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Motivation
PDF — LQCD

My Introduction to LQCD... and PDFs
Loop = —3F5 FEY + (i — my )y,

(O(fields)) = %/D[f’ieldS]O(fieldS)e_SQCD(fields)
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PDFs on Euclidean Lattice

Pseudo-PDFs

J. Collins, Foundations of Perturbative QCD
A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

X. Ji, Phys. Rev. Lett. 110, 262002 (2013).

M*(p, z) =< plp(2)7*U(2;0)1(0)|p >= p* M(v, 2%) + 22NV, 2°)
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Pseudo-PDF
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Which equation should | use?

q(z,z%) =

|
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dve "' M(v, 2°)
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We might need to make assumptions
about the behavior of ITD

because...

v" We have some additional information on q(x). This can be implemented in our prior.

or

M (v, 2°)

A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

o
]

1

dxe

—1

1

—1

Y,

q(z, 2%)
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v" Compact support in the integral (Finite elements helps to achieve machine precision).

v Avoid modeling the bilocal operator(or M(z,p)) which may bias the result.
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Inverse problem

Probabilistic approach
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Inverse problem (Closure test)
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Available lattice data

Unpolarized iso-vector PDF of the nucleon
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Colin Egerer, Forward and Off-Forward Parton Distributions from Lattice QCD
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Lattice details: 2+1 flavors of clover
improved Wilson quarks with a lattice
spacing a = 0.094(1) fm and a pion
mass of 358(3) MeV

loffe Time Distribution
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Gaussian process!!!

= Stochastic Process... ey
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Normal
Distribution

Try to imagine an infinite

Machine Learning of Nonlinear Partial Differential Equations. arXiv: 1708.00588 dimensional normal distribution
Gaussian Processes for Machine Learning, E. Rasmussen and C. K. |. Williams 9



Gaussian process

Parametric vs/and/or Non-parametric

Parametric

X*(q(x;0)) = %(Mi — L,,q(;0))Ci.H (M — Ly, q(x;0))

q(x;0)ppr = Nx%(1 — m)ﬁ

4(x) = min (x*(¢(x30)))

e X" (a(@:0) p()
P(M?)

P(O|M") =

Bayesian, but still parametric
If we do not parametrize, what we do In this case?

-

4

16

Gaussian Processes for Machine Learning, E. Rasmussen and C. K. |. Williams

Non-Parametric

4(x) = min (x*(q(z)) + IPqll %)

Imposes additionally conditions continuous?
i i H = {Q(.’L’) ‘ smooth?

on the Hilbert space .
square-integrable

IPall7r — q(x) K~ (z,2")q(2")

jz—a’|?
/
N K(x,2") =o0e 22
We can recover a parametric feature

q(x) = q(x) — qppFr(T)

o2 (a(@)) o~ IPall

P(M?)

P(q(x)|M") =

5
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— Likelihood Prior

) Posterior = _
Levels of inference Evidence
»w [ [ Model Av [Selecti f Models,
% o P(’}_LL‘MZ) — P(M ‘H@)P(%Z) gegend;rg%en tr?eegpg:oiima?iois
= /ﬁ@ P(M?") q(z) q(z)q(z)
"CIEJ - 2nd [ D r parameters can ndition
% * ploimt, ) = EALL0 HPOIF) T yper paremeters can be condioned
a L ’ P(M'\H) <q(x) > <qx)g(x) >
Solved lyticall
s P( ( ) ‘Ml 9 H) P(Ml ‘Q(:I;)j 97 H)P(Q(I‘) ‘9, %) (pathointeegraarl]?e);hcne;q}tljes)
X — 3
! o P(M'6, H qg(z) q(z)q(x)
Marginal Likelihood or Evidence = Likelihood of the next level of inference

{ functions, Parameters, Hypothesis, Data} = {q(z),0,H, M"}
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Posterior = LIkelihood Prior

Gaussian processes a la Feynman Evidence

g(z;0) = / q(z)P(q(x)| M, 0,H)Dlq(z)] q(x)q(x) = f q(z)q(z)P(q(z)|M",0,H)D|g(z)]

Everything is "gaussian" in this level of inference(lt’s like solving a free field theory).
P ™

l L L

My prior and likelihood have an analytic expression:

. .

