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The Curci-Ferrari Model
Yang-Mills in Landau gauge ∂µAa

µ = 0 with phenomenological mass:

SCF =
∫

d4x

[1
4F a

µνF a
µν + ∂µc̄aDµca + iha∂µAa

µ + 1
2m2Aa

µAa
µ

]

CF perturbatively models the effect of Gribov copies in YM as seen on the lattice
(cfr. Peláez, Reinosa, Serreau, Tissier, Wschebor, A window on infrared QCD with small expansion parameters, 2021):
▶ gluon propagator with non-zero value for vanishing momenta: screening mass
▶ IR safe: renormalization scheme without Landau pole

Bogolubsky, Ilgenfritz, Muller-Preussker, Sternbeck, 2009
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Quadratic approximation:

S′
CF =

∫
d4x

[1
4Fa

µνFa
µν + 1

2ξ
(∂µAa

µ)2 + 1
2m2Aa

µAa
µ

]
,

with Fa
µν ≡ ∂µAa

ν − ∂νAa
µ.

z

z = −L
2 z = +L

2

nµ

PMC boundary conditions: Fa
µνnν

∣∣∣
z=± L

2
= 0

PEC boundary conditions: F̃a
µνnν

∣∣∣
z=± L

2
= 0

SBC =
∫

d4x
[(

b−,a
i ( ⃗x)δ(z + L/2) + b+,a

i ( ⃗x)δ(z − L/2)
)

Fa
iνnν

]
≡
∫

d4x [bγ,a
i ( ⃗x)δ(z − zγ)Fa

iνnν ]
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Casimir Energy
The goal is to use

Z = exp(−ℓtE).

After partial integration in Fourier space

S =
∫ d4k

(2π)4

[1
2Aa

µ(k)Kab
µνAb

ν(−k) + va
ν(k)Aa

ν(−k)
]

,

where
▶ K does not depend on plate distance L,
▶ vν only contains auxiliary fields b±.

Then shift Aa
µ(k) → Aa

µ(k) − vb
ρ(k)

(
K−1)ab

µν to get

S = 1
2

∫ d4k

(2π)4

[
Aa

µ(k)Kab
µνAb

ν(−k) − va
µ(k)

(
K−1

)ab

µν
vb

ν(−k)
]

.
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Rewrite the effective boundary action

Sbnd = −1
2

∫ d4k

(2π)4

[
va

µ(k)
(
K−1

)ab

µν
vb

ν(−k)
]

= 1
2

∫ d3 ⃗k

(2π)3 bγ,a
i ( ⃗k)Kγλ

ij ( ⃗k) bλ,a
j (− ⃗k),

then
Z = (DetK)−1/2.

Using log Det A = Tr log A, we find

E = 1
2

∫
d3 ⃗k

(2π)3 log
(

detK( ⃗k)
)

.

At last we get

EPEC = (N2 − 1)
2π2

∫ ∞

0
dk k2 log

[
1 − e−2L

√
k2+m2

]
= −2(N2 − 1) m2

8π2L

∞∑
n=1

1
n2 K2(2nmL),

EPMC = 3
2EPEC.
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Discontinuity in massless limit
As one would expect, quadratic CF reduces to copies of Maxwell in massless limit:

lim
m→0

EPEC = (N2 − 1)
(

− π2

720L3

)
≡ EMaxwell,

but not for PMC:
lim

m→0
EPMC = 3

2EMaxwell

→ van Dam–Veltman–Zakharov discontinuity for PMC.

Origin: auxiliary gauge freedom in auxiliary field

b → b + ∂ϕ =⇒ PEC: bnF̃ → bnF̃ − ϕn

0︷︸︸︷
∂F̃

=⇒ PMC: bnF → bnF − ϕn ∂F︸︷︷︸
m2A
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Comparison with PEC lattice data in (3+1)D
2 parameters to fit: mass m, global multiplicative constant C.

Duarte, Oliveira, Silva, 2016

0 2 4 6 8
0

2

4

6

8

10

p (GeV)

D
(p
)
(G
eV

-
2
)

green: Chernodub, Goy, Molochkov, Tanashkin, 2023
blue: Ngwenya, Rothkopf, Horowitz, 2025

0.2 0.4 0.6 0.8 1.0

-60

-40

-20

0

L σ

εPEC

σ3/2

SU(3)

m = 0.54 GeV
Cgreen = 5.63
Cblue = 0.54

Cucchieri, Dudal, Mendes, Vandersickel, 2012

0 1 2 3 4
0

1

2

3

4

p (GeV)

D
(p
)
(G
eV

-
2
)

Ngwenya, Rothkopf, Horowitz, 2025

0.2 0.4 0.6 0.8 1.0

-30

-20

-10

0

L σ

εPEC

σ3/2

SU(2)

m = 0.68 GeV
C = 0.69

7 · arXiv:2509.07256 · Comparison with lattice data



Comparison with PEC lattice data in (2+1)D
2 parameters to fit: mass m, global multiplicative constant C.

Not available

Ngwenya, 2025
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David Dudal, Philipe De Fabritiis, Sebbe Stouten,
Non-Abelian Casimir energy in the Curci-Ferrari model through a functional approach,
arXiv 2509.07256,
JHEP

Summary
▶ CF action + boundary conditions → effective boundary theory → Casimir energy
▶ PEC ̸= PMC
▶ Analytic result fits PEC lattice data well

Outlook
▶ Wanted! Lattice data for PMC Casimir energy:

confirm or debunk PEC ̸= PMC Casimir energy
(Karabali, Maj, Nair, On Casimir effect in Yang-Mills theories in three and four dimensions, 2025)

▶ Compute non-abelian Casimir energy via Gribov-Zwanziger action: role of new gauge
freedom?
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