

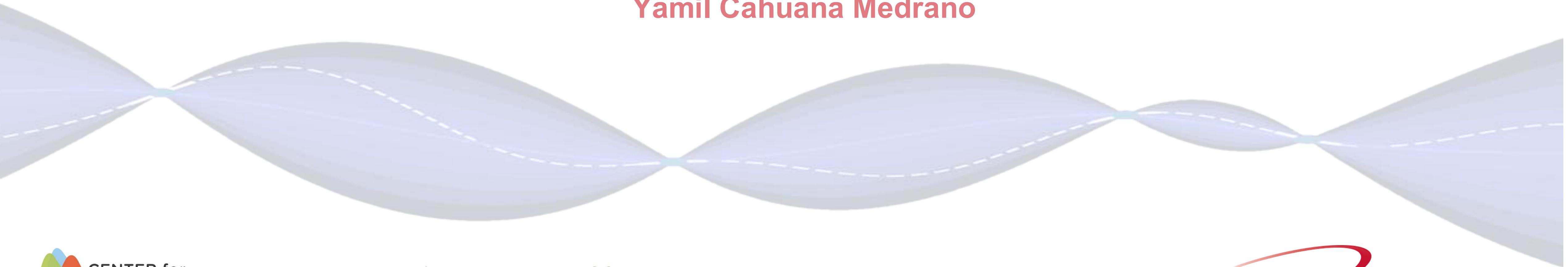
Preprint: [arXiv:2510.21041](https://arxiv.org/abs/2510.21041)

HadStruct Collab: K. Orginos, J. Karpie, H. Dutrieux, S. Zafeiropoulos

# Gaussian processes for Inferring Parton Distributions

WONPAQCD December 4, 2025

Yamil Cahuana Medrano



# Outline

## Particularities of doing a fit and solving the inverse problem

- ✓ Motivation: LQCD and PDFs
- ✓ Pseudo-PDFs
- ✓ Gaussian processes
  - Bayesian approach
  - Levels of inference (3 ways to write Bayes)
- ✓ Conclusion

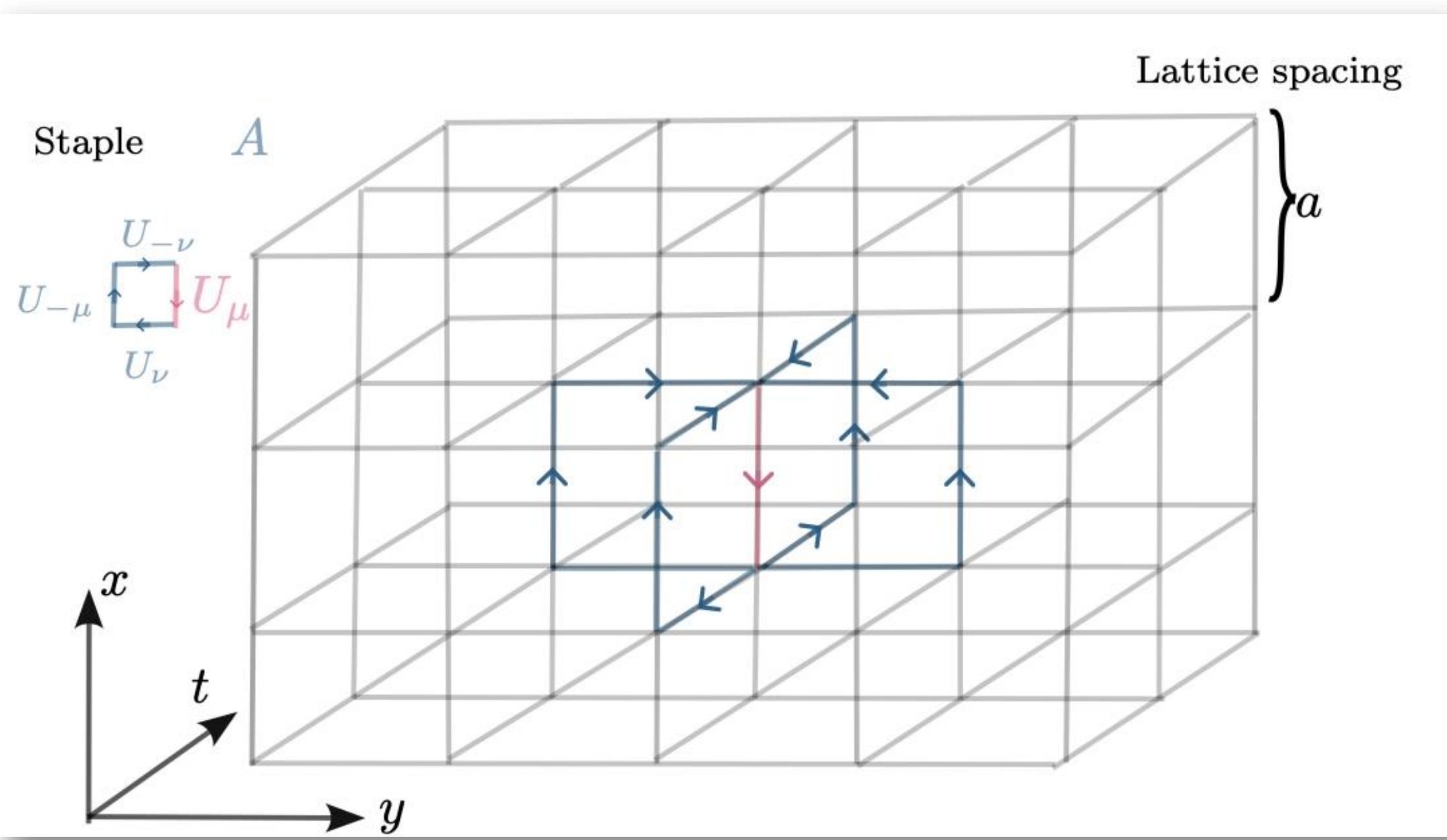
# Motivation

PDF  $\leftrightarrow$  LQCD

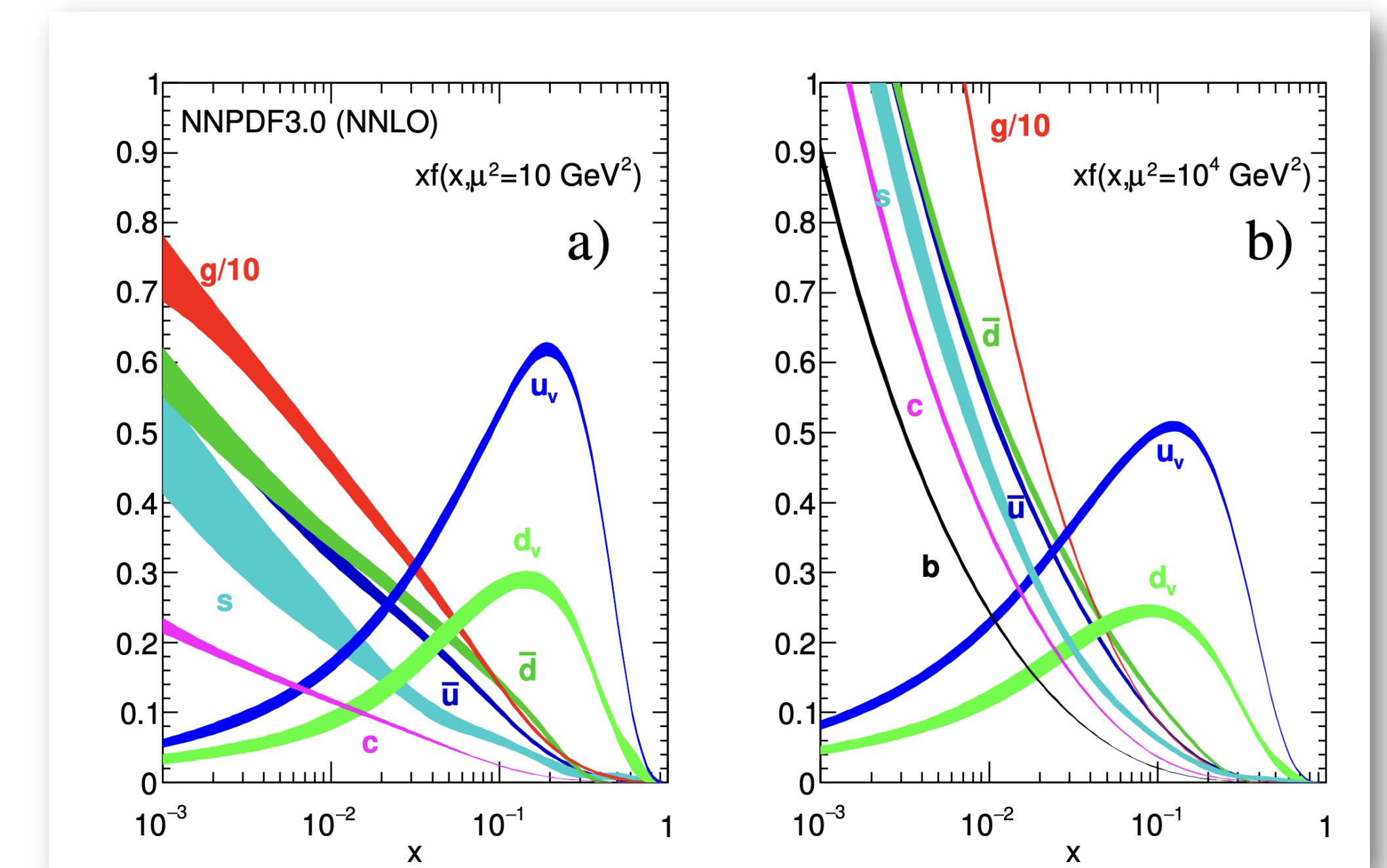
My Introduction to LQCD... and PDFs

$$\mathcal{L}_{QCD} = -\frac{1}{4} F_{\mu\nu}^\alpha F_\alpha^{\mu\nu} + \bar{\psi}(i\cancel{D} - m_i)\psi_i$$

$$\langle \mathcal{O}(\text{fields}) \rangle = \frac{1}{Z} \int D[\text{fields}] \mathcal{O}(\text{fields}) e^{-S_{QCD}(\text{fields})}$$



Parton distributions and lattice QCD calculations  
arXiv:1711.07916v3



# PDFs on Euclidean Lattice

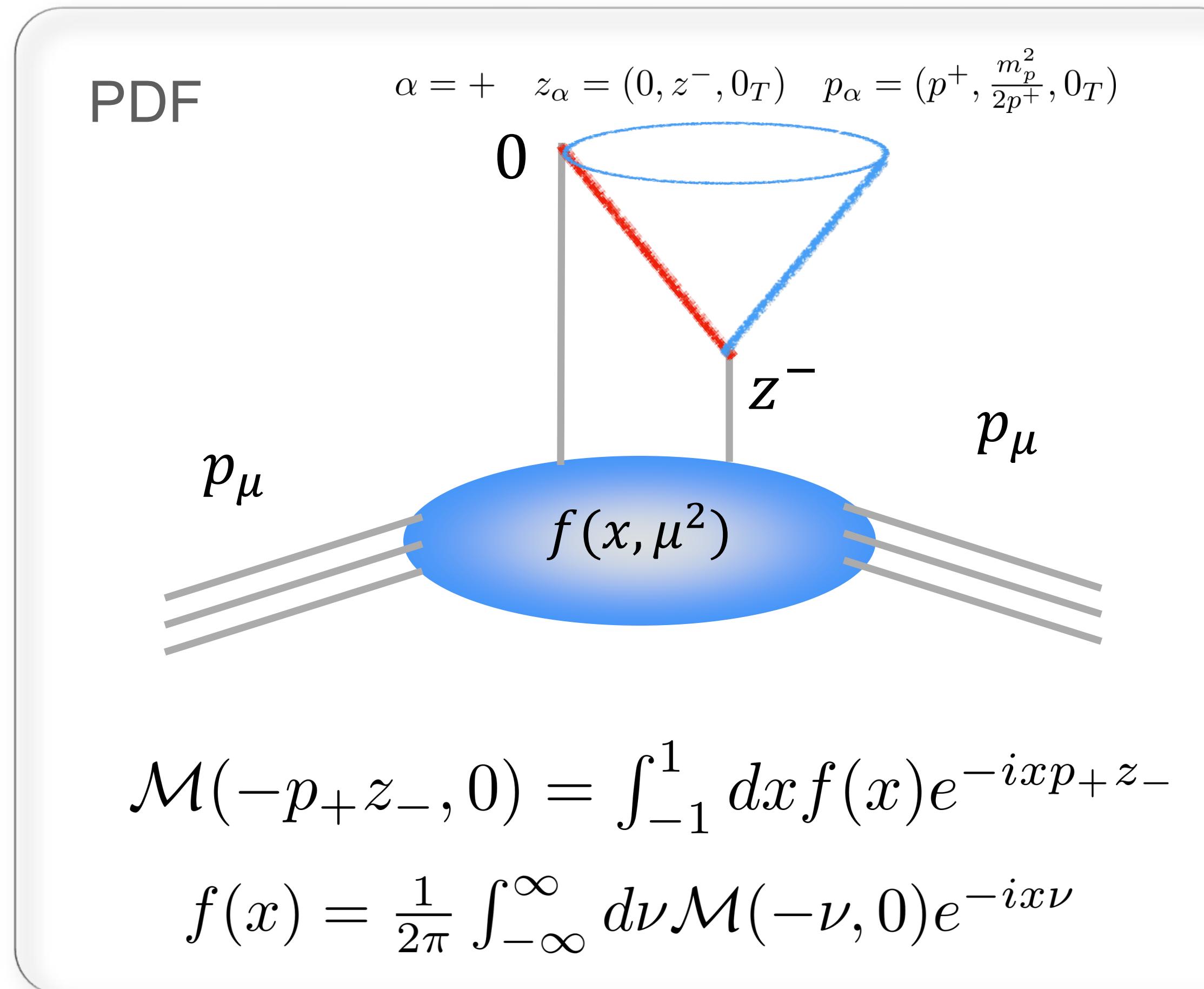
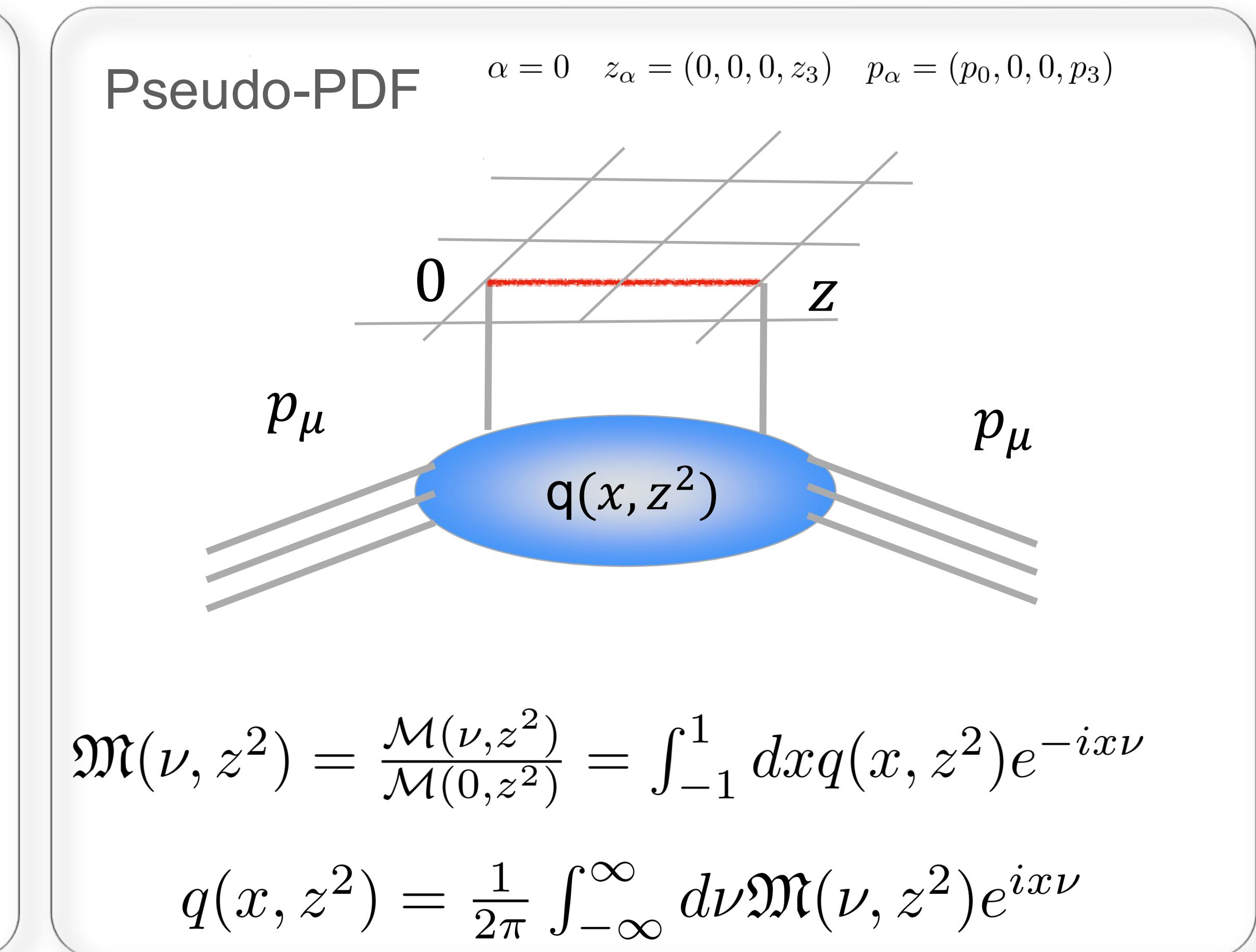
J. Collins, Foundations of Perturbative QCD

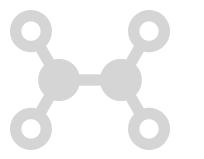
A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

X. Ji, Phys. Rev. Lett. 110, 262002 (2013).

## Pseudo-PDFs

$$M^\alpha(p, z) = \langle p | \bar{\psi}(z) \gamma^\alpha U(z; 0) \psi(0) | p \rangle = p^\alpha \mathcal{M}(\nu, z^2) + z^\alpha \cancel{\mathcal{N}}(\nu, z^2)$$





# Inverse problem

## Which equation should I use?

A.Radyushkin, Phys. Rev. D 96, 034025 (2017)

$$q(x, z^2) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu e^{-ix\nu} \mathfrak{M}(\nu, z^2)$$

or

$$\mathfrak{M}(\nu, z^2) = \int_{-1}^1 dx e^{ix\nu} q(x, z^2)$$

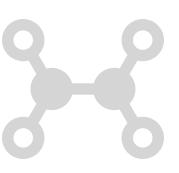
We might need to make assumptions about the behavior of ITD



$$\mathcal{L} \equiv \int_{-1}^1 dx e^{ix\nu}$$

because...