Likelihood  p(Aflq(x),0,H) = Nisketinood® 5 (Mi—L,,q(2))C 5 (Mj—L, q(z))

Prior P(q(z)|0,H) = Npr,,;orPconste—%(f dedz’ (q(z)—qppr(2) K~ (z,2")(¢(z')—qppr ("))

P . = o35 (fy dza(@)—1) = F= ([, dzq(2)5(1—2))

Normalization and q(x=1)=0
Svidence  P(M'|0,H) = / D(q(x)|P(M'|q(x),0,H)P(q(x)|0, H)
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1st Level of inference

Fix parameters (4 data points)
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1st Level of inference

Fix parameters (10 data points)
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1st Level of inference

Fix parameters (25 data points)

S Fixed gCJ,PDF KE}EE%OBF T Fixed gdPDF KE;E?%OBF — Fixed gﬁmt KE;E'%OBF
— Fixed 955 Kiyy"ppr — Fixed g4pp Kiyy gpp — Fixed g7 Kip Ry
6T 10
0.6 | —— Input
0.5 O
=
g —~ U4 5
- N O
- 3‘ | =
E N 0.3 -
== 02 -
£E =
. S
0.0 ~
—0.1
0 25 50 75 100 0.00 0.25 0.50 0.75 00 Y000 0.25 0.50 0.75 1.00

vV Xz X

15



KL Divergence

Information gained globally

Dkr(Plq(z)|M,0,H|||Plq(x)|0, H]) = /D[q(af)] Plq(x)|M, 0, H|log (P

2
20 Im(M(y? fu’ )) .
,,,,,,,,,,,, —95
18
16-
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12-
L @
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KL Divergence

Information gained locally

Dkr(vi) = Drr(Plqg:|M,0,1]||Plg;|0,1]) = /D[Q(x":)]P[Qi‘M’H’I] l0g (P[q,i‘Mjng]>

P[Qi|97 I]
PDF, Fixed gippr Im(M (v, z°))
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2"d | evel of inference

[ _
Prior = exponential beta POIMH) = P(M'H)
6% (1-6)" ~ 0 —c
P(9|’H) — me 2 B(a+1,b+1) H — y
Probability distribution for hvperparameters
c; = Pla
1.0
- ) P
(.0
__ r —
().0) e — 1, : |
o do, =2 | |
U0 50 S5 —1o 05 0.0 0.5 1.0 1.3 2.0
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HMC -> Importance Sampling

< q(x) >= /P(H\MZ,H)q(az;O)dO
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*HMC is effective but it can take a
lot of computational resources and
time to run.

*|S reduces the sampling process to
50 min per model



[mM (v, i°)

2"d Level of inference

Sampled results

0.6
0.5]
0.4
0.3
0.2]
0.1
0.0

—0.11

o=2.0
Free gppp Free KJDQ_RBF

o=>5.0
log— RBF

— Fixed gppp Free K — Free gpiqr Free

—  Input

Comparison to True

PO|M',H) =

' o=1.0 e Y o=3.0
Free gppr Fixed Ky, “ppp Fixed gjiar Free Ky, “ppp

o=4.0)

10

P(M'6,H)P(O|H)
P(M'|H)

o=3.0
log— RBF




Sampled results

[mM (v, i°)

0.6

0.5]

0.4

0.3

0.2

0.1

0.0

—0.11

o=2.0
Free gppp Free KEGQ—RBF

2"d | evel of inference
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Comparison to True
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2"d | evel of inference

P(M'6,H)P(O|H)

[
: POIM  H) =
Results...(we explore 30-ish models) (1M, H) P(M'H)
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MYH;)P(H;)

Information criteria P(H;|M") = = P(M?)

(BAIC = —log(P(M"18,,1, H)P (6, |H)) + 2k

—2log(P(M'|H;)) &< BTIC = —log(P(M"Omin H) P(Omin|H)) + 2T7(J " (Bmin ) I (Omin))

\PAIO — — < log(P(M"'10,H)P(O|H)) > +2Tr(J (01min) I (Omin))

models

g(z) = »  P(H;|M') < q(z) > q(z)q(z) = Y P(H|M')[< q(x) >; —q()]?
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P(MY\H;)P(H;)

3rd Level of inference

Selection ~ Averaging
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3rd Level of inference

P(MYH;)P(H,;

P(H;|M") =

Information criteria P(M!

