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Particularities of doing a fit and solving the inverse problem
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Outline
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✓Motivation: LQCD and PDFs

✓Pseudo-PDFs

✓Gaussian processes

➢Bayesian approach

➢Levels of inference (3 ways to write Bayes)

✓Conclusion
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Motivation

My Introduction to LQCD… and PDFs 

Parton distributions for the LHC run II

10.1007/jhep04(2015)040

`Parton distributions and lattice QCD calculations

arXiv:1711.07916v3 3



Pseudo-PDFs

PDFs on Euclidean Lattice
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J. Collins, Foundations of Perturbative QCD

A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

𝑝𝜇

𝑧0

𝑝𝜇
q(𝑥, 𝑧2)

4

X. Ji, Phys. Rev. Lett. 110, 262002 (2013).



Which equation should I use?

Inverse problem

✓ We have some additional information on q(x). This can be implemented in our prior.

✓ Compact support in the integral (Finite elements helps to achieve machine precision).

✓ Avoid modeling the bilocal operator(or M(z,p)) which may bias the result.
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We might need to make assumptions 

about the behavior of ITD

or

because…

A.Radyushkin, Phys. Rev. D 96, 034025 (2017)



Probabilistic approach

• Colorize Black and White Photos 

Inverse problem

-1

Forward map = Easy
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NNPDF 4.0 (imaginary component)

Inverse problem (Closure test)
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Forward map = Easy

-1

NNPDF Collaboration, The Path to Proton Structure at One-Percent Accuracy



Unpolarized iso-vector PDF of the nucleon

Available lattice data
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Colin Egerer, Forward and Off-Forward Parton Distributions from Lattice QCD

Lattice details: 2+1 flavors of clover 

improved Wilson quarks with a lattice 

spacing a = 0.094(1) fm and a pion 

mass of 358(3) MeV



Try to imagine an infinite 

dimensional normal distribution

Normal 

Distribution

= Stochastic Process…

Gaussian process!!!

Gaussian Processes for Machine Learning, E. Rasmussen and C. K. I. Williams 9

Machine Learning of Nonlinear Partial Differential Equations. arXiv: 1708.00588



Parametric vs/and/or Non-parametric

Gaussian process

If we do not parametrize, what we do in this case?

Bayesian, but still parametric

Imposes additionally conditions 

on the Hilbert space

We can recover a parametric feature 

Parametric Non-Parametric

|                  }
continuous? 
smooth?

square-integrable
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Gaussian Processes for Machine Learning, E. Rasmussen and C. K. I. Williams



Levels of inference

Bayesian approach

Solved analytically 

(path integral techniques) 

The hyper parameters can be conditioned to 

the data and the model.

Model Average/Selection of Models, 

depending on the approximation

1st 

2nd

3rd

Marginal Likelihood or Evidence Likelihood of the next level of inference=
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Gaussian processes à la Feynman 

1st level of inference

Everything is "gaussian" in this level of inference(It’s like solving a free field theory).

My prior and likelihood have an analytic expression:

PriorLikelihood

Evidence
Posterior =

Likelihood

Prior

Evidence

Normalization and q(x=1)=0
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Fix parameters (4 data points)

1st Level of inference
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Fix parameters (10 data points)

1st Level of inference
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Fix parameters (25 data points)

1st Level of inference
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Information gained globally

KL Divergence
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Information gained locally

KL Divergence
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Prior = exponential beta

2nd Level of inference
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HMC -> Importance Sampling

2nd Level of inference
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•HMC is effective but it can take a 
lot of computational resources and 
time to run.

•IS reduces the sampling process to 
50 min per model

3 days

1 week



Sampled results

2nd Level of inference
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Sampled results

2nd Level of inference
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Results…(we explore 30-ish models)

2nd Level of inference
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Information criteria

3rd Level of inference
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Selection ~ Averaging 

3rd Level of inference
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Information criteria

3rd Level of inference
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Results

3rd Level of inference
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Results

3rd Level of inference
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Results

3rd Level of inference
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Lattice data (6 data points)

3rd Level of inference
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KL divergence

3rd Level of inference
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Key points

Conclusions
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• GP provides a systematic and flexible way to regulate the inverse problem

• Synthetic tests evaluate the reconstructed uncertainty bands.

• KL divergence shows information gained from synthetic and lattice data 

globally and locally.