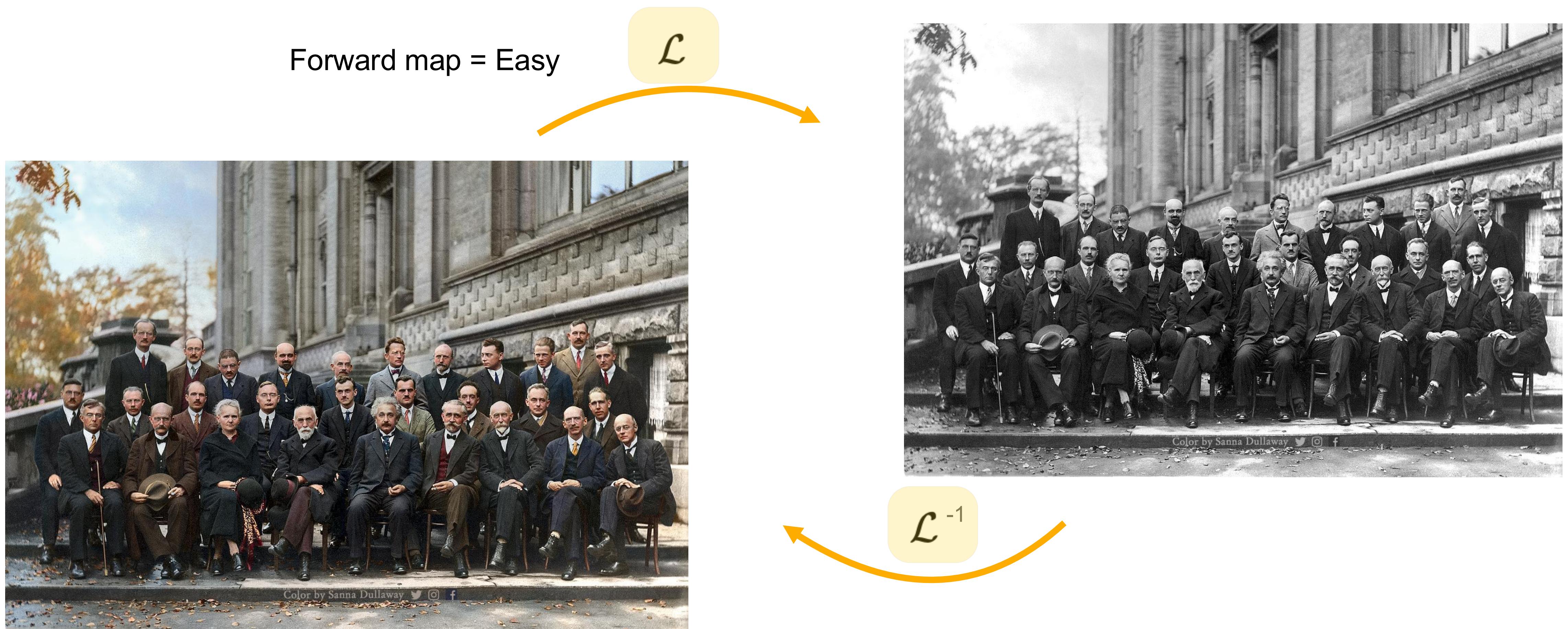
- ✓ We have some additional information on  $q(x)$ . This can be implemented in our prior.
- ✓ Compact support in the integral (Finite elements helps to achieve machine precision).
- ✓ Avoid modeling the bilocal operator(or  $M(z,p)$ ) which may bias the result.

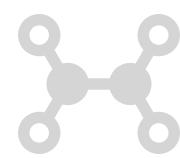


# Inverse problem

## Probabilistic approach

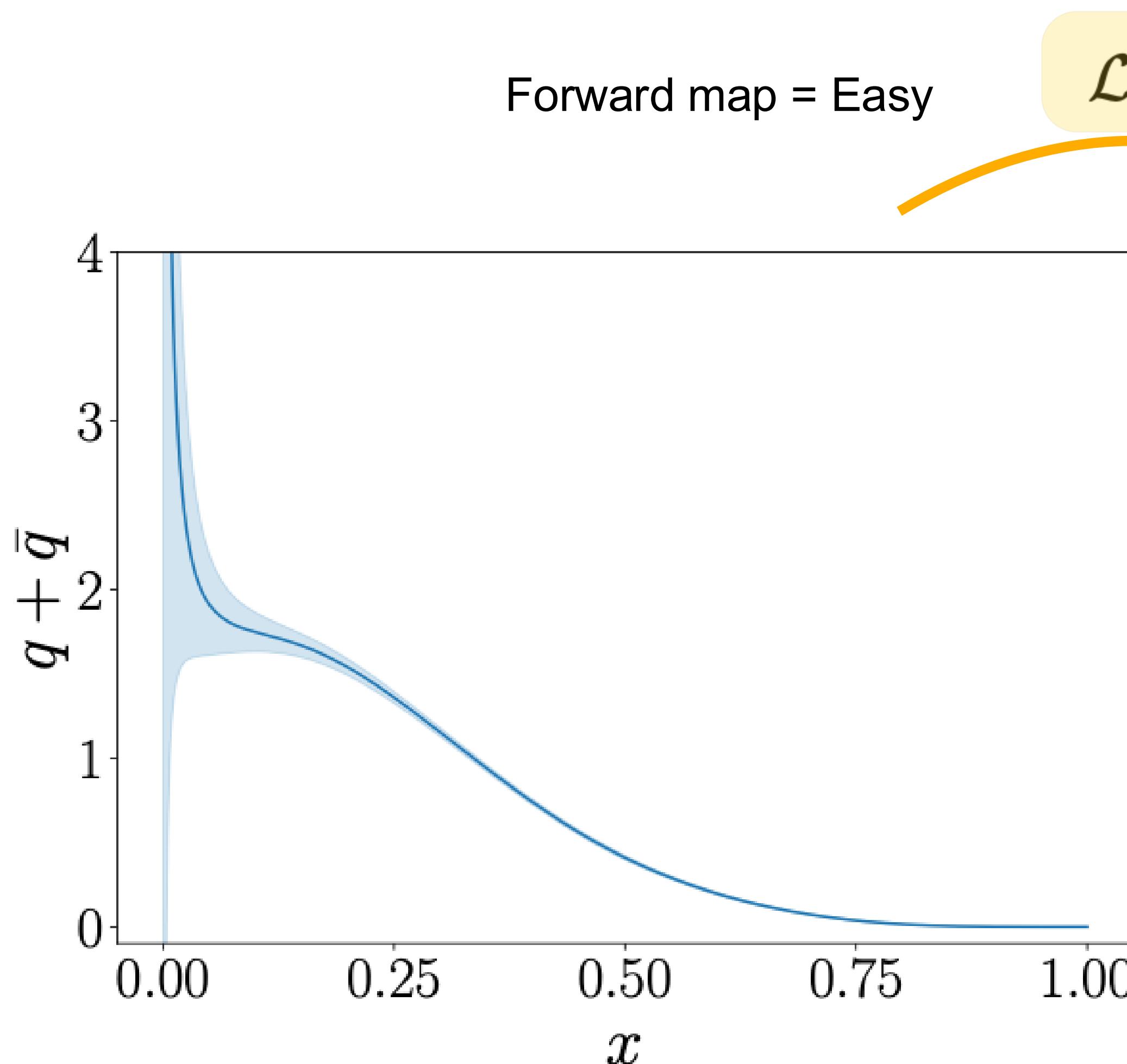
- Colorize Black and White Photos



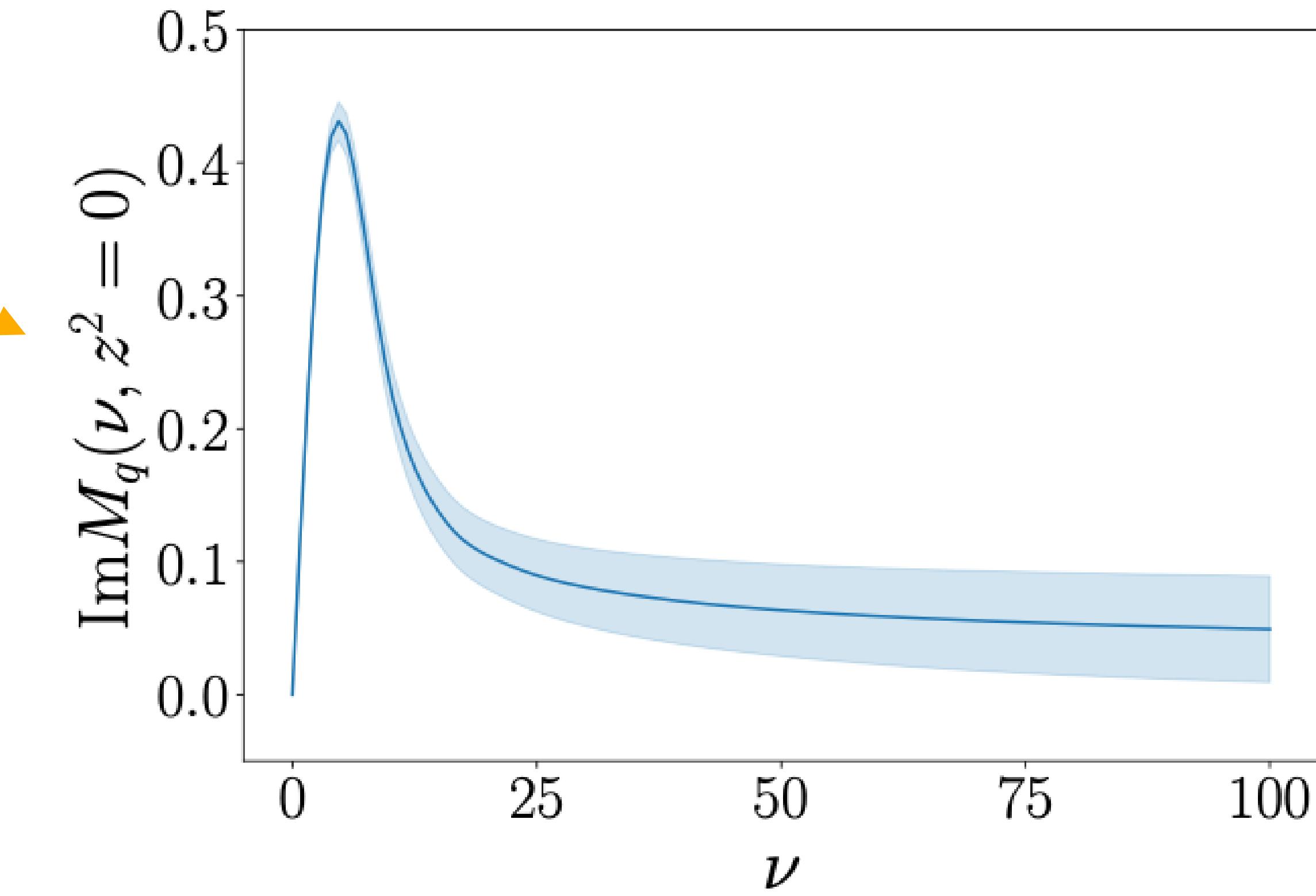


# Inverse problem (Closure test)

NNPDF 4.0 (imaginary component)



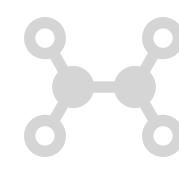
NNPDF Collaboration, *The Path to Proton Structure at One-Percent Accuracy*



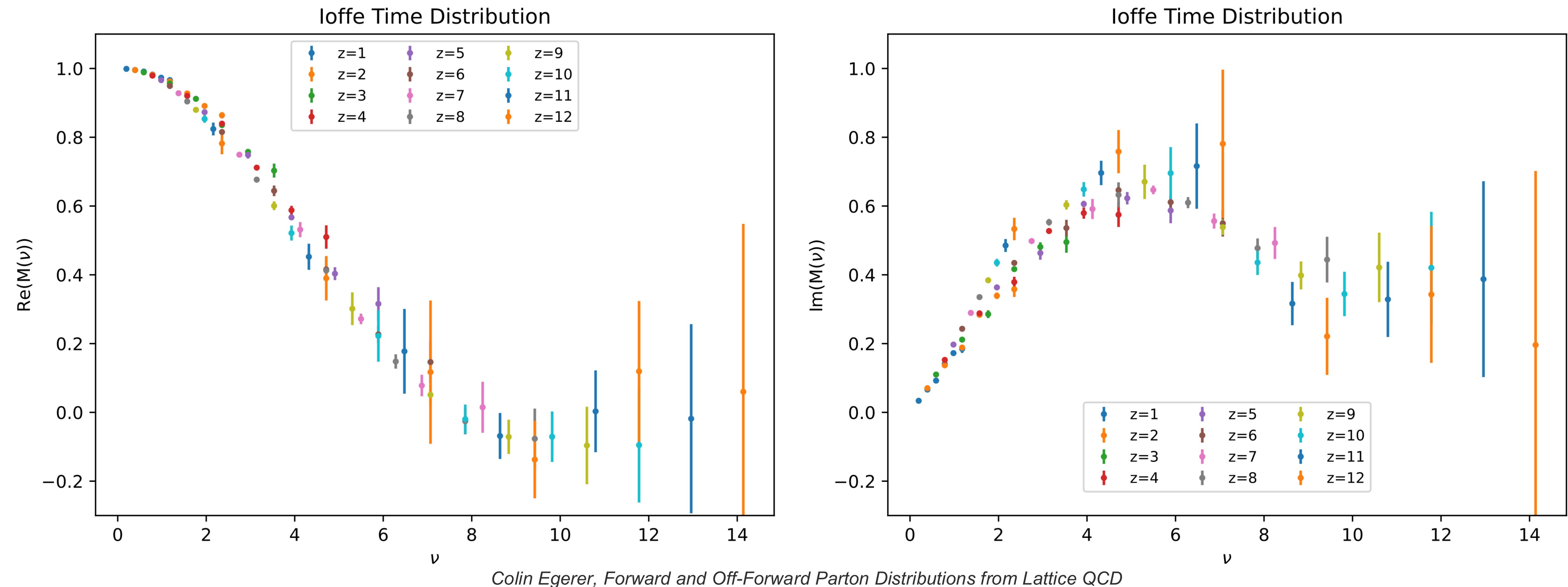
$\mathfrak{M}(v) = \int_{-1}^1 dx e^{ixv} q(x)$

# Available lattice data

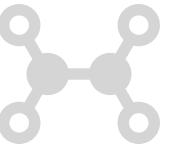
## Unpolarized iso-vector PDF of the nucleon



