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Advantages of the availability of BPS bounds

The appearance of a BPS configuration arises from a delicate balance between opposite forces
(typically, when attractive and repulsive interactions of the theory of interest are of the same
order), one of the most important examples being BPS vortices in superconductors.

Despite the fact that these configurations appear at special points in parameters space, they
have fundamental importance for several reasons. Just a few of them are:

Signal of a transition from one type of behavior to a different type of behavior.

The physical effects generated by BPS configurations are non-perturbative in nature.

BPS configurations are topologically stable: these solutions cannot be destroyed by
quantum/thermal fluctuations.



Motivation

What we know:

From the Ginzburg-Landau theory:

There is a phase transition between Type-I and Type-II superconductors at a critical
value of the phase of the Higgs field. At the transition point a BPS bound is saturated
by multi-vortex configurations, and where the magnetic flux density plays the role of the
topological charge density. A. A. Abrikosov, Sov. Phys. JETP 5, 1174-1182 (1957), H. B.
Nielsen and P. Olesen, Nucl. Phys. B 61, 45-61 (1973).

From QCD at finite isospin chemical potential:

At finite µI phase transitions occur. At low isospin density, the ground state is a pion
condensate, while at higher density a Fermi liquid with Cooper pairing should appear.
D.T. Son, M. A. Stephanov, Phys. Rev. Lett. 86 (2001) 592-595 .

The idea:

Since µI is responsible for the Cooper pairing, playing a similar role to the Higgs
coupling in GL, one would expect that at a special value of µI it should be possible to
saturate a BPS bound providing some suitable topological charge density.

QCD at low energies: It can be described by Chiral Perturbation Theory through an
action obtained from the momentum expansion. This theory allows topological soliton
solutions. S. Scherer, Adv. Nucl. Phys., vol. 27, p. 277, 2003 .

From ChPT coupled to the Maxwell theory, one could derive a BPS bound for a critical
value of the isospin chemical potential in such a way that multi-vortices solutions should
appear.



Gauged - Chiral Perturbation Theory (ChPT)

Up to order O(p2), is described by the action
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Here U(x) ∈ SU(2) is the pionic field, Aµ is the Maxwell potential. The couplings constants

are K = ( efπ
2

)2, being fπ the pions decay constant and e the electric charge; fπ = 93MeV and

e =
√
4πα = 0, 303.

In Eq. (1), Dµ denotes the covariant derivative, defined as

DµU = ∇µU + Aµ [t3, U ] .

The isospin chemical potential can be introduced to the model through the covariant derivative
in the following form

DµU → DµU + µI [t3, U ]gµt ,

where µI is the value of isospin chemical potential.



The matter fields

The pionic field in the exponential representation is written as

U = cos(α)1 + sin(α)nit
i
, (2)

ni = {sinΘ cosΦ, sinΘ sinΦ, cosΘ} ,

where α = α(xµ), Θ = Θ(xµ), Φ = Φ(xµ) are the three degrees of freedom of the U field. In
terms of this parametrization, the covariant derivative reads

Dµα = ∂µα , DµΘ = ∂µΘ , DµΦ = ∂µΦ − 2Aµ .

One can see that the scalar degree of freedom Φ(xµ) plays the role of the phase of the complex
Higgs field in the GL theory.

For multi-vortices with quantized magnetic field along the third spatial direction, the natural
Ansatz is

α = α(x1, x2) , Φ = Φ(x1, x2) , Θ =
π

2
, (3)

Aµdx
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= A1 dx1 + A2 dx2 , Ai = Ai(x1, x2) . (4)



The Gibbs free energy

With the above Ansatz, the free energy density F of the system becomes
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In order to derive a BPS bound it is convenient to rewrite Eq. (5) as follows:
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The above expression would be positive definite if one could eliminate the last constant term,
so that, the appropriate thermodynamical potential in this case is not the free energy F,

F =

∫
d
3
xF ,

but rather the Gibbs free energy G,

G = F + PV , G =

∫
d
3
xG ,

being V the volume and P the pressure fixed by the chemical potential, namely P = 2Kµ2
I .

Thus, the Gibbs free energy density G reads
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BPS completion

Conveniently, after gauging away the phase Φ, we can rewrite the Gibbs free energy density as
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The last two terms conform a total derivative for a critical value of the isospin chemical potential

µ
c
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2
= 14, 1MeV . (7)

In fact, for this value
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This is the magnetic flux density but dressed by the hadronic profile!



BPS completion

Thus, the free energy density is minimized when the following BPS first order equations are
satisfied

∂1α + sin(α)A2 = 0 , (8)

∂2α − sin(α)A1 = 0 , (9)

Bz − 2K cos(α) = 0 , (10)

and the following BPS bound emerges

G ≥
∫
∂Σ

dω ,

where ∂Σ is usually taken as the S1 circle at spatial infinity.

Note that, for small α, the BPS system reduces exactly to the BPS system of multi-vortices in
critical superconductors. In fact, |α| ≪ 1, we obtain the well-known system

∂1α + αA2 = 0 ,

∂2α − αA1 = 0 ,

Bz − K(1 −
α2

2
) = 0 .



A single vortex

Let us consider the Ansatz for a single vortex

α = α(r) , Ar = Az = 0 , Aθ = A(r) , Φ = nθ ,
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together with the boundary conditions; α →
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π
2
, α →
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π, Φ(r, θ) = Φ(r, θ + 2π) + 2nπ,

n ∈ N.
The Gibbs free energy of the system is
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It follows that the Gibbs free energy is minimized when the following BPS equations are satisfied
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A single vortex
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A single vortex



Multi-vortices at critical values

The novel BPS bound has many relevant properties.

1. The topological charge density is not simply the magnetic flux density, it is a “dressed
magnetic flux” modulated by the hadronic profile. F. Canfora, JHEP 11 (2023) 007.

2. The fact that these multi-solitons are minima of the Gibbs free energy (and not of the free

energy) means that they can be realized at P = 2K(µc
I )

2 (MeV)4.

3. The present BPS bound allows to find very easily the maximum value for the magnetic field
beyond which the condensate ceases to exist. Indeed, looking at Eq. (10), one gets

Bmax = 2K = 2

(
efπ

2

)2
= 397, 03 (MeV)

2
= 2, 04 × 10

14
G . (13)

Note that this maximum value is of the order of what is expected for magnetars (∼ 1013 G to

∼ 1015 G).

4. The magnetic field is generated by a self-sustained current, given by

Jµ = 2K sin
2
(α)DµΦ . (14)

This current is not-null even when the electromagnetic field is suppressed. In fact, there is a

persistent current generated by the coupling with pions, given by J
(0)
µ = 2K sin2(α)∂µΦ.



Multi-vortices at critical values

5. As expected, the first order BPS equations imply the following second order system

△α − sin(α) cos(α)

(
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∂jF
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i
Φ = 0 ,

obtained through the variation of the free energy density with respect to the field α, Φ and Aµ.

6. The present formalism can be applied even when the gauged ChPT includes a pions mass
term S. B. Gudnason and M. Nitta, Phys. Rev. D 94, no.6, 065018 (2016).

In particular, considering
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Consequently, the inclusion of the mass term for the pions manifests itself in a shift:

µ
2
I → µ

2
I − m

2
π .

Hence, all the previous results still hold. The critical value for the isospin chemical potential
when the pions mass is taken into account reads

µ
c
I =

√
K + m2

π < 1.1mπ .



Thank you!