• Results remain stable under changes in kernels, mean functions, and 

hyperparameters through model averaging.

• GPR reduces model bias and shows a transparent uncertainty quantification



Thanks!
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yacahuanamedra@wm.edu



Back-up slides
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Some equations…

Kernels and Models

34



Constraints in the 1st level

Introduce Mellin moments

𝑃𝑐𝑜𝑛𝑠𝑡 = 𝑒
−
1
2𝜆

(∫0
1
𝑑𝑥𝑞(𝑥)−1)2−

1
2𝜆𝑐

(∫0
1
𝑑𝑥𝑞(𝑥)𝛿(1−𝑥))2

𝑃𝑀𝑒𝑙𝑙𝑖𝑛 = 𝑃𝑐𝑜𝑛𝑠𝑡𝑒
−

1
2𝜆𝑛

(∫0
1
𝑑𝑥𝑞(𝑥)𝑥𝑛−1−𝑏𝑛)

2

The equivalence of data points in 
the x space has been already 
implemented before, we just have 
to generalize it.

In this case… 𝑏𝑛
𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 𝑏𝑛 ± 𝛿𝑏𝑛

𝜆𝑛 =
1

𝛿𝑏𝑛
35



Important results

1st level of inference

Mean of  the Posterior
𝑞(𝑥; 𝜃) = ∫ 𝑞(𝑥)𝑃(𝑞(𝑥)|𝑀𝑙 , 𝜃,ℋ)𝐷[𝑞(𝑥)]

𝑞(𝑥)𝑞(𝑥) = ∫ 𝑞(𝑥)𝑞(𝑥)𝑃(𝑞(𝑥)|𝑀𝑙 , 𝜃,ℋ)𝐷[𝑞(𝑥)]Covariance of the Posterior

𝑞(𝑥; 𝜃) = 𝑞𝑃𝐷𝐹(𝑥) + 𝐾 ⋅ 𝐵⊥[𝐶 + 𝐵𝐾𝐵⊥](𝑀𝑙 − 𝐵𝑙 ⋅ 𝑞𝑃𝐷𝐹)

𝐻(𝜃) ≡ 𝑞(𝑥)𝑞(𝑥′) = 𝐾(𝑥, 𝑥′) − 𝐾𝐵⊥[𝐶 + 𝐵𝐾𝐵⊥]−1𝐵𝐾

𝐸(𝜃) ≡ −log(𝑃(𝑀𝑙|𝜃,ℋ)) =
1

2
(𝑀𝑖 − 𝐵𝑞𝑃𝐷𝐹)

⊥(𝐶 + 𝐵𝐾𝐵⊥)−1(𝑀𝑖 − 𝐵𝑞𝑃𝐷𝐹) +
1

2
log[𝑑𝑒𝑡(𝐶 + 𝐵𝐾𝐵⊥)] +

𝑁𝑥
2
log(2𝜋)

Effective evidence

36



Kernel and Mean functions

2nd level of inference
𝑃(𝜃|𝑀𝑙 ,ℋ) =

𝑃(𝑀𝑙|𝜃,ℋ)𝑃(𝜃|ℋ)

𝑃(𝑀𝑙|ℋ)

No functional variables anymore, we have to integrate over hyperparameters.

Where does this hyperparameter come from?

𝑞𝑃𝐷𝐹(𝑥) = 𝑁𝑥𝛼(1 − 𝑥)𝛽 𝐾𝑟𝑏𝑓(𝑥, 𝑥
′) = 𝜎2𝑒

−
|𝑥−𝑥′|2

2𝑙2
+ → 𝜃 = {𝑁, 𝛼, 𝛽, 𝜎, 𝑙}

𝑃(𝜃|ℋ) = {𝑁𝑜𝑟𝑚𝑎𝑙(𝜃), 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜃), 𝑒𝑥𝑝𝑏𝑒𝑡𝑎(𝜃)}How should we define the prior?