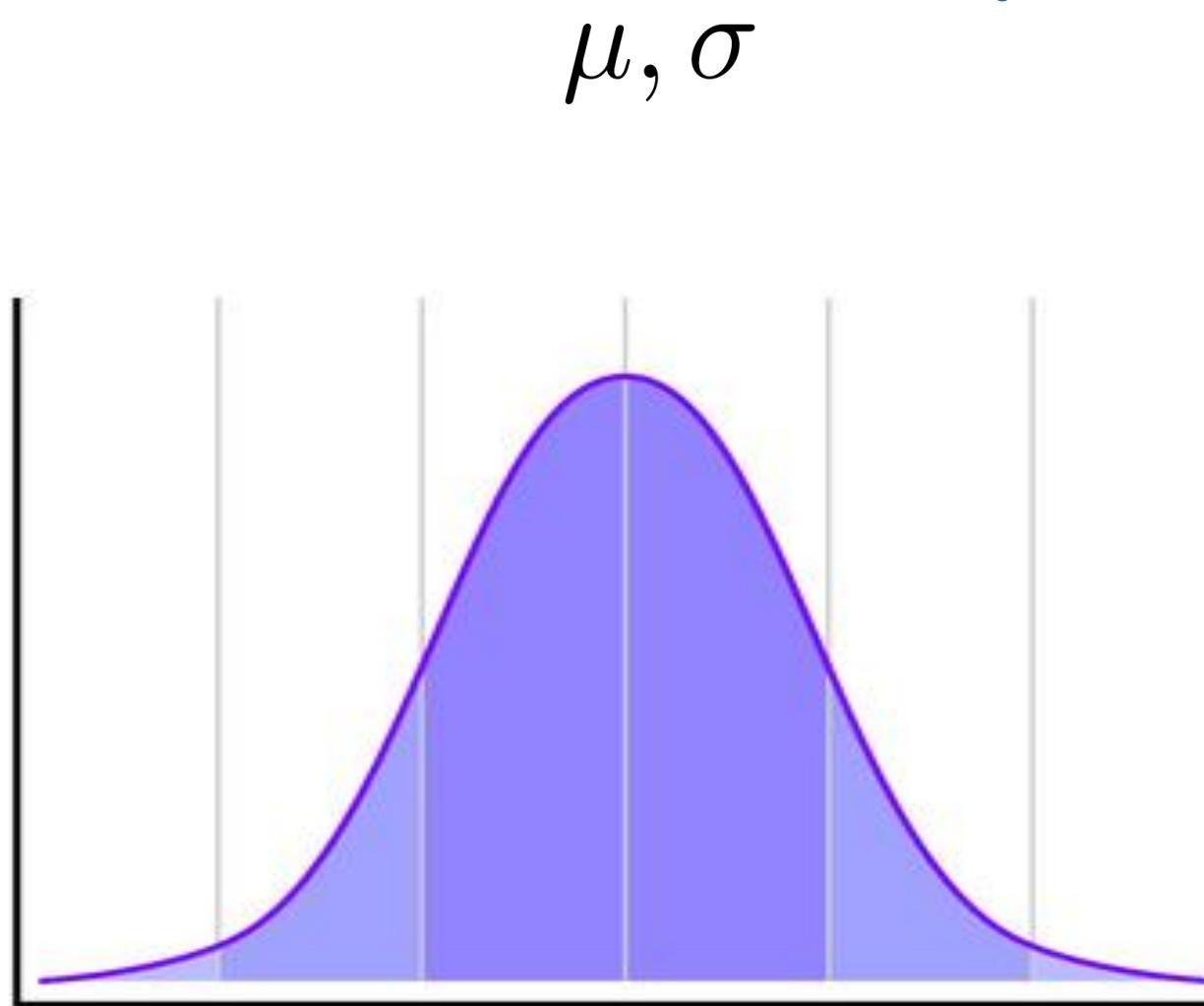
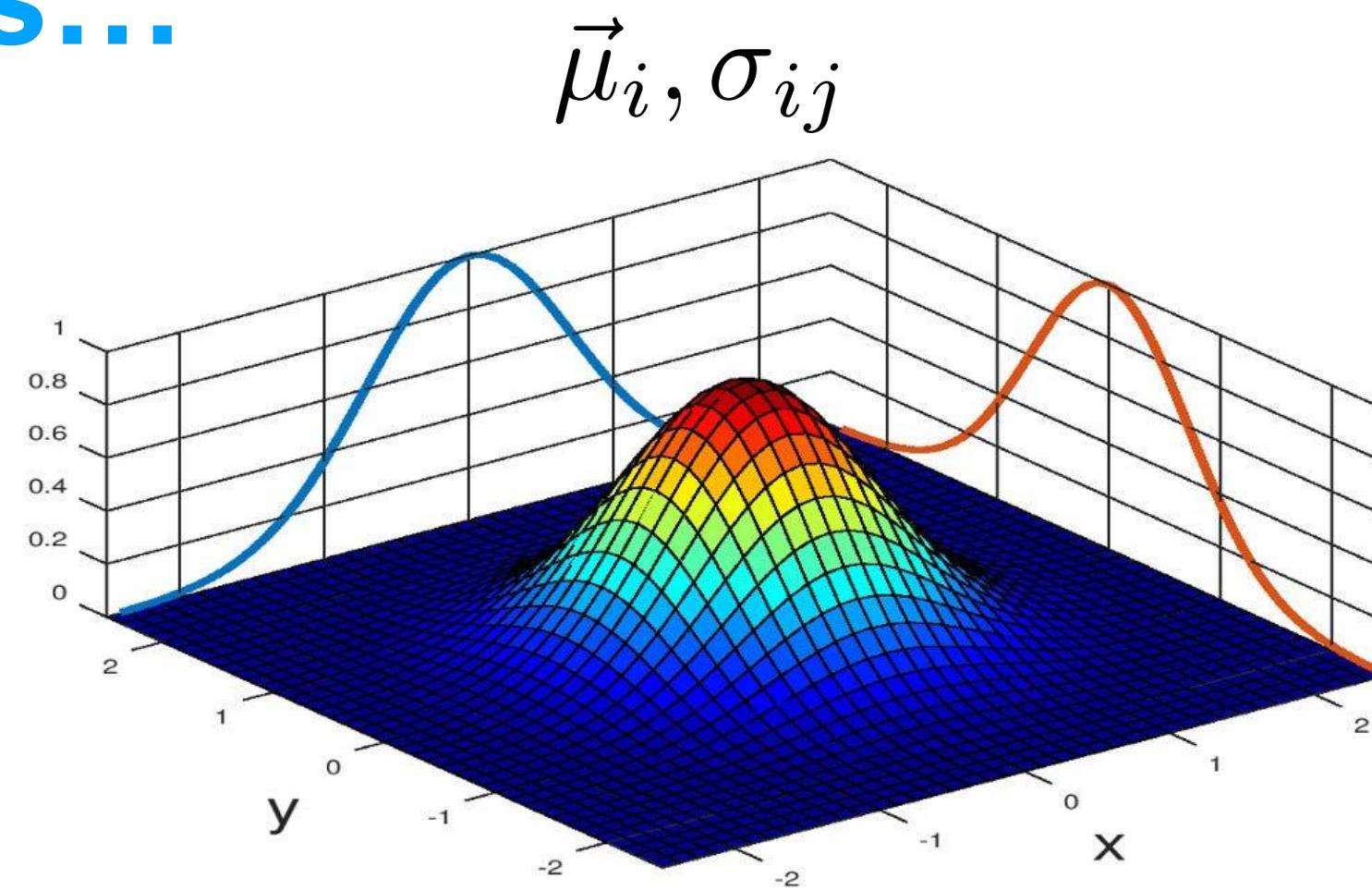
Lattice details: 2+1 flavors of clover improved Wilson quarks with a lattice spacing  $a = 0.094(1)$  fm and a pion mass of  $358(3)$  MeV



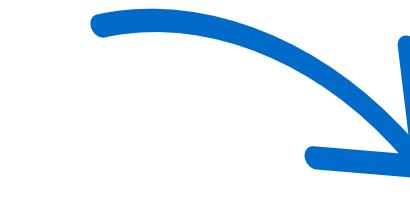
# Gaussian process!!!



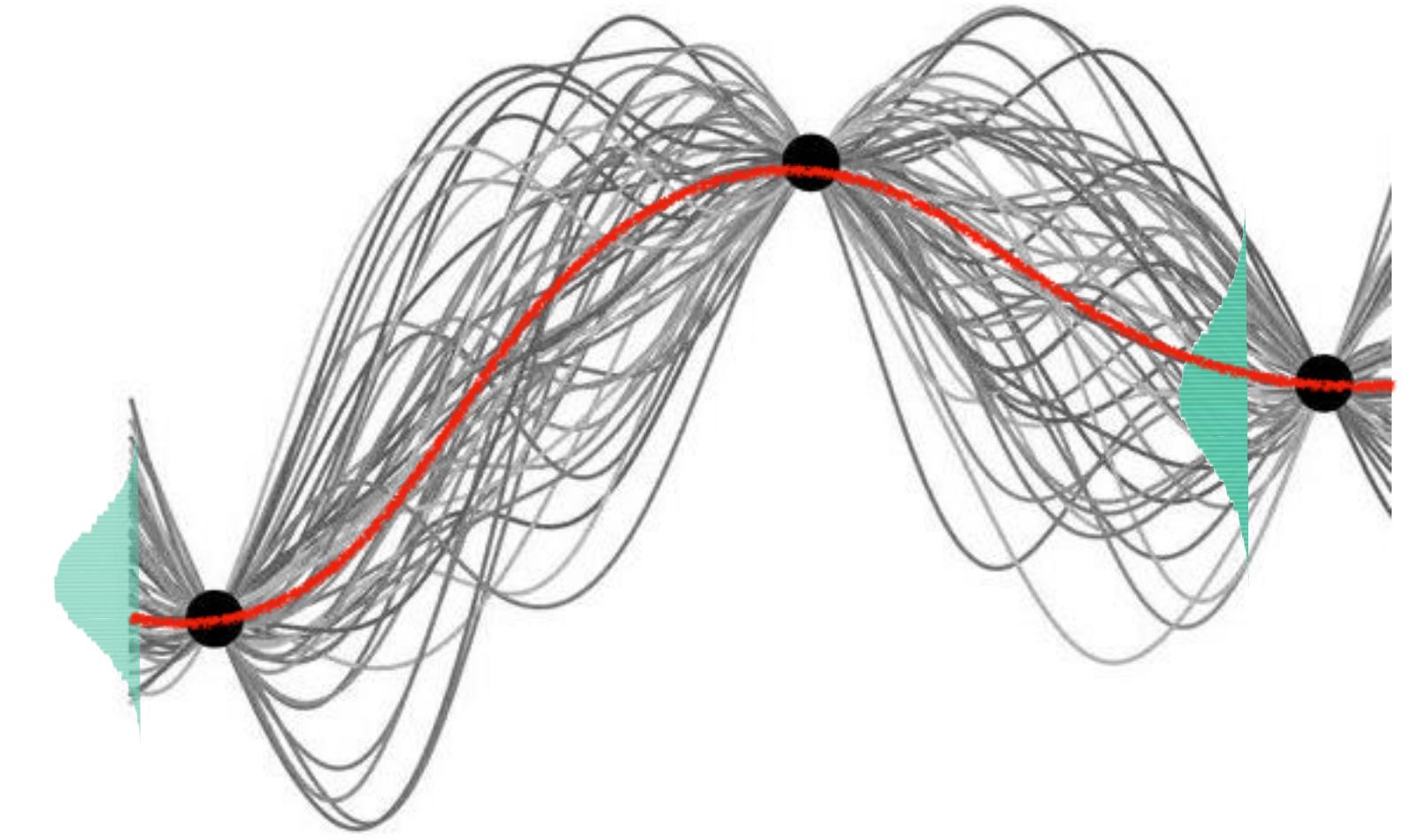
= Stochastic Process...



Normal  
Distribution



$\mu(x), \sigma(x, x')$  or  $K(x, x')$



Try to imagine an infinite  
dimensional normal distribution

# Gaussian process

## Parametric vs/and/or Non-parametric

### Parametric

$$\chi^2(q(x; \theta)) = \frac{1}{2}(M_i - \mathcal{L}_{\nu_i} q(x; \theta))C_{ij}^{-1}(M_j - \mathcal{L}_{\nu_j} q(x; \theta))$$

$$q(x; \theta)_{PDF} = Nx^\alpha(1-x)^\beta$$

$$\hat{q}(x) = \min_{\theta} (\chi^2(q(x; \theta)))$$

$$P(\theta|M^i) = \frac{e^{-\chi^2(q(x; \theta))} P(\theta)}{P(M^i)}$$

Bayesian, but still parametric

If we do not parametrize, what we do in this case?

*Gaussian Processes for Machine Learning*, E. Rasmussen and C. K. I. Williams

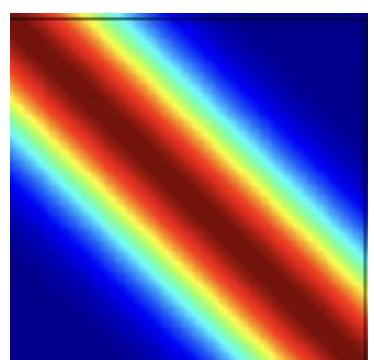
### Non-Parametric

$$\hat{q}(x) = \min_{q \in H} (\chi^2(q(x)) + \|\mathcal{P}q\|_H^2)$$

Imposes additionally conditions  
on the Hilbert space

$$H = \{q(x) \mid \begin{array}{l} \text{continuous?} \\ \text{smooth?} \\ \text{square-integrable} \end{array}\}$$

$$\|\mathcal{P}q\|_H^2 \rightarrow q(x)K^{-1}(x, x')q(x')$$



$$K(x, x') = \sigma e^{\frac{|x-x'|^2}{2l^2}}$$

We can recover a parametric feature

$$q(x) \rightarrow q(x) - q_{PDF}(x)$$

$$P(q(x)|M^i) = \frac{e^{-\chi^2(q(x))} e^{-\|\mathcal{P}q\|_H^2}}{P(M^i)}$$



# Bayesian approach

## Levels of inference

$$\text{Posterior} = \frac{\text{Likelihood} \cdot \text{Prior}}{\text{Evidence}}$$

Parametric Models

3rd

$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

Model Average/Selection of Models,  
depending on the approximation

$$q(x) \quad q(x)q(x)$$

2nd

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

The hyper parameters can be conditioned to  
the data and the model.

$$\langle q(x) \rangle \quad \langle q(x)q(x) \rangle$$

1st

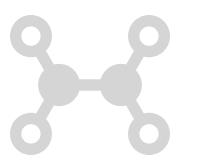
$$P(q(x)|M^l, \theta, \mathcal{H}) = \frac{P(M^l|q(x), \theta, \mathcal{H})P(q(x)|\theta, \mathcal{H})}{P(M^l|\theta, \mathcal{H})}$$

Solved analytically  
(path integral techniques)

$$\bar{q}(x) \quad \frac{q(x)q(x)}{q(x)q(x)}$$

Marginal Likelihood or Evidence = Likelihood of the next level of inference

$$\{functions, Parameters, Hypothesis, Data\} \equiv \{q(x), \theta, \mathcal{H}, M^l\}$$



# 1<sup>st</sup> level of inference

$$\text{Posterior} = \frac{\text{Likelihood} \text{ Prior}}{\text{Evidence}}$$

## Gaussian processes à la Feynman

$$\bar{q}(x; \theta) = \int q(x) P(q(x) | M^l, \theta, \mathcal{H}) D[q(x)]$$

$$\overline{q(x)q(x)} = \int q(x)q(x) P(q(x) | M^l, \theta, \mathcal{H}) D[q(x)]$$

Everything is "gaussian" in this level of inference (It's like solving a free field theory).

$$P(q(x) | M^l, \theta, \mathcal{H}) = \frac{P(M^l | q(x), \theta, \mathcal{H}) P(q(x) | \theta, \mathcal{H})}{P(M^l | \theta, \mathcal{H})}$$

My prior and likelihood have an analytic expression:

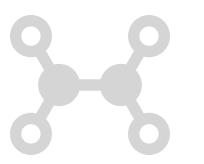
**Likelihood**  $P(M^l | q(x), \theta, \mathcal{H}) = N_{likelihood} e^{-\frac{1}{2} (M_i - \mathcal{L}_{\nu_i} q(x)) C_{ij}^{-1} (M_j - \mathcal{L}_{\nu_j} q(x))}$

**Prior**  $P(q(x) | \theta, \mathcal{H}) = N_{prior} P_{const} e^{-\frac{1}{2} (\int dx dx' (q(x) - q_{PDF}(x)) K^{-1}(x, x') (q(x') - q_{PDF}(x')))}$

$$P_{const} = e^{-\frac{1}{2\lambda} (\int_0^1 dx q(x) - 1)^2 - \frac{1}{2\lambda_c} (\int_0^1 dx q(x) \delta(1-x))^2}$$

