0(-L/2 + \varepsilon) - u'_0(-L/2 - \varepsilon) + gb_0 u(-L/2) = 0 \\ u'_0(+L/2 + \varepsilon) - u'_0(+L/2 - \varepsilon) + g\bar{b}_0 u(+L/2) = 0 \end{cases}$$

Its coefficient matrix $\mathcal{N} \Rightarrow \det \mathcal{N} = 0$ for a non-trivial solution!

The $\det \mathcal{M}$

Generally true, also $\lambda_n \neq 0 \Rightarrow$ normalizable eigensolutions will exist iff $\det \mathcal{N}(\lambda) = 0$ for $\lambda = \lambda_n$.

Said otherwise, we have found a function $\det \mathcal{N}(\lambda)$ that (only) vanishes at the eigenvalues of the original Schrödinger problem.

\Rightarrow Gel'fand-Yaglom approach to compute the *functional* $\det \mathcal{M}$ in terms of an *ordinary* $\det \mathcal{N}$, see [Dunne, J. Phys. A 41, 304006 \(2008\)](#) for details.

Gel'fand-Yaglom and ζ -function regularization

Skipping all details:

$$\det \mathcal{M} = e^{-\zeta'(0)}, \quad \zeta(s) = \sum_n \frac{1}{\lambda_n^s}.$$

Using complex analysis tools and the properties of $\det \mathcal{N}(\lambda)$, it can be shown that

$$\ln \det \mathcal{M} = \ln \det \mathcal{N}(0)$$

up to an irrelevant (divergent) constant.

In concreto, for Dirichlet case:

$$\ln \det \mathcal{M} = \ln \left(g^2 b_0 \bar{b}_0 (1 - e^{-2L\sqrt{k^2 + m^2}}) + 4k^2 + 4m^2 - 2g(b_0 + \bar{b}_0) \sqrt{k^2 + m^2} \right).$$

The full effective potential

It remains to compute

$$\mathcal{Z} = \int [\mathcal{D}\beta][\mathcal{D}\bar{\beta}] \exp \left(\frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} dz dz' \left[J(\vec{k}, z) G(z, z') (2\pi)^3 \delta^3(\vec{k} - \vec{k}') J(\vec{k}', z') \right] \right).$$

The terms linear in β or $\bar{\beta}$ vanish upon minimization. Defining

$$\mathcal{P} = \begin{pmatrix} G(-L/2, -L/2) & G(-L/2, +L/2) \\ G(+L/2, -L/2) & G(+L/2, +L/2) \end{pmatrix}$$

we eventually get

$$\mathcal{Z} = \exp - \left(\frac{1}{2} \ln \det(\mathcal{M} \cdot \mathcal{P}) - \frac{V_3}{2} \lim_{\vec{k} \rightarrow 0} \begin{pmatrix} b_0 & \bar{b}_0 \end{pmatrix} \cdot \mathcal{P} \cdot \begin{pmatrix} b_0 \\ \bar{b}_0 \end{pmatrix} \right).$$

The full effective potential

As

$$\frac{1}{2} \ln \det(\mathcal{M} \cdot \mathcal{P}) = \frac{1}{2} \ln \det \left(1 - e^{-2L\sqrt{k^2+m^2}} \right)$$

\Rightarrow

$$\begin{aligned} Z &= \exp \left(\frac{V_3}{2} \lim_{\bar{k} \rightarrow 0} \left(\begin{array}{cc} b_0 & \bar{b}_0 \end{array} \right) \cdot \mathcal{P} \cdot \left(\begin{array}{c} b_0 \\ \bar{b}_0 \end{array} \right) \right) \exp -\frac{1}{2} \text{tr} \ln \left(1 - e^{-2L\sqrt{k^2+m^2}} \right) \\ &= \exp(-V_3 E_{\text{Cas, D}}) \end{aligned}$$