Information Criteria
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3rd Level of inference

Results
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3rd Level of inference

Results
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3rd Level of inference

Results
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ImM (v, 2°)

ImM (v, 2°)
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3rd Level of inference

Lattice data (6 data points)
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P(H;|M") =
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PAIC
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3rd Level of inference

_ P(H;|M") =
KL divergence (HlM) P(M')
PDF, Fixed JidPDF Im(M(V: 32))
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Conclusions
Key points

 GP provides a systematic and flexible way to regulate the inverse problem
» Synthetic tests evaluate the reconstructed uncertainty bands.

KL divergence shows information gained from synthetic and lattice data
globally and locally.

* Results remain stable under changes in kernels, mean functions, and
hyperparameters through model averaging.

 GPR reduces model bias and shows a transparent uncertainty quantification
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Back-up slides




Kernels and Models

Some equations...

212

(1—2z)1—2)
1—-(1—-2)(1—2x')

Kf—RBF(gJ:fUI;e _ {le2}) = o exp ( Hf(:ﬂ) - f(:ﬂf)Hg) :

Kplog—1(z,2") = O’Z(l —z)"1 -2 " =0

n=1

) = JZ (1 —a)"(1 — )" — —Jlog(l —(I—z)(1 - 5'3;)) '

ch:mbined (fﬂ: :UI; 0 = {91: 92: S, 3:0}) — J(:U; S, ;BU)KI (33: :LJ; 91) J(ﬂjf; S, 3:0)_'_
(1 —o(z;s,20)) K> (:L', T’ 92) (1 —o0(z';s,20))

gﬂat(:r:; 0 = {N}) =N . ngF(HJ; 0 = {N,Oﬁ,ﬁ}) = N:Ba(l — iﬂ)ﬁ
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Constraints in the 1st level

57U 0 4xa(0)-12—57-(J  Axq(x)8 (1-x))’

PCOTlSt

1 1 ~1 2
[ Pconste_z ,«ln(f 5 dxq(x)x™ 1=by)

The equivalence of data points In

In this case... brllattice = b, + 6b,, the x space has been already
implemented before, we just have
1 to generalize it.
An

:E
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Important results P(q(x)| M. 0. %) — P(MZQ(QQ’(%{Q)ZS)J(:E)H’H)

a(x; 9) — fCI(X)P(C[(X)‘Ml, H,H)D[C[(X)] Mean of the Posterior

q(x;0) = qppr(x) + K - B*[C + BKB*|(M"' — B" - qppr)

C[(X)C[(X) — fC[(X)CI(X)P(C[(X)‘Ml, H'}[)D[q('&(}]ariance of the Posterior

H(O) = q(x)q(x") = K(x,x") — KB*[C + BKB-]"'BK

Effective evidence

N
= log(2;

1 1
E(0) = —log(P(M'|6,H)) = E(Mi — Bqppr)~(C + BKB*)™"(M; — Bqppr) +§log[det(C + BKB)] A 5
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P(M'6, )P (6|H)

- [ _
Kernel and Mean functions POIMLIH) = ——p 70
Where does this hyperparameter come from?
_ + _lx=xT|?

qppr(x) = Nx*(1 — x)ﬁ Krbf(x»x') — g2~ 22 2 0={N,a,p,0l}
How should we define the prior? P(O|H) = {Normal(0),lognormal(8),expbeta(0)}

0.15- shift A .

0.10 - o O . 11— g — 0 — Shlft

scale

°‘°5‘P(9\17-[) _r"' —log(epreta(ﬁ)) = 9“(1 — 9)3 + log(Normallzatwn)

|
0.00 \‘

4 2 O 2

We use HMC/Important P(MYH) = | dOP(MY6, H)P(O|H)
Sampling to obtain the posterior

No functional variables anymore, we have to integrate over hyperparameters.
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P(M'6, )P (6|H)

P(O|M", ) =

Important results P(M!|H)
Mean of the Posterior B
< q(x) >= [ P(O|M!, H)G(x; 0)d6 e F®)q(x; 0)d6
<q(X) >=—FZ@oraa
| e~E®)dp

Covariance of the Posterior

< q(x)q(x) >= | (q(x; ) =< q(x) >)*P(6,|M", F)do

J e PO[H(O) + (q(x;8) —< q(x) >)?]P(0|H)d6

<q(x)q(x) >= [ e"E@P(9|H)dO
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L =100

Hybrid Monte Carlo

Kernel and Mean functions

How does hyper parameters sampling looks like? / 6=T100 Neamp = 100000

Sampling chains

.‘-:""--.-_..-'.'E_'-MF- *---“,.I'