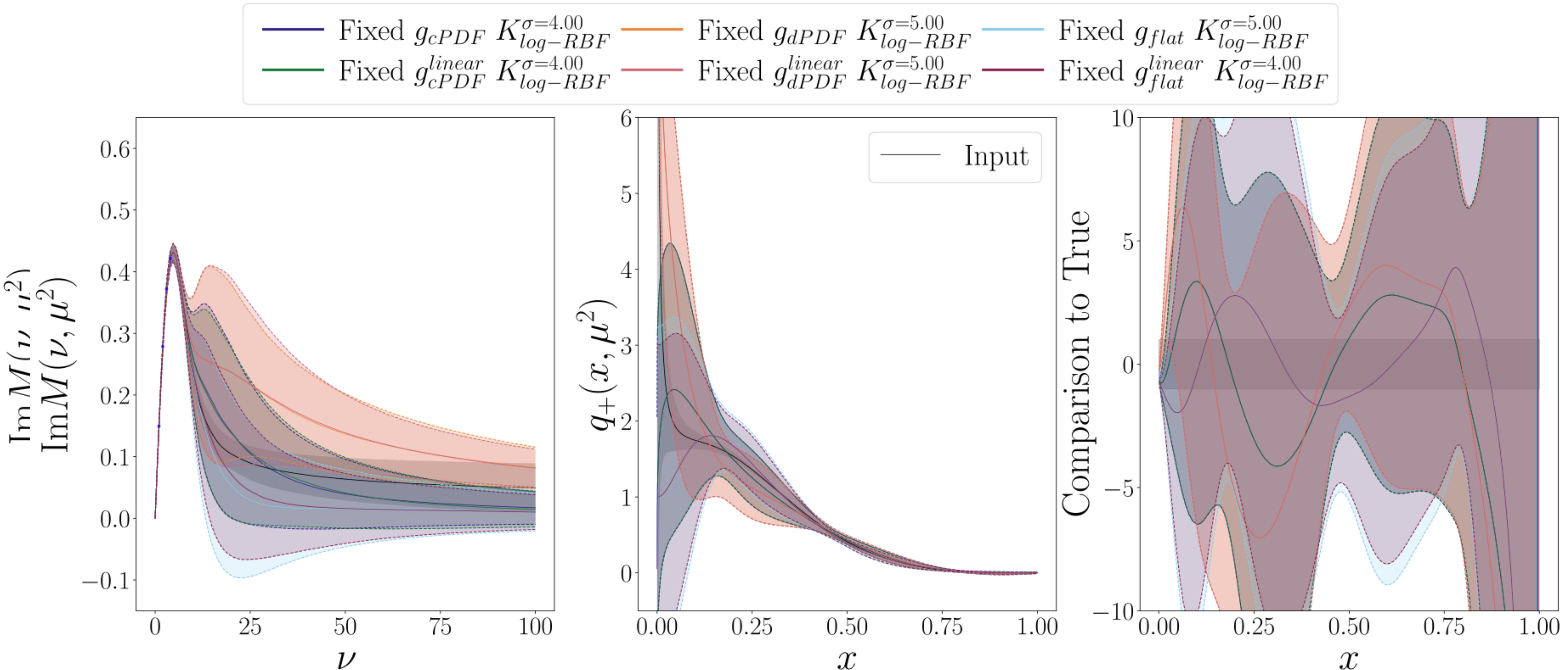
Normalization and  $q(x=1)=0$

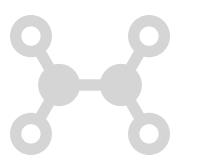
**Evidence**  $P(M^l | \theta, \mathcal{H}) = \int D[q(x)] P(M^l | q(x), \theta, \mathcal{H}) P(q(x) | \theta, \mathcal{H})$



# 1<sup>st</sup> Level of inference

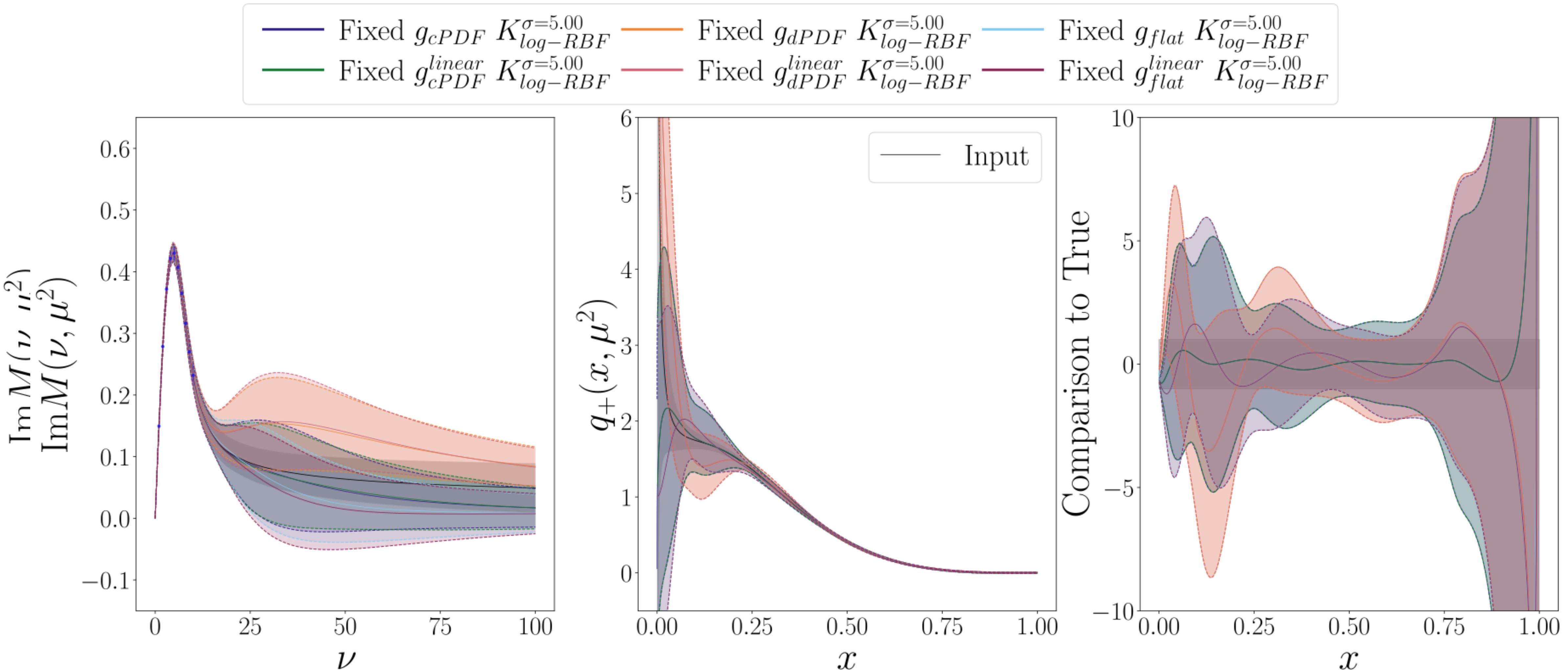
Fix parameters (4 data points)

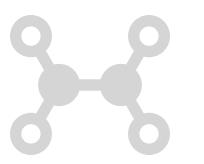




# 1<sup>st</sup> Level of inference

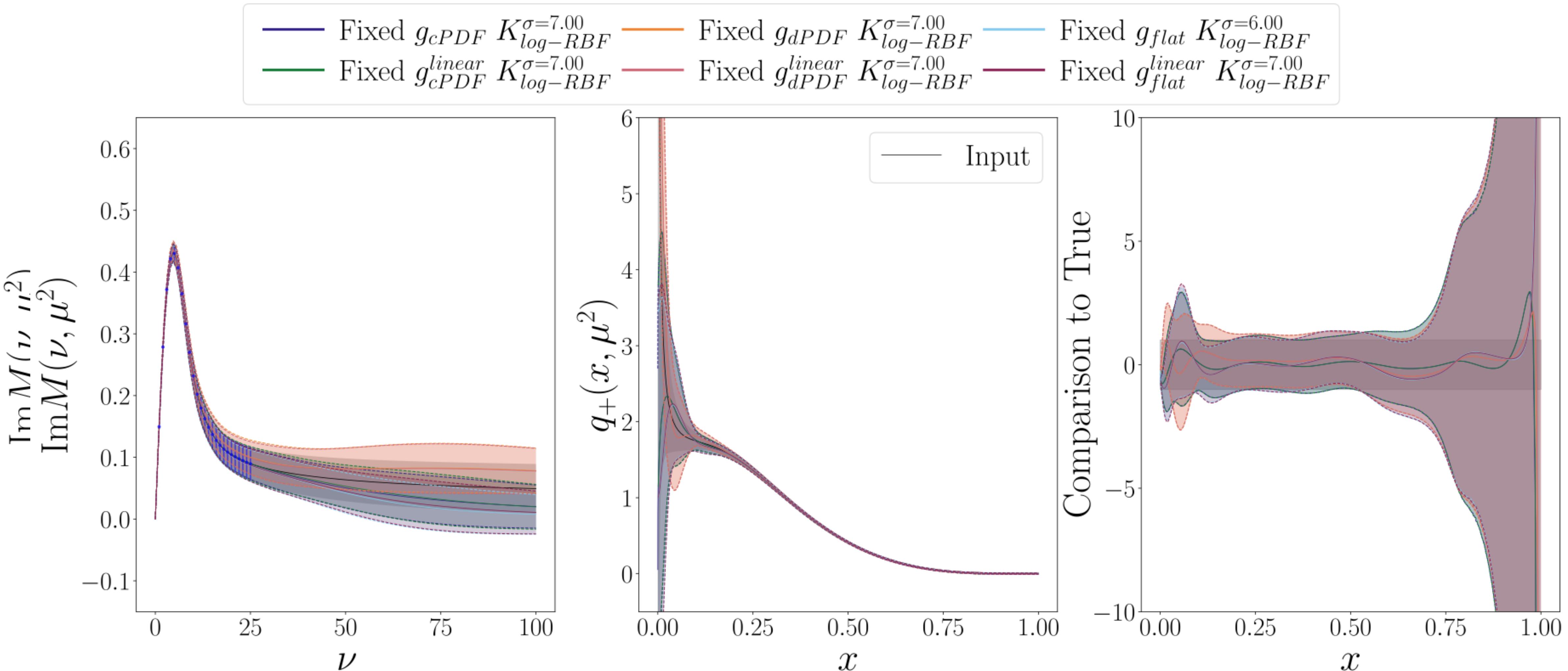
Fix parameters (10 data points)

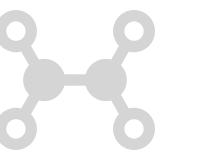




# 1<sup>st</sup> Level of inference

Fix parameters (25 data points)

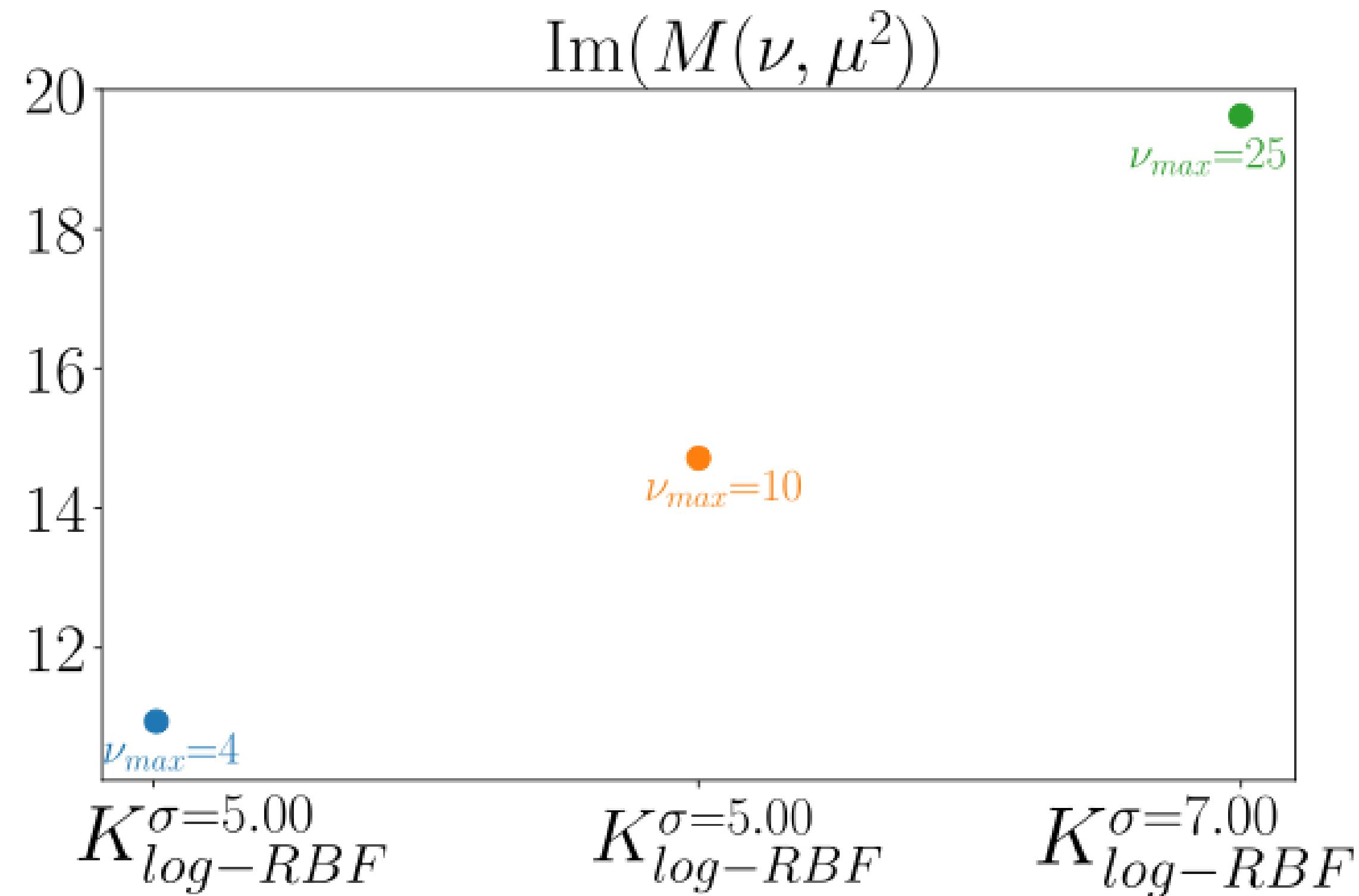


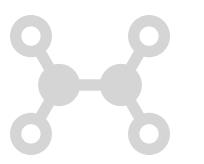


# KL Divergence

Information gained globally

$$D_{KL}(P[q(x)|M, \theta, \mathcal{H}] || P[q(x)|\theta, \mathcal{H}]) = \int D[q(x)] P[q(x)|M, \theta, \mathcal{H}] \log \left( \frac{P[q(x)|M, \theta, \mathcal{H}]}{P[q(x)|\theta, \mathcal{H}]} \right)$$