from which we can read off the Casimir energy in the Dirichlet case,

$$\begin{aligned} E_{\text{Cas, D}} &= -\frac{1}{2} \lim_{\bar{k} \rightarrow 0} \left(\begin{array}{cc} b_0 & \bar{b}_0 \end{array} \right) \cdot \mathcal{P} \cdot \left(\begin{array}{c} b_0 \\ \bar{b}_0 \end{array} \right) + \frac{1}{2} \int \frac{d^3 k}{(2\pi)^3} \left(1 - e^{-2L\sqrt{k^2+m^2}} \right) \\ &\equiv E_{\text{Cas, D}}^{(1)} + E_{\text{Cas, D}}^{(2)}. \end{aligned}$$

Interpretation

The second part gives the well-known (usual) Casimir energy

$$\begin{aligned} E_{\text{Cas, D}}^{(2)} &= \frac{1}{2} \int \frac{d^3 k}{(2\pi)^3} \ln(1 - e^{-2L\sqrt{k^2 + m^2}}) = -\frac{m^2}{4\pi^2 L} \sum_{n=1}^{+\infty} \frac{K_2(2nmL)}{n^2} \\ &= \frac{-\pi^2}{1440L^3} \quad \text{for } m \rightarrow 0. \end{aligned}$$

More interestingly, let us look at the new piece,

$$E_{\text{Cas, D}}^{(1)} = -\frac{e^{2Lm} (2m(b_0^2 + \bar{b}_0^2) - b_0 \bar{b}_0 g(b_0 + \bar{b}_0)) + b_0 \bar{b}_0 g(b_0 + \bar{b}_0) + 4b_0 \bar{b}_0 m e^{Lm}}{2(e^{2Lm}(gb_0 - 2m)(g\bar{b}_0 - 2m) - g^2 b_0 \bar{b}_0)}.$$

Interpretation

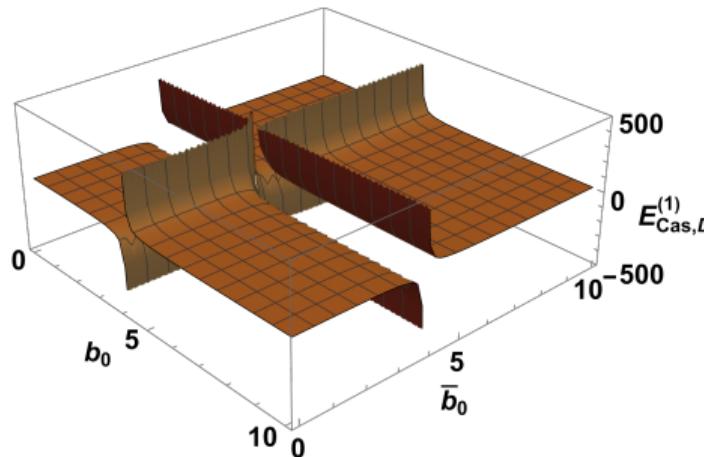
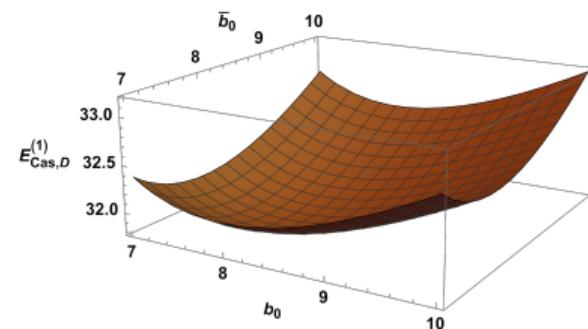


Figure: (top) $E_{\text{Cas},D}^{(1)}$ for $g = \frac{1}{2}$, $L = 5$, $m = 1$; (bottom) a zoom-in near the minimum of $E_{\text{Cas},D}^{(1)}$.