10 1

10 1




P(M'6, )P (6|H)
P(M"|3{)

P(O|M', H) =
Kernel and Mean functions

How does <q(x)>, <q(x)q(x’)> sampling looks like <q(x) > | dOP(8|M", H)q(x)

<g(x=1.1353195339077614e—-08) =

150
100 -
50 A
l:]— A al e fa “' _-_ o _-—* = - L e M—
0 10000 20000 30000 40000 50000 20000 JOO00
<qg(x=0.1) =
3_
2_
1— T T T T T T T T
0 10000 20000 30000 40000 50000 20000 70000
le_7 < q(x = 0.99999999) >
l_
D_
_1—
_2—

1 1 1 I 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
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P(M'6, )P (6|H)
P(M'|H)

. [ _
Kernel and Mean functions P(OIM",H) =

How does <q(x)>, <q(x)q(x’)> sampling looks like"?

<gq(x=1.1353195339077614e — 08) =

30
20 A
10 4 (
CI_ I I I I I I I
0 10000 20000 30000 40000 20000 20000 70000
<gq(x=0.1) =
4 .
0 - Fiv - . P — i e s M ™ T R W— T - | a o
I I I I I I I I
0 10000 20000 30000 40000 50000 20000 70000
le—9 < gq(x=0.99999999) =
l =
_1 -
I I I I I I I
0 10000 20000 30000 40000 50000 60000 70000
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2nd level of inference

P(M'16,H)P(O|H)

Model averaged results P(OIM’,3) = P(MYH)

How does <q(x)>, <q(x)q(x’)> sampling looks like?

q(x) M(v,z=6a)
6
HMC samples n:a HMC samples
I Min ' 0 Min
~ Model Averaged q(x) 2nd level | Model Averaged M(v) 2nd level
5 -
0.8 -
4 -
0.6 -
3 e
— 2
T = 04-
2 e
0.2 -
1 -t
0.0 -
0 -
-1 T T T T T —0.2 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 25
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P(M*'|H)P ()

1) =
Important results P (3| M) P(MY
Mean of the Posterior
B models , Models AéC |
a0 = 3 POLIMY <q() >y ) ZITTe <q() >,
7 —
ZModels eAéC
Covariance of the Posterior l
q(x)a(x) = XP(H;|MY)[< q(x) >; —q(x)]?
AIC
Y e 2 [< q(x)q(x) >; +(< q(x) >; —q(x))?]
ax)ax)E——— a¢c

Zli\/lodels e 2
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L =100

Hybrid Monte Carlo

Sampling procedure

Skip 20 trajectories, 12 hours / 1
(5 independent chains) —> T = 100 — 500 ~ 1000

Sampling chains




P(M*|H;)P(H;)

Counting Models P(H;|M" =
How many models do we actually explore? P(Ml)
Kernel
Mean Ky (4, %) Grid in X Sampling
qppr(X) Kaebpio(%, X) Linear mean
e (x) = N Kiogrps (%, x") | kernel
flat Koy (2, X") Log/Lin all

Kcomb (x: x,)

About 20-30 models, and we give equal prior factors P(iH“-) _ 1
L
45 NModels




Bayes’ Theorem (not that easy) P(B|A)P(4)
PAIB) = ——F v —
P(B)

* How can we work with multiple conditions?

P(A|B,C,D) =? P(A|B, C) =?

* For now we can work with 2 conditions instead of 3
P(A,B|C) = P(A|B,C)P(B|C) T~  P(A B) = P(B,A)

- P(A,B|C) P(B,A|C) P(B|A,C)P(A|C)
P(AlB, () = P(B|C)  P(B|C) P(B|C)
P(B|A,C,D)P(A|C, D)
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P(M'6, )P (6|H)

P(O|M', ) =

Important results P(M!|H)
Mean of the Posterior B
< q(x) >= [ P(O|M!, H)G(x; 0)d6 e F®)q(x; 0)d6
<q(X) >=—FZ@oraa
| e~E®)dp

Covariance of the Posterior

< (@ 0) —<q(x) >)?>= [ (q(x;0) —< q(x) >)*P(6, M, 3)d6

J e PO (q(x; ) =< q(x) >)*P(0]3)d6

< (@6 0) —< q(x) >)* >= [ e~E©O)P(0|7)d6
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