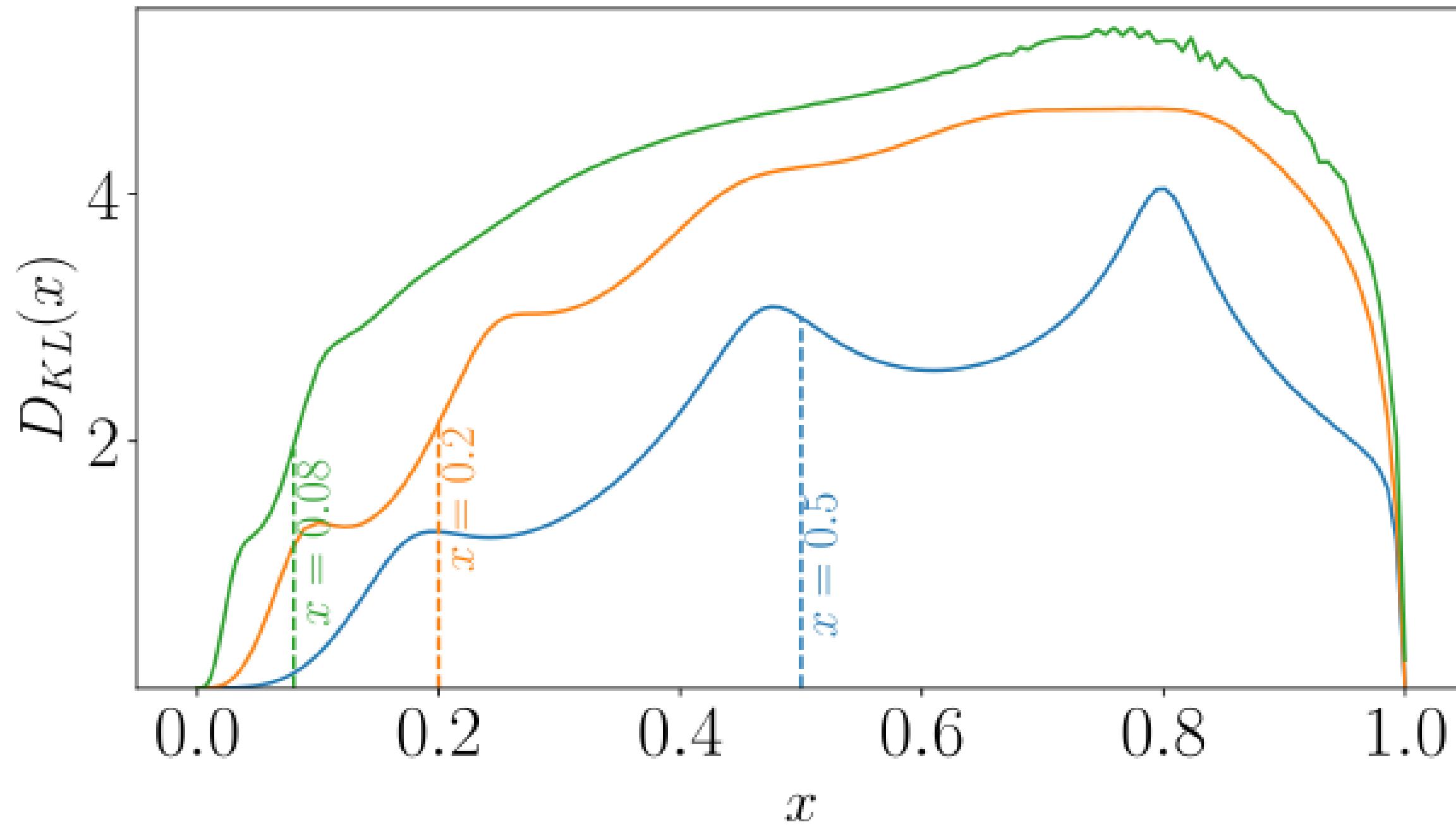


# KL Divergence

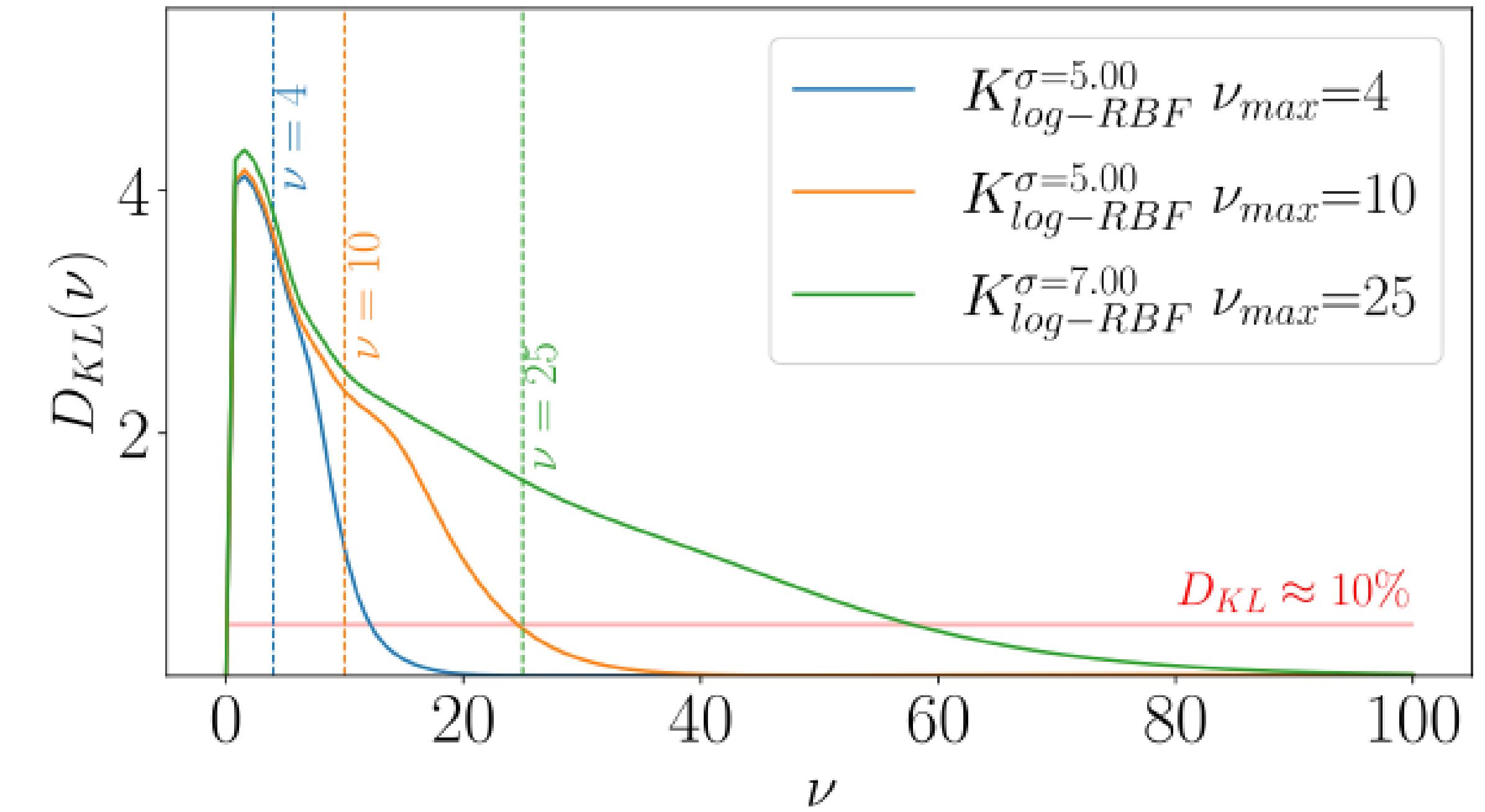
Information gained locally

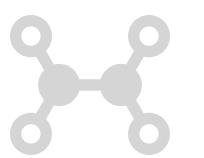
$$D_{KL}(x_i) \equiv D_{KL}(P[q_i|M, \theta, I] || P[q_i|\theta, I]) = \int D[q(x_i)] P[q_i|M, \theta, I] \log \left( \frac{P[q_i|M, \theta, I]}{P[q_i|\theta, I]} \right)$$

PDF, Fixed  $g_{dPDF}$



$\text{Im}(M(\nu, z^2))$





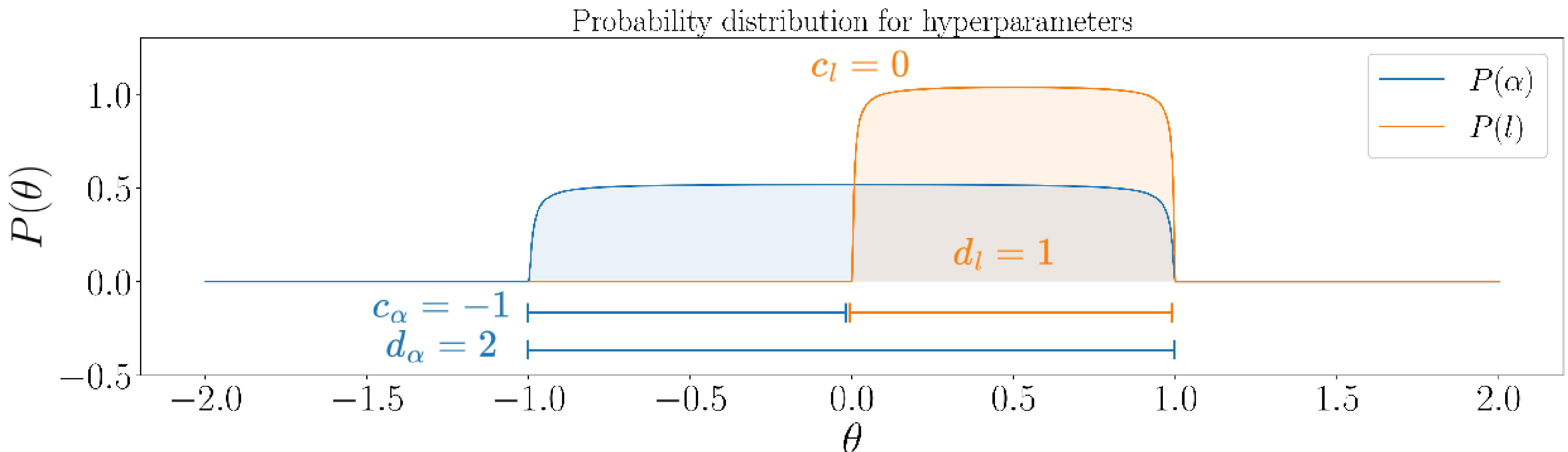
# 2<sup>nd</sup> Level of inference

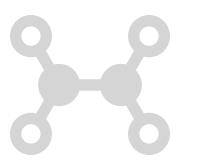
Prior = exponential beta

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

$$P(\theta|\mathcal{H}) = n e^{-\frac{\hat{\theta}^a (1-\hat{\theta})^b}{2 \cdot B(a+1, b+1)}}$$

$$\hat{\theta} = \frac{\theta - c}{d}$$





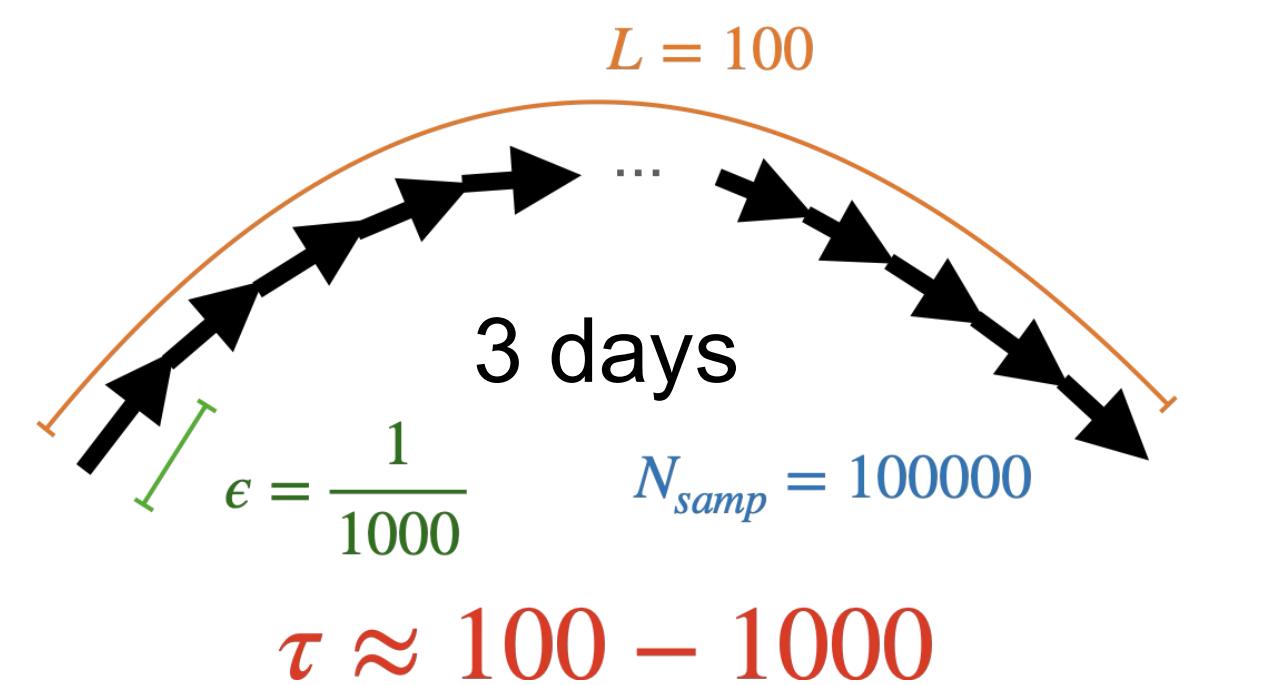
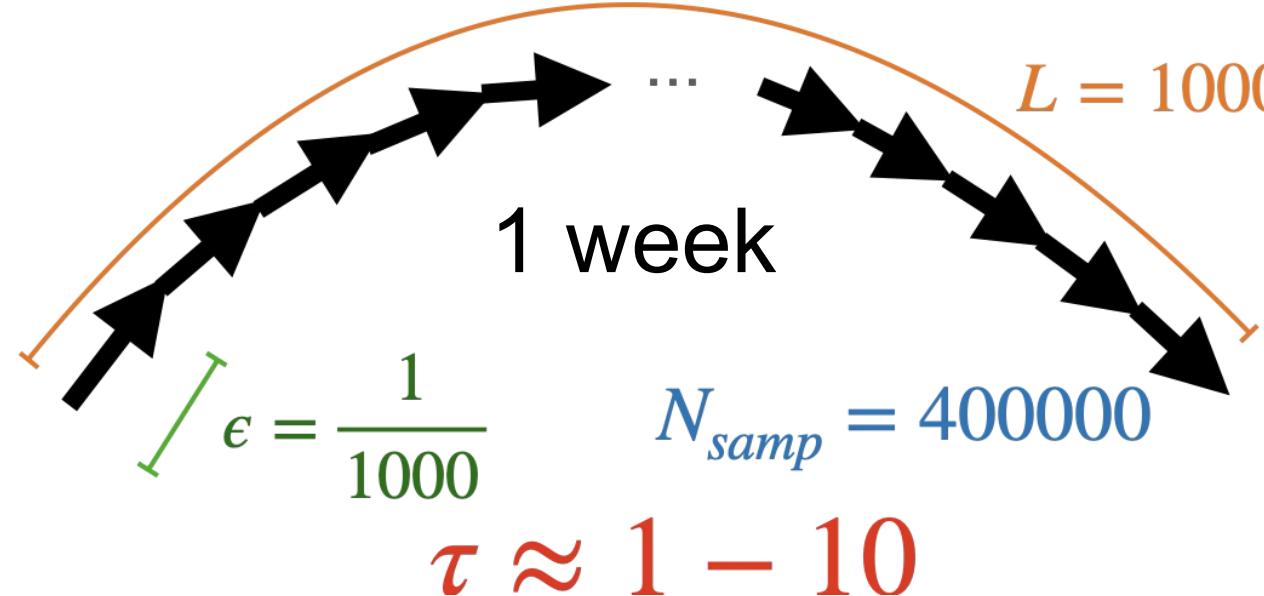
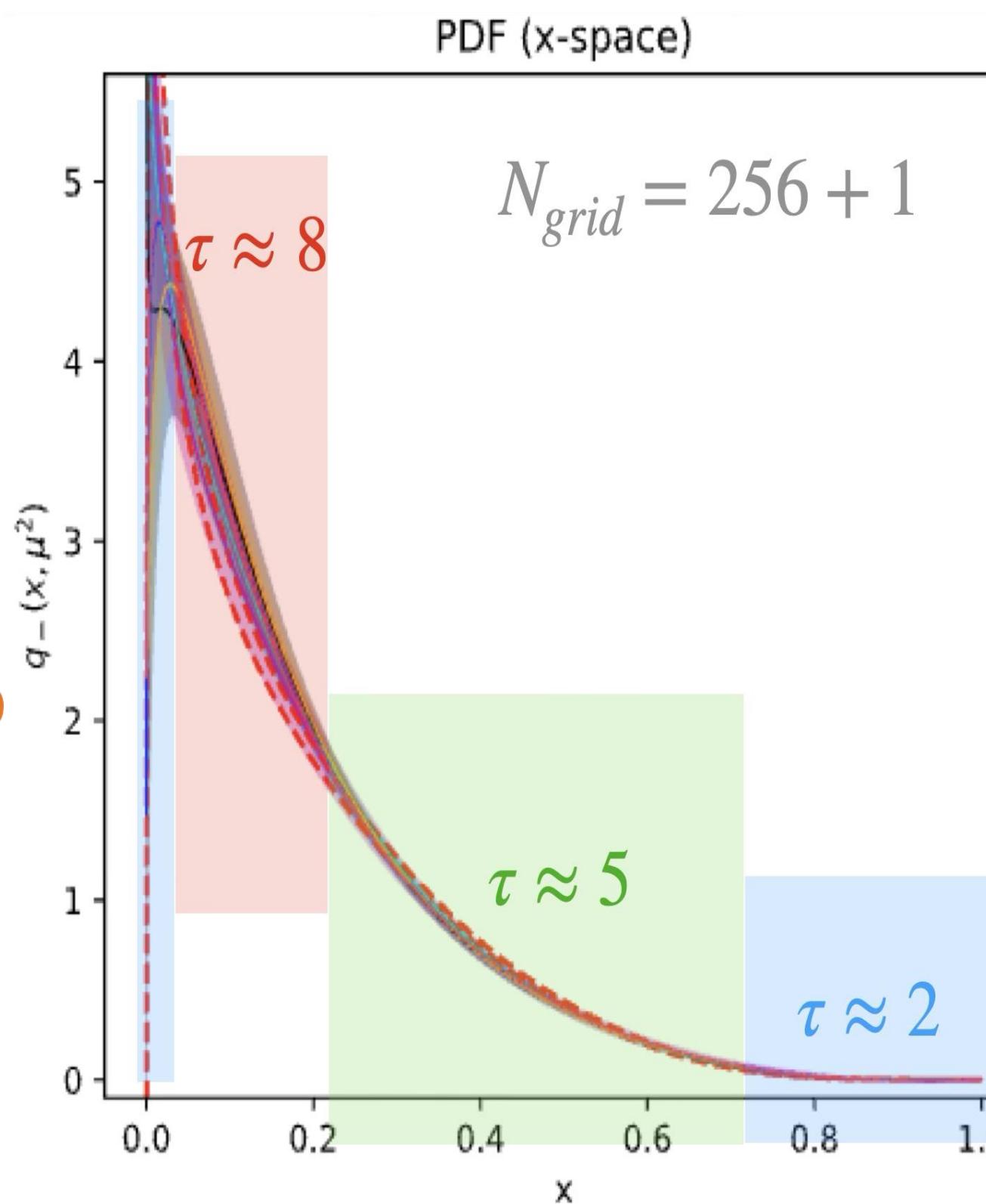
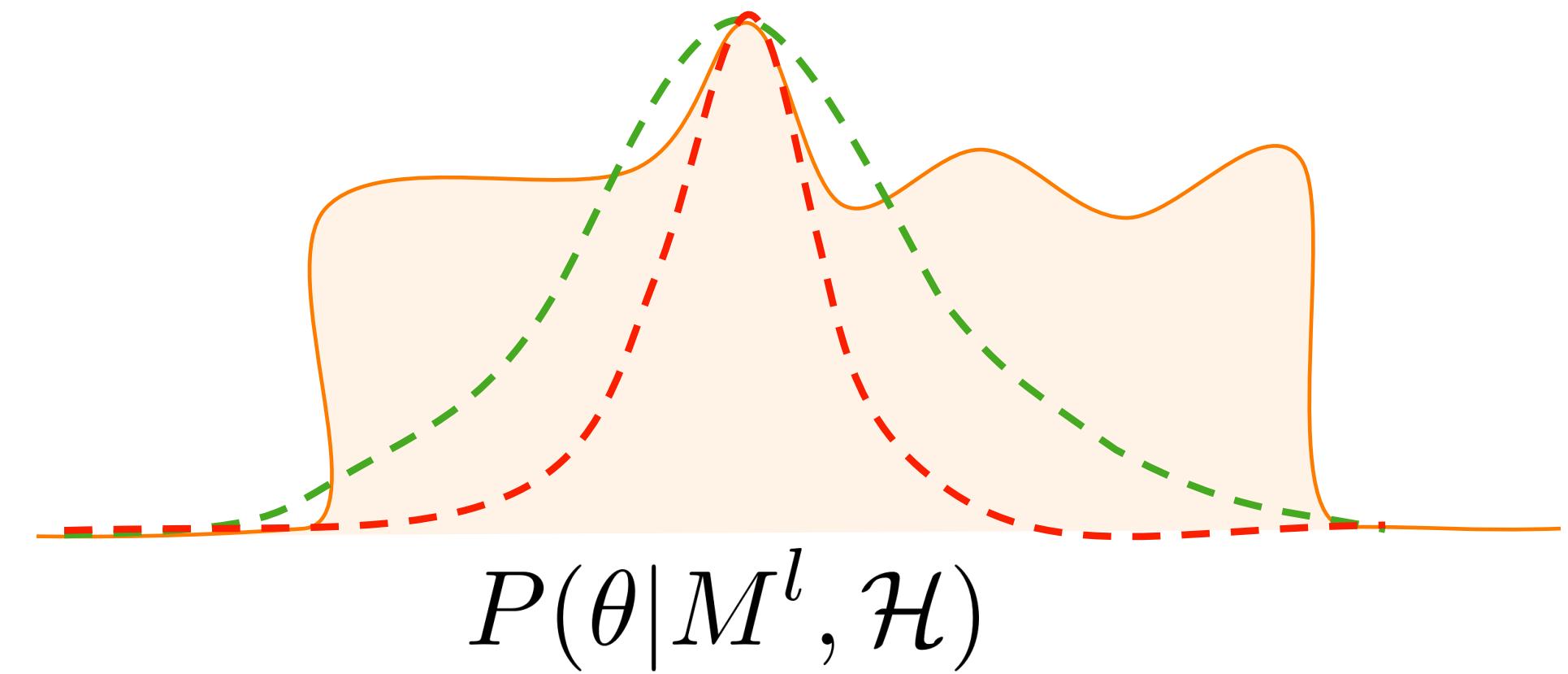
# 2<sup>nd</sup> Level of inference

## HMC -> Importance Sampling

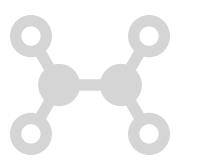
$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

$$\langle q(x) \rangle = \int P(\theta|M^l, \mathcal{H})\bar{q}(x; \theta)d\theta$$

$$\langle q(x)q(x) \rangle \equiv \int (\bar{q}(x; \theta) - \langle q(x) \rangle)^2 P(\theta|M^l, \mathcal{H})d\theta$$



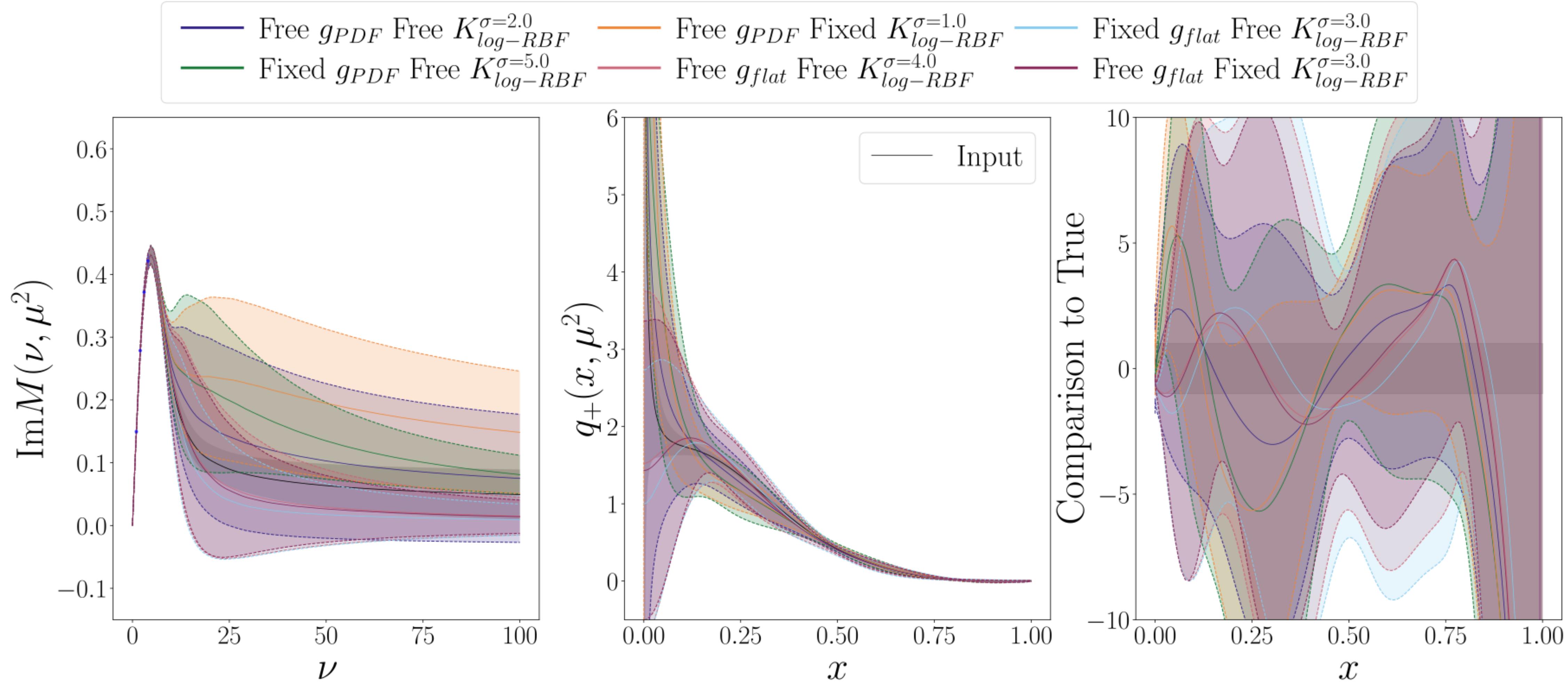
- HMC is effective but it can take a lot of computational resources and time to run.
- IS reduces the sampling process to 50 min per model

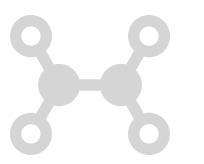


# 2<sup>nd</sup> Level of inference

## Sampled results

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

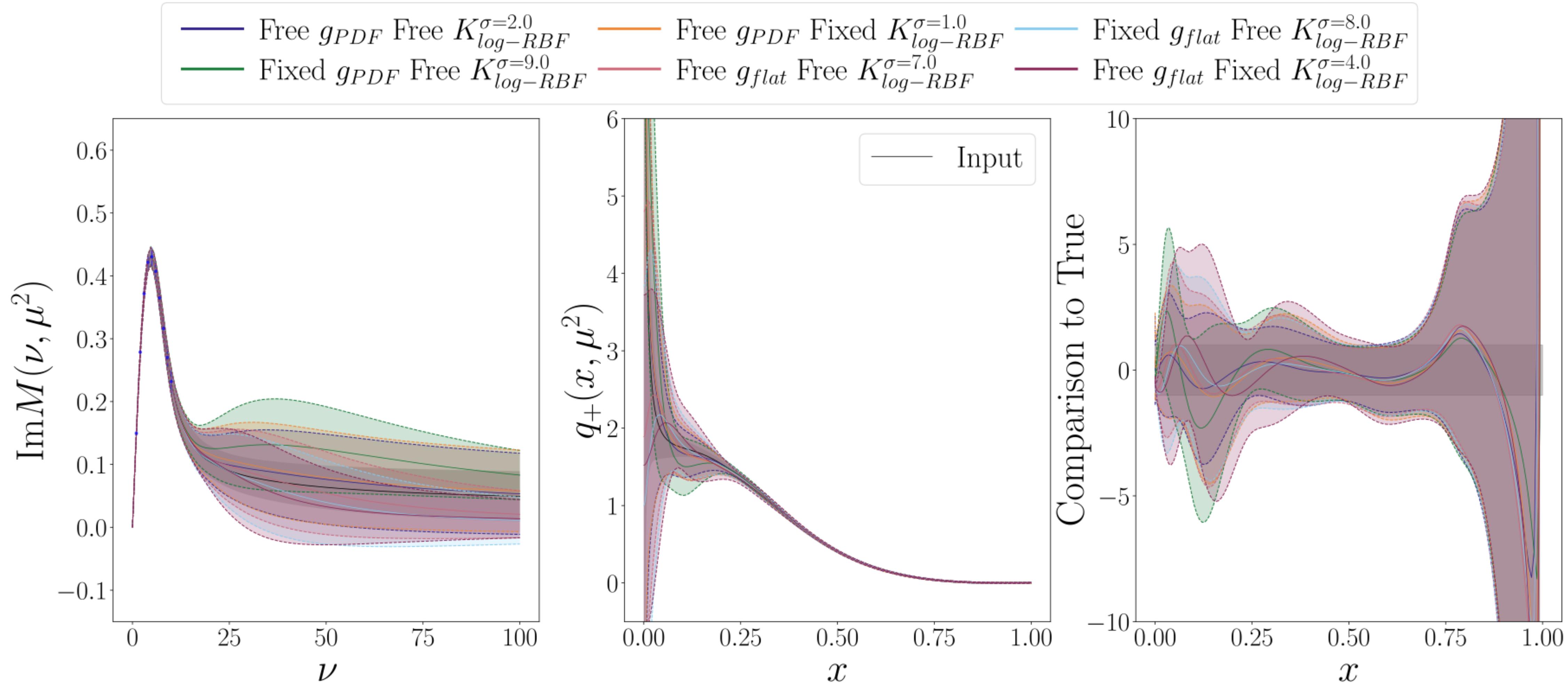


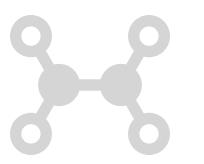


# 2<sup>nd</sup> Level of inference

## Sampled results

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

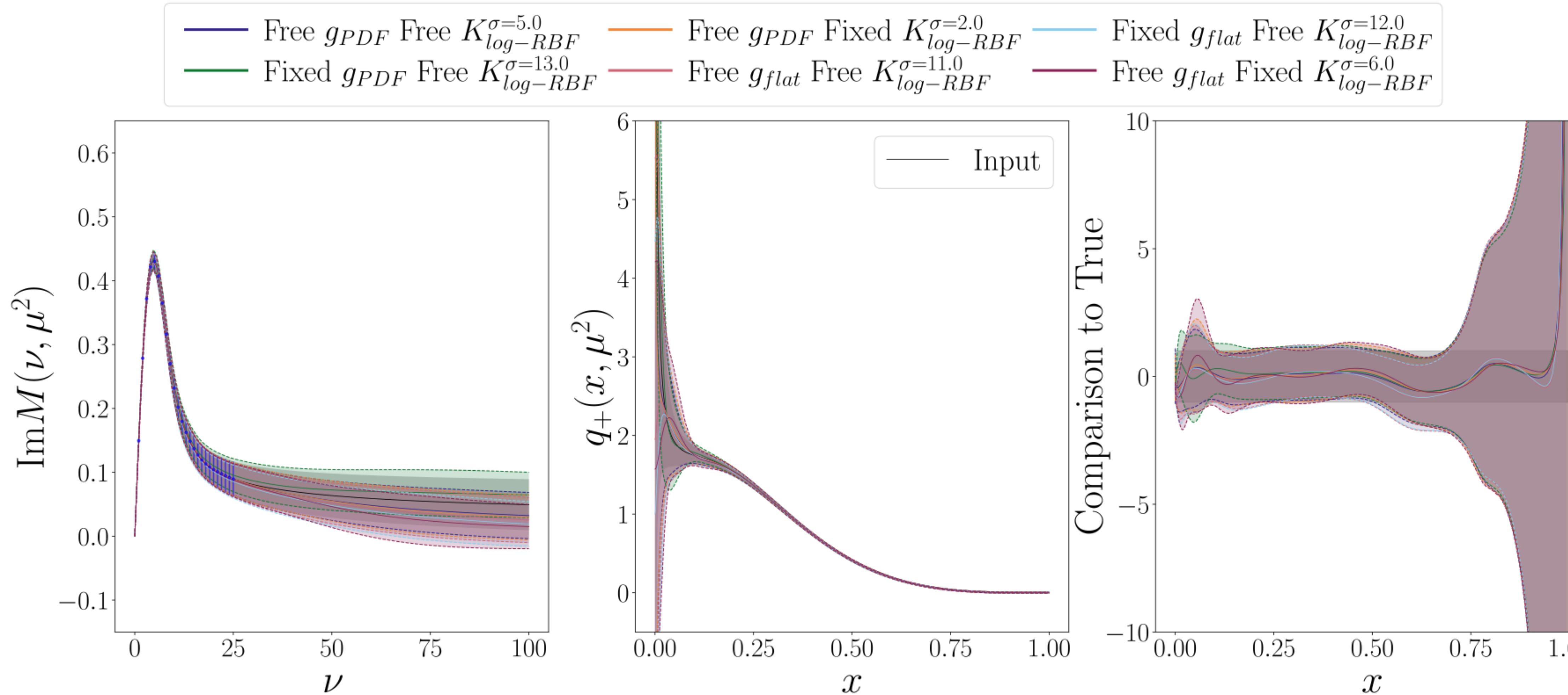


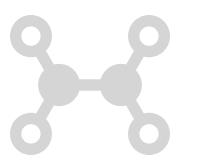


# 2<sup>nd</sup> Level of inference

Results...(we explore 30-ish models)