Interpretation

Despite regions where energy is unbounded from below, physically under control! Indeed, (only) for $m \neq 0$, non-trivial extremum at

$$b_0 = \bar{b}_0 = \frac{4me^{Lm}}{g(1 + e^{Lm})}$$

with Hessian eigenvalues $\left\{ \frac{1+e^{-Lm}}{2m}, \frac{\sinh(Lm)}{m(-3+e^{Lm})} \right\}$ \Rightarrow non-perturbative local minimum if

$$L > \frac{\ln 3}{m}$$

\Rightarrow new dynamics for sufficiently large L , with non-perturbative boundary mass generation.

Importantly, even for large fields, no way to tunnel through the infinite (positive energy) walls to reach the regions where the potential drops to $-\infty$.

The trivial vacuum $b_0 = \bar{b}_0 = 0$ is always a local maximum, hence unstable.

For $L < \frac{\ln 3}{m}$, no minimum to be found.

The Casimir energy/force itself

If $L > \frac{\ln 3}{m}$:

$$E_{\text{Cas, D}}(L) = \frac{e^{Lm}}{1 + e^{Lm}} \frac{m}{8g^2} - \frac{m^2}{4\pi^2 L} \sum_{n=1}^{+\infty} \frac{K_2(2nmL)}{n^2}$$

next to

$$F_{\text{Cas, D}} = -\partial_L E_{\text{Cas, D}}^{(1)} - \partial_L E_{\text{Cas, D}}^{(2)} \equiv F_{\text{Cas, D}}^{(1)} + F_{\text{Cas, D}}^{(2)}.$$

In the region $L < \frac{\ln 3}{m}$, we cannot make definite statements.

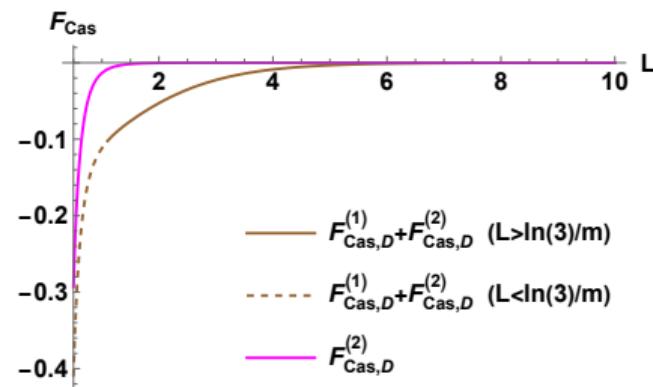


Figure: The non-linear Dirichlet Casimir force for $g = \frac{1}{2}$, $L = 5$, $m = 1$.

Overview

Motivation for this work

A scalar toy model

Non-linear Dirichlet boundary conditions

Non-linear Neumann boundary conditions

Massless case: two distinct groundstates

In the Neumann case, $m \rightarrow 0$ already gives very interesting dynamics. Perhaps most interesting case as “toy model” for YM.

Using similar tools, we arrive at

$$E_{\text{Cas, N}}^{(1)} = \frac{gb_0^2 \bar{b}_0^2}{2gLb_0 \bar{b}_0 - 2(b_0 + \bar{b}_0)}$$

with a non-trivial groundstate at $b_0 = \bar{b}_0 = \frac{3}{gL}$ for all L , leading to

$$E_{\text{Cas, N}}^{(1)} = \frac{27}{2g^2 L^3} \Rightarrow F_{\text{Cas, N}}^{(1)} = \frac{81}{2g^2 L^4}.$$

This state has higher energy than the trivial one at $b_0 = \bar{b}_0 = 0$, also minimum now! BUT: no tunneling due to infinite energy walls, so it is another physical groundstate/vacuum!