−𝑙𝑜𝑔(𝑒𝑥𝑝𝑏𝑒𝑡𝑎(𝜃)) = 𝜃
̂
𝛼(1 − 𝜃

̂

)𝛽 + log(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)
𝜃
̂

=
𝜃 − 𝑠ℎ𝑖𝑓𝑡

𝑠𝑐𝑎𝑙𝑒

shift

scale

𝑃(𝜃|ℋ) =

We use HMC/Important 
Sampling to obtain the posterior

𝑃(𝑀𝑙|ℋ) = ∫ 𝑑𝜃𝑃(𝑀𝑙|𝜃,ℋ)𝑃(𝜃|ℋ)
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Important results

2nd level of inference

Mean of  the Posterior

< 𝑞(𝑥) >= ∫ 𝑃(𝜃|𝑀𝑙 ,ℋ)𝑞(𝑥; 𝜃)𝑑𝜃

< 𝑞(𝑥)𝑞(𝑥) >≡ ∫ (𝑞(𝑥; 𝜃) −< 𝑞(𝑥) >)2𝑃(𝜃, |𝑀𝑙 ,ℋ)𝑑𝜃

Covariance of the Posterior

< 𝑞(𝑥) >=
∫ 𝑒−𝐸(𝜃)𝑞(𝑥; 𝜃)𝑑𝜃

∫ 𝑒−𝐸(𝜃)𝑑𝜃

𝑃(𝜃|𝑀𝑙 ,ℋ) =
𝑃(𝑀𝑙|𝜃,ℋ)𝑃(𝜃|ℋ)

𝑃(𝑀𝑙|ℋ)

< 𝑞(𝑥)𝑞(𝑥) >=
∫ 𝑒−𝐸(𝜃)[𝐻(𝜃) + (𝑞(𝑥; 𝜃) −< 𝑞(𝑥) >)2]𝑃(𝜃|ℋ)𝑑𝜃

∫ 𝑒−𝐸(𝜃)𝑃(𝜃|ℋ)𝑑𝜃
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Kernel and Mean functions

Hybrid Monte Carlo

How does hyper parameters sampling looks like?

…

𝜖 =
1

1000

𝐿 = 100

𝑁𝑠𝑎𝑚𝑝 = 100000

39



Kernel and Mean functions

HMC observables
𝑃(𝜃|𝑀𝑙 ,ℋ) =

𝑃(𝑀𝑙|𝜃,ℋ)𝑃(𝜃|ℋ)

𝑃(𝑀𝑙|ℋ)

How does <q(x)>, <q(x)q(x’)> sampling looks like < 𝑞(𝑥) > ∫ 𝑑𝜃𝑃(𝜃|𝑀𝑙 ,ℋ)𝑞(𝑥)
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Kernel and Mean functions

HMC observables
𝑃(𝜃|𝑀𝑙 ,ℋ) =

𝑃(𝑀𝑙|𝜃,ℋ)𝑃(𝜃|ℋ)

𝑃(𝑀𝑙|ℋ)

How does <q(x)>, <q(x)q(x’)> sampling looks like?

41



Model averaged results

2nd level of inference
𝑃(𝜃|𝑀𝑙 ,ℋ) =

𝑃(𝑀𝑙|𝜃,ℋ)𝑃(𝜃|ℋ)

𝑃(𝑀𝑙|ℋ)

How does <q(x)>, <q(x)q(x’)> sampling looks like?

42



Important results

3rd level of inference

Mean of  the Posterior

𝔮(𝑥) ≡ ∑
𝑖

𝑚𝑜𝑑𝑒𝑙𝑠

𝑃(ℋ𝑖|𝑀
𝑙) < 𝑞(𝑥) >𝑖

𝔮(𝑥)𝔮(𝑥) ≡ ∑𝑃(ℋ𝑖|𝑀
𝑙)[< 𝑞(𝑥) >𝑖 −𝔮(𝑥)]

2

Covariance of the Posterior

𝔮(𝑥) =
∑𝑖
𝑀𝑜𝑑𝑒𝑙𝑠𝑒

Δ𝐼𝐶
2 < 𝑞(𝑥) >𝑖

∑𝑖
𝑀𝑜𝑑𝑒𝑙𝑠 𝑒

Δ𝐼𝐶
2

𝔮(𝑥)𝔮(𝑥) ≡
∑𝑖
𝑀𝑜𝑑𝑒𝑙𝑠𝑒

Δ𝐼𝐶
2 [< 𝑞(𝑥)𝑞(𝑥) >𝑖 +(< 𝑞(𝑥) >𝑖 −𝔮(𝑥))

2]

∑𝑖
𝑀𝑜𝑑𝑒𝑙𝑠 𝑒

Δ𝐼𝐶
2

𝑃(ℋ𝑖|𝑀
𝑙) =

𝑃(𝑀𝑙|ℋ𝑖)𝑃(ℋ𝑖)