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$





# 3<sup>rd</sup> Level of inference

## Information criteria

$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

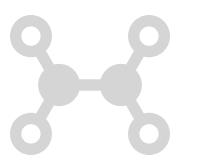
$$-2 \log(P(M^l|\mathcal{H}_i)) \approx \begin{cases} BAIC = -\log(P(M^l|\theta_{min}, \mathcal{H})P(\theta_{min}|\mathcal{H})) + 2k \\ BTIC = -\log(P(M^l|\theta_{min}, \mathcal{H})P(\theta_{min}|\mathcal{H})) + 2Tr(J^{-1}(\theta_{min})I(\theta_{min})) \\ PAIC = -\log(P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})) + 2Tr(J^{-1}(\theta_{min})I(\theta_{min})) \end{cases}$$

$$P(\mathcal{H}_i) = \frac{1}{N_{models}}$$

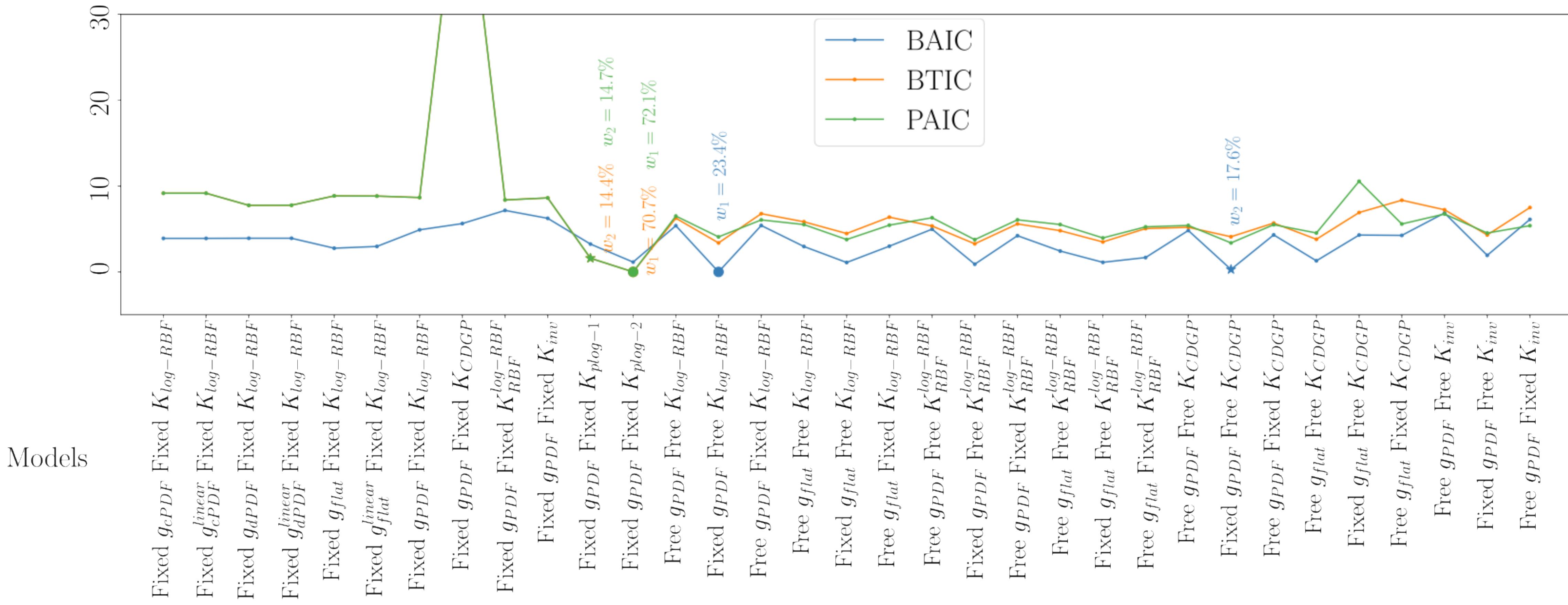
$$\mathfrak{q}(x) \equiv \sum_i^{models} P(\mathcal{H}_i|M^l) \langle q(x) \rangle_i \quad \quad \mathfrak{q}(x)\mathfrak{q}(x) \equiv \sum P(\mathcal{H}_i|M^l) [\langle q(x) \rangle_i - \mathfrak{q}(x)]^2$$

# 3<sup>rd</sup> Level of inference

## Selection ~ Averaging

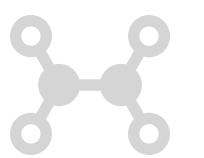


$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

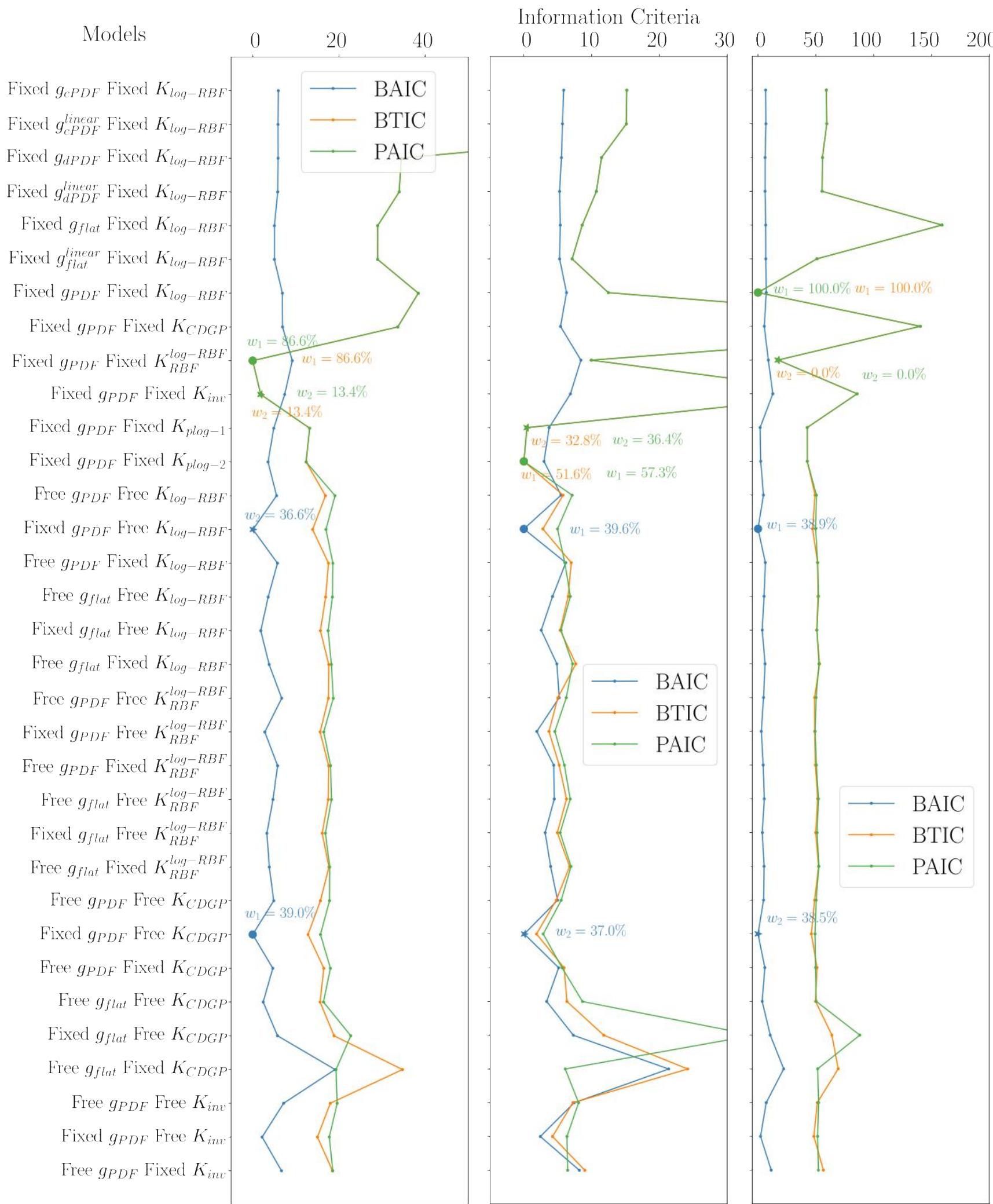
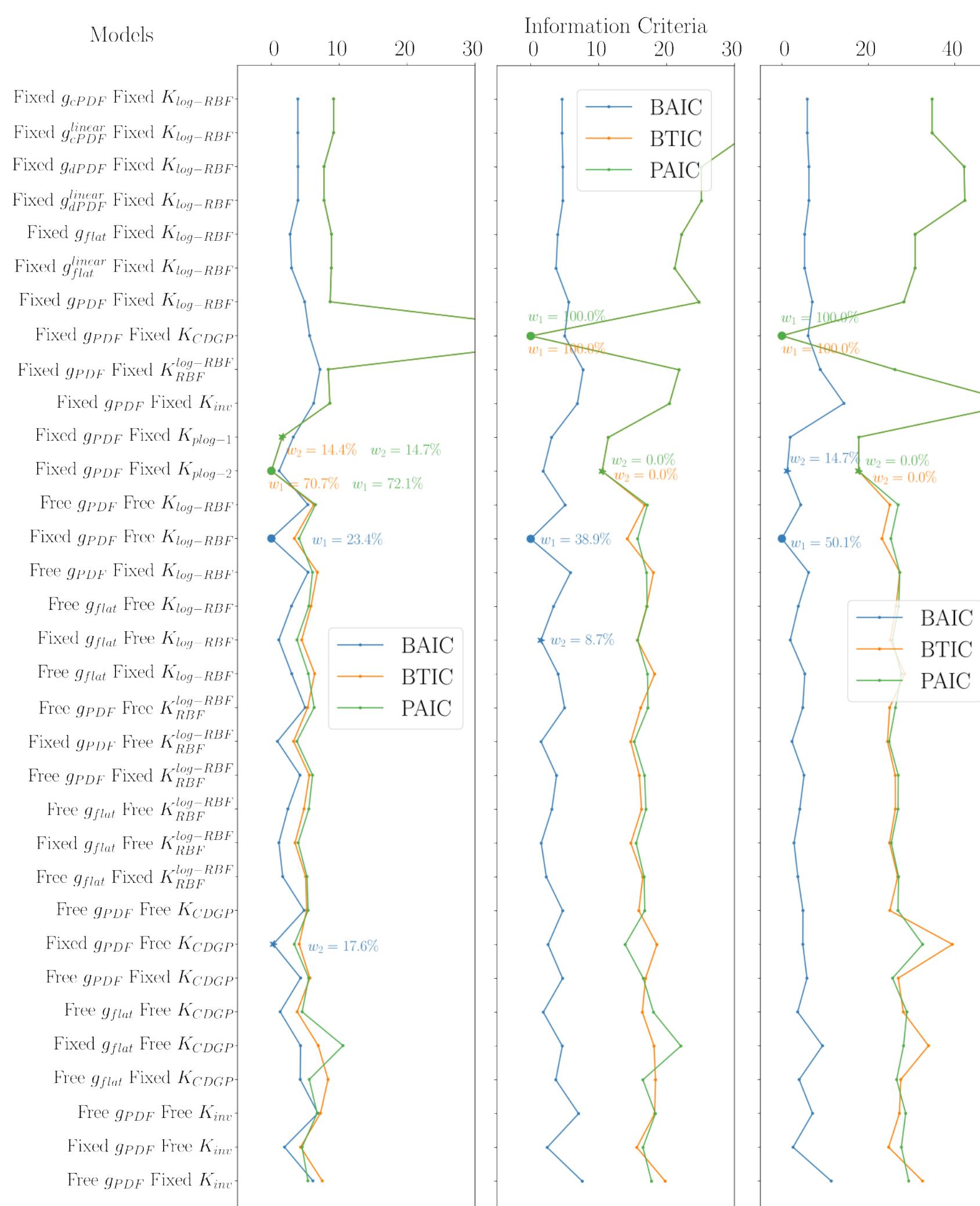


# 3<sup>rd</sup> Level of inference

## Information criteria

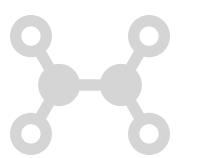


$$P(\mathcal{H}_i | M^l) = \frac{P(M^l | \mathcal{H}_i) P(\mathcal{H}_i)}{P(M^l)}$$

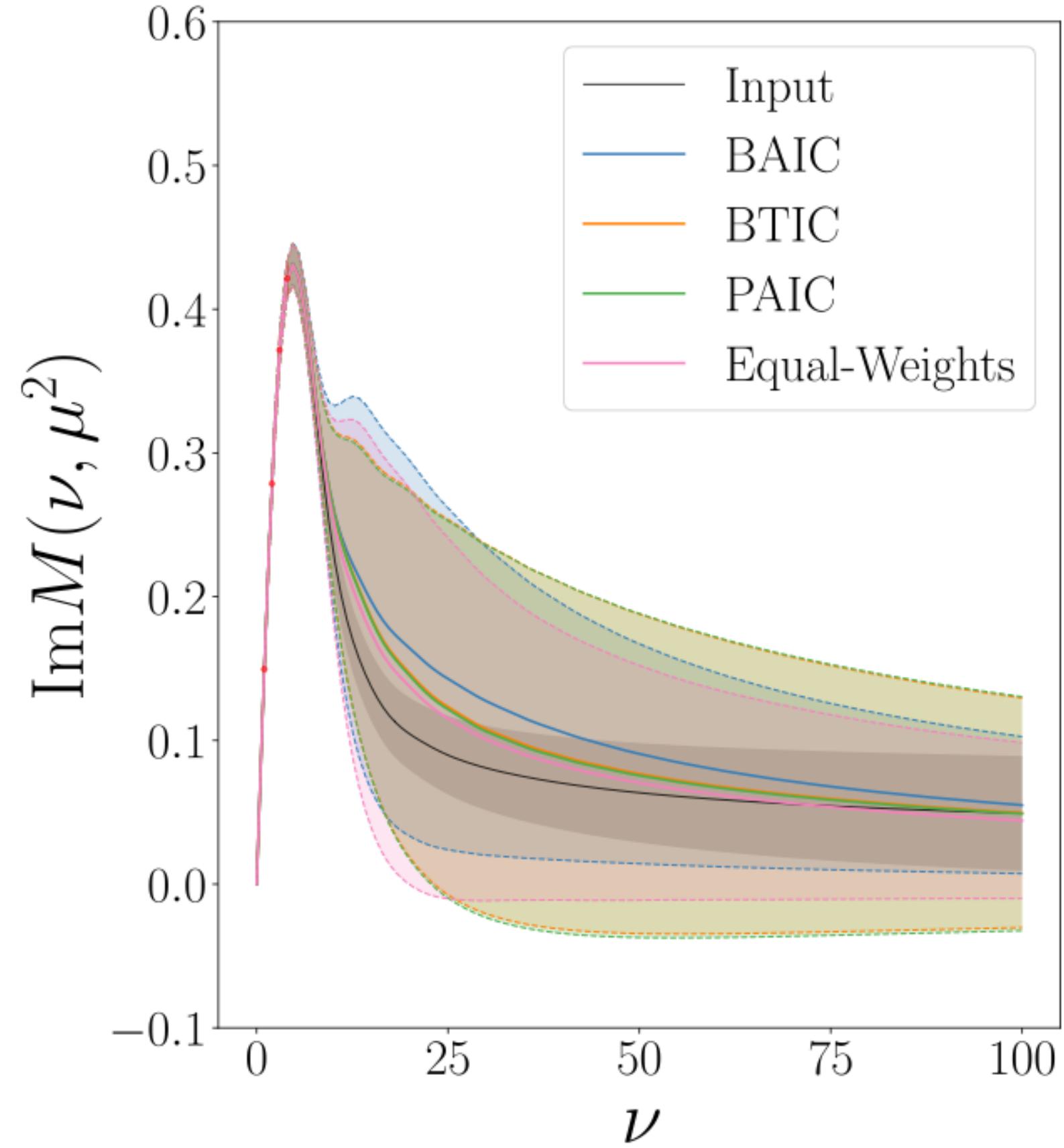
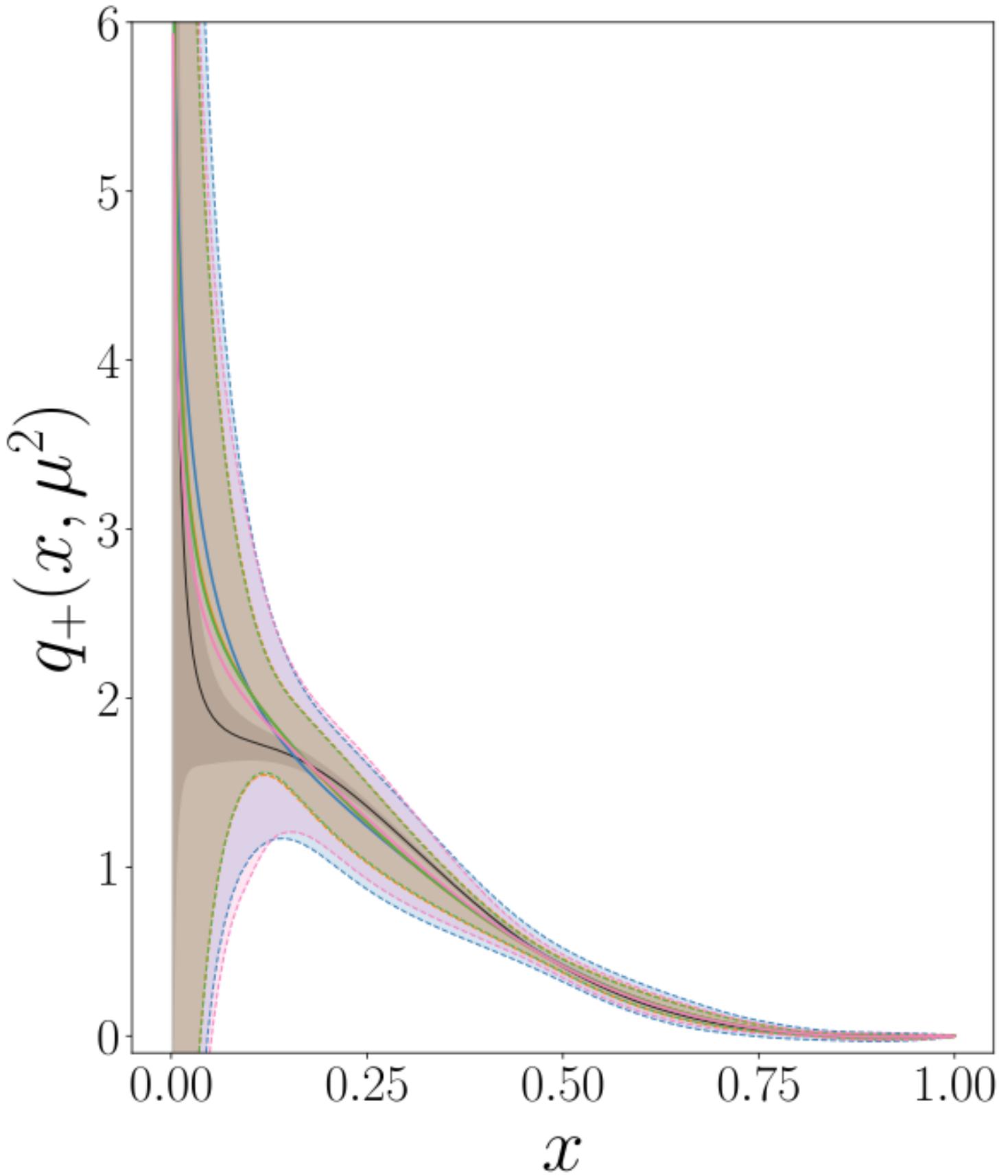
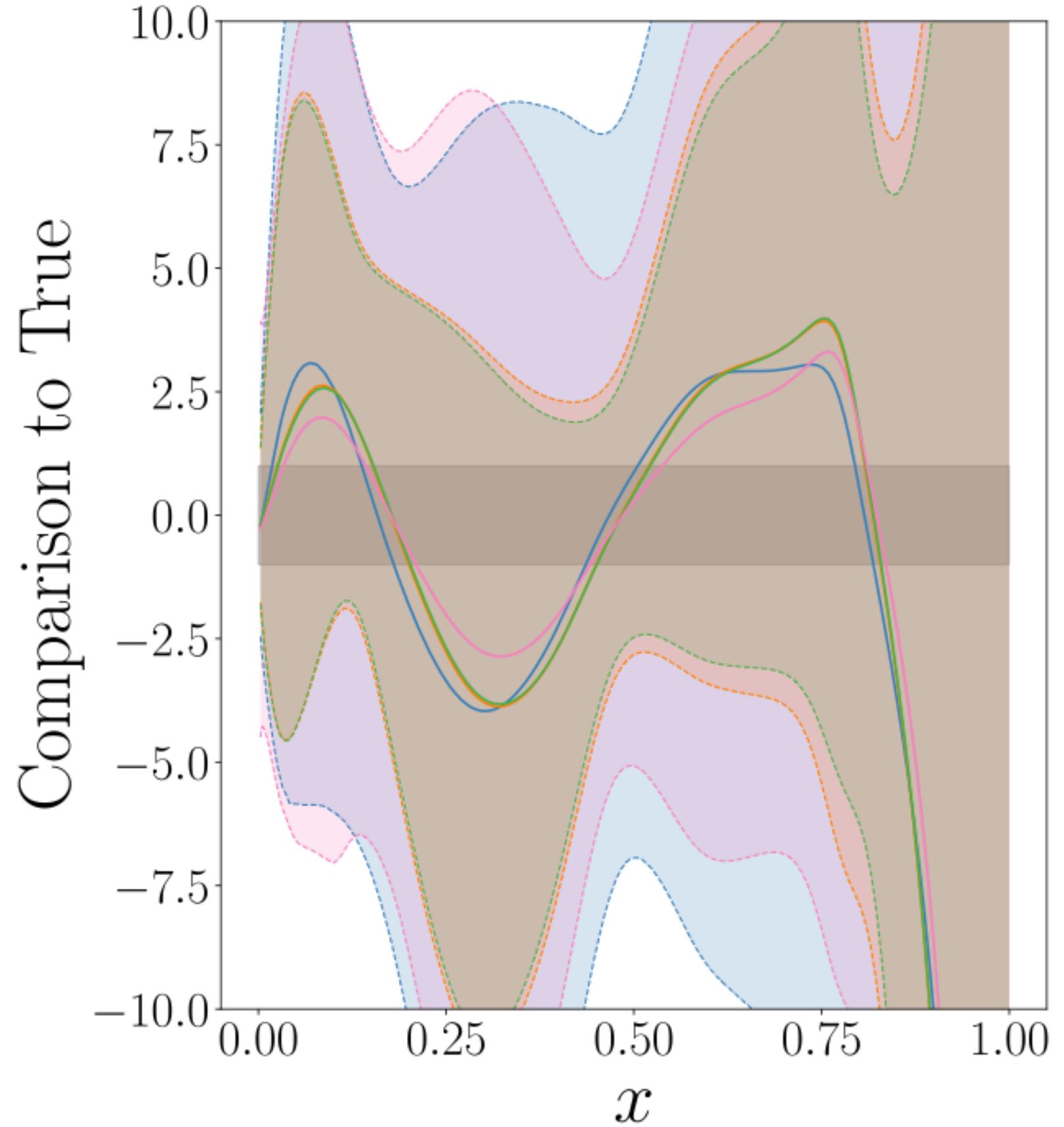