The Casimir energy/force itself

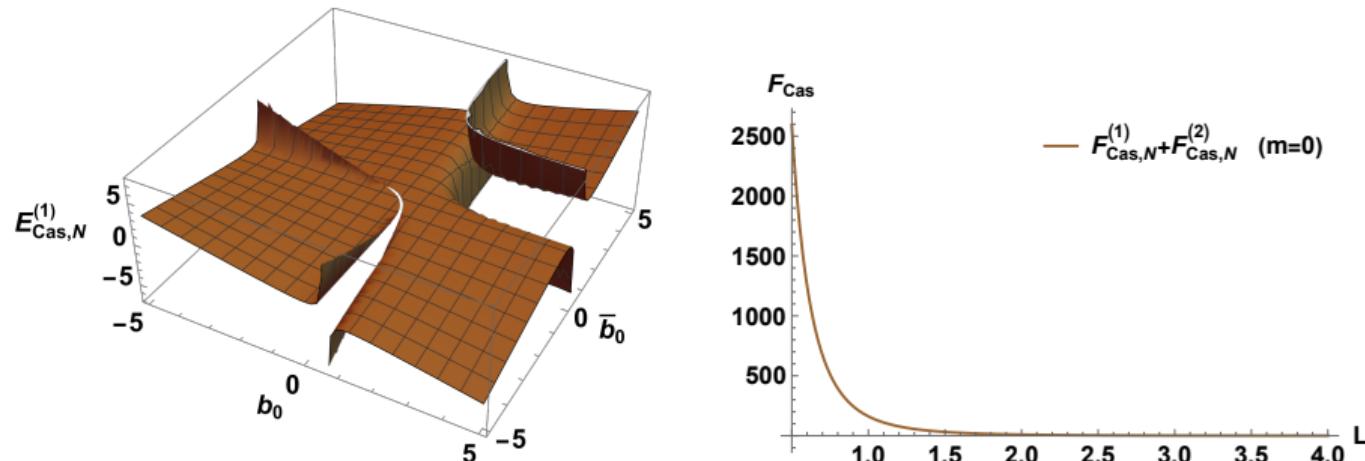


Figure: (Left) The non-linear Neumann Casimir energy for $g = \frac{1}{2}$, (Right) The associated force.

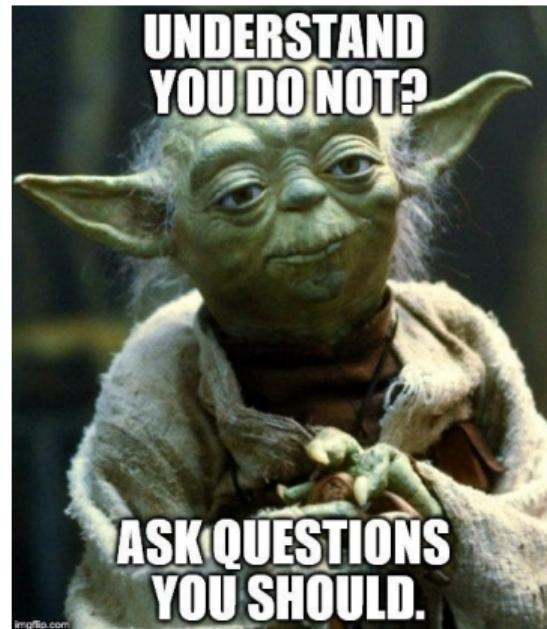
We get a non-perturbative *positive* shift of the standard negative Neumann (= Dirichlet) Casimir force!

Outlook

A few pertinent questions

- ▶ We introduced a scalar toy model with non-linear (Dirichlet or Neumann) boundary conditions.
- ▶ We have given strong indications of “boundary mass generation” with a rich structure of non-perturbative groundstates.
 - non-perturbative corrections to the Casimir energy & force!
- ▶ Strong incentive to investigate whether such non-perturbative boundary physics also happens in Yang-Mills gauge theories, in relation to the non-Abelian Casimir effect! (cf. lattice results)
 - Interplay with dynamical gluon mass in the bulk? See other talks during this meeting, in particular that of Sebbe Stouten.
- ▶ ...

¡El Fin!



¡Gracias!