𝑃(𝑀𝑙)

43



Sampling procedure

Hybrid Monte Carlo

Skip 20 trajectories, 12 hours
(5 independent chains) —>

…

𝜖 =
1

1000

𝐿 = 100

𝑁𝑠𝑎𝑚𝑝 = 100000

𝜏 ≈ 100 − 500

44



Counting Models

3rd level of inference
𝑃(ℋ𝑖|𝑀

𝑙) =
𝑃(𝑀𝑙|ℋ𝑖)𝑃(ℋ𝑖)

𝑃(𝑀𝑙)How many models do we actually explore?

𝑞𝑃𝐷𝐹(𝑥)

𝑞𝑓𝑙𝑎𝑡(𝑥) = 𝑁

𝐾𝑐𝑜𝑚𝑏(𝑥, 𝑥
′)

𝐾𝑑𝑒𝑏𝑏𝑖𝑜(𝑥, 𝑥
′)

𝐾𝑙𝑜𝑔𝑟𝑏𝑓(𝑥, 𝑥
′)

𝐿𝑖𝑛𝑒𝑎𝑟

𝐿𝑜𝑔/𝐿𝑖𝑛
𝑘𝑒𝑟𝑛𝑒𝑙
𝑚𝑒𝑎𝑛

𝑎𝑙𝑙

About 20-30 models, and we give equal prior factors 𝑃(ℋ𝑖) =
1

𝑁𝑀𝑜𝑑𝑒𝑙𝑠

𝐾𝑝𝑜𝑙𝑦(𝑥, 𝑥
′)

Mean

Kernel

Grid in x Sampling
𝐾𝑟𝑏𝑓(𝑥, 𝑥

′)

45



Bayes’ Theorem (not that easy)

Bayesian approach

• How can we work with multiple conditions? 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)

• For now we can work with 2 conditions instead of 3

𝑃(𝐴|𝐵, 𝐶, 𝐷) =? 𝑃(𝐴|𝐵, 𝐶) =?

𝑃(𝐴, 𝐵|𝐶) = 𝑃(𝐴|𝐵, 𝐶)𝑃(𝐵|𝐶) Textbook property

𝑃(𝐴|𝐵, 𝐶) =
𝑃(𝐴, 𝐵|𝐶)

𝑃(𝐵|𝐶)
=
𝑃(𝐵, 𝐴|𝐶)

𝑃(𝐵|𝐶)
=
𝑃(𝐵|𝐴, 𝐶)𝑃(𝐴|𝐶)

𝑃(𝐵|𝐶)

𝑃(𝐴, 𝐵) = 𝑃(𝐵, 𝐴)

𝑃(𝐴|𝐵, 𝐶, 𝐷) =
𝑃(𝐵|𝐴, 𝐶, 𝐷)𝑃(𝐴|𝐶, 𝐷)

𝑃(𝐵|𝐶, 𝐷)
𝐶 → 𝐶,𝐷
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Important results

2nd level of inference

Mean of  the Posterior

< 𝑞(𝑥) >= ∫ 𝑃(𝜃|𝑀𝑙 ,ℋ)𝑞(𝑥; 𝜃)𝑑𝜃

< (𝑞(𝑥; 𝜃) −< 𝑞(𝑥) >)2 >= ∫ (𝑞(𝑥; 𝜃) −< 𝑞(𝑥) >)2𝑃(𝜃, |𝑀𝑙 ,ℋ)𝑑𝜃

Covariance of the Posterior

< 𝑞(𝑥) >=
∫ 𝑒−𝐸(𝜃)𝑞(𝑥; 𝜃)𝑑𝜃

∫ 𝑒−𝐸(𝜃)𝑑𝜃

𝑃(𝜃|𝑀𝑙 ,ℋ) =
𝑃(𝑀𝑙|𝜃,ℋ)𝑃(𝜃|ℋ)

𝑃(𝑀𝑙|ℋ)

< (𝑞(𝑥; 𝜃) −< 𝑞(𝑥) >)2 >=
∫ 𝑒−𝐸(𝜃)(𝑞(𝑥; 𝜃) −< 𝑞(𝑥) >)2𝑃(𝜃|ℋ)𝑑𝜃

∫ 𝑒−𝐸(𝜃)𝑃(𝜃|ℋ)𝑑𝜃
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