# 3<sup>rd</sup> Level of inference

## Results

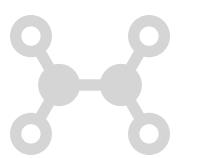


$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

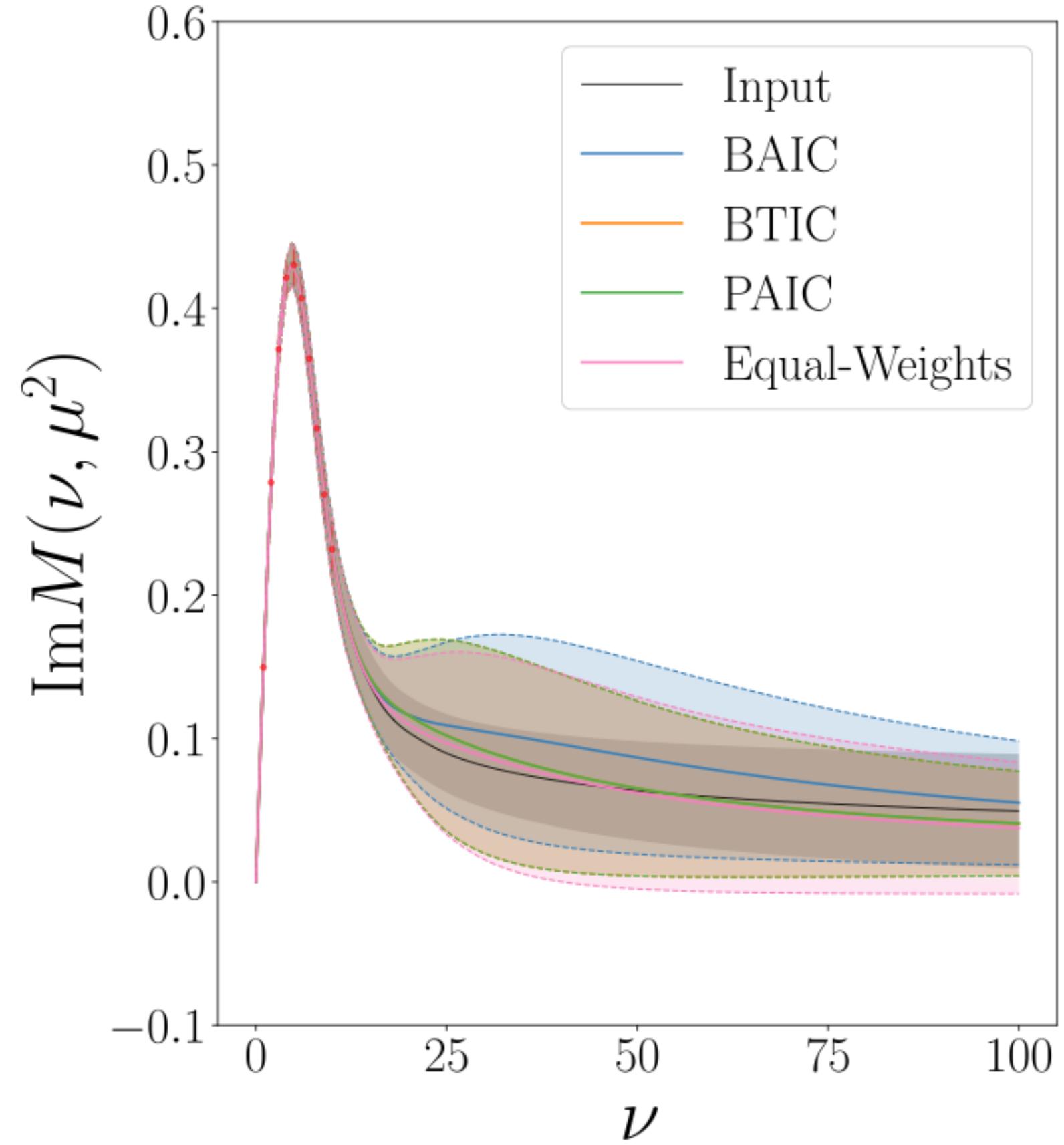
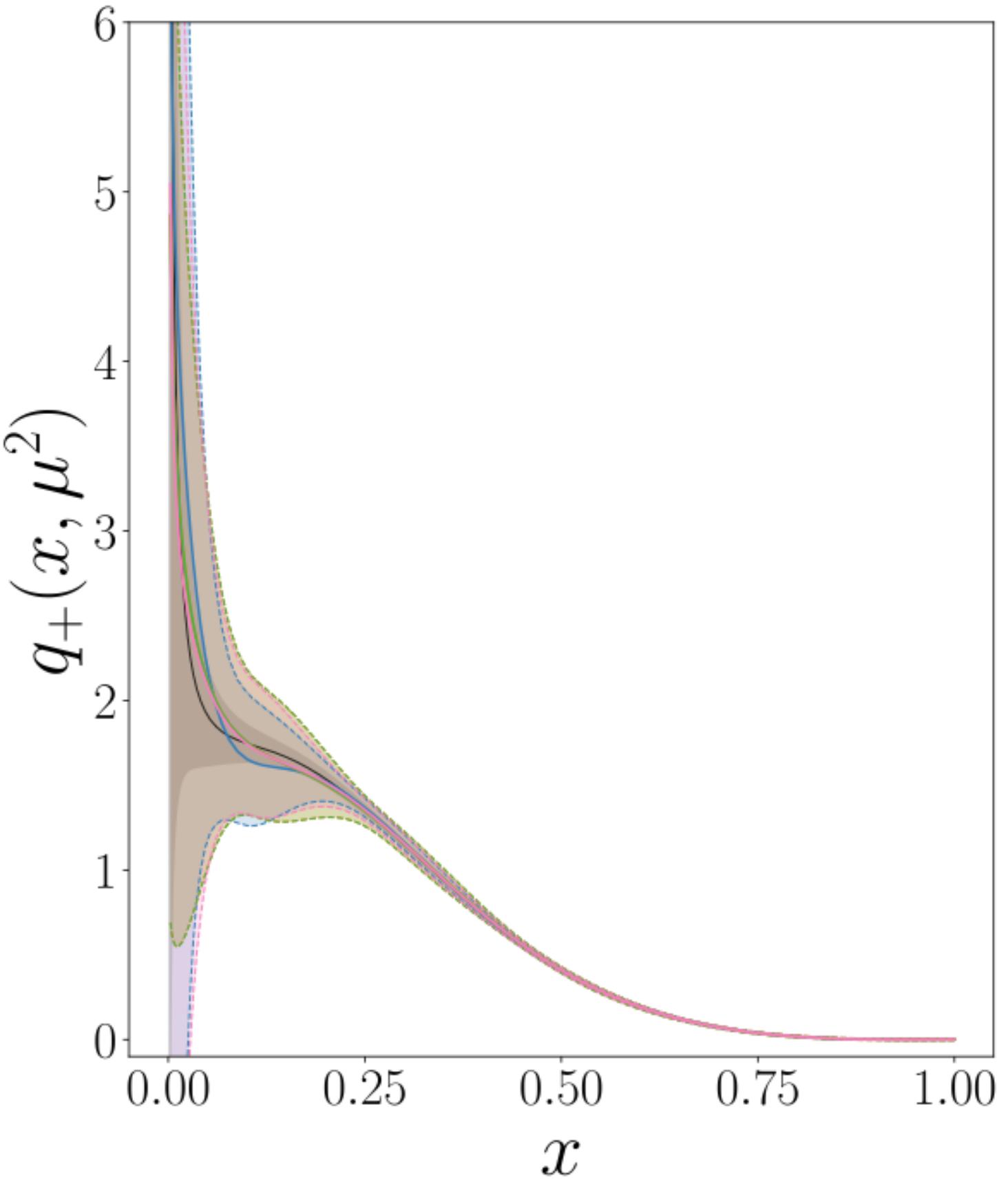
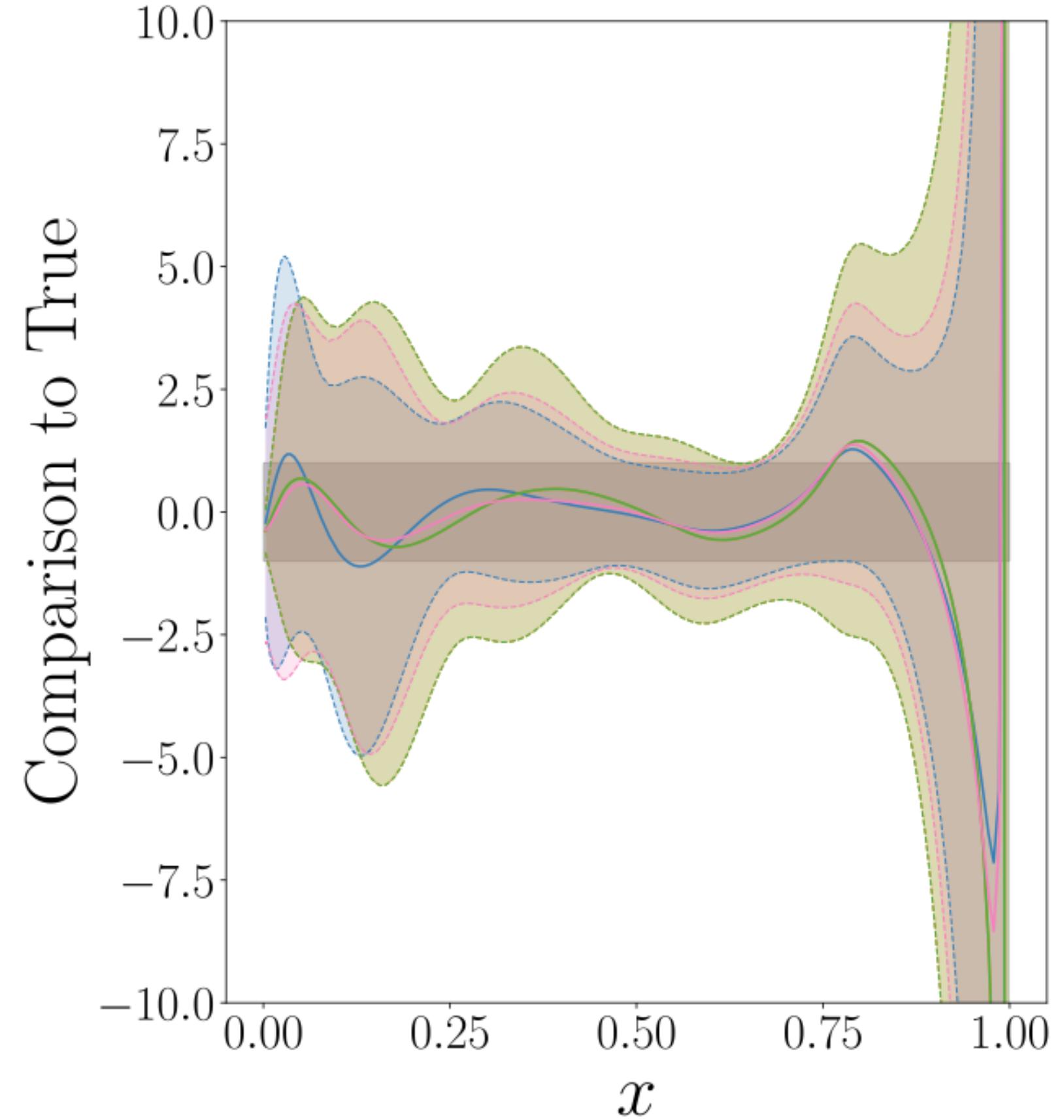


# 3<sup>rd</sup> Level of inference

## Results

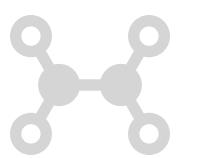


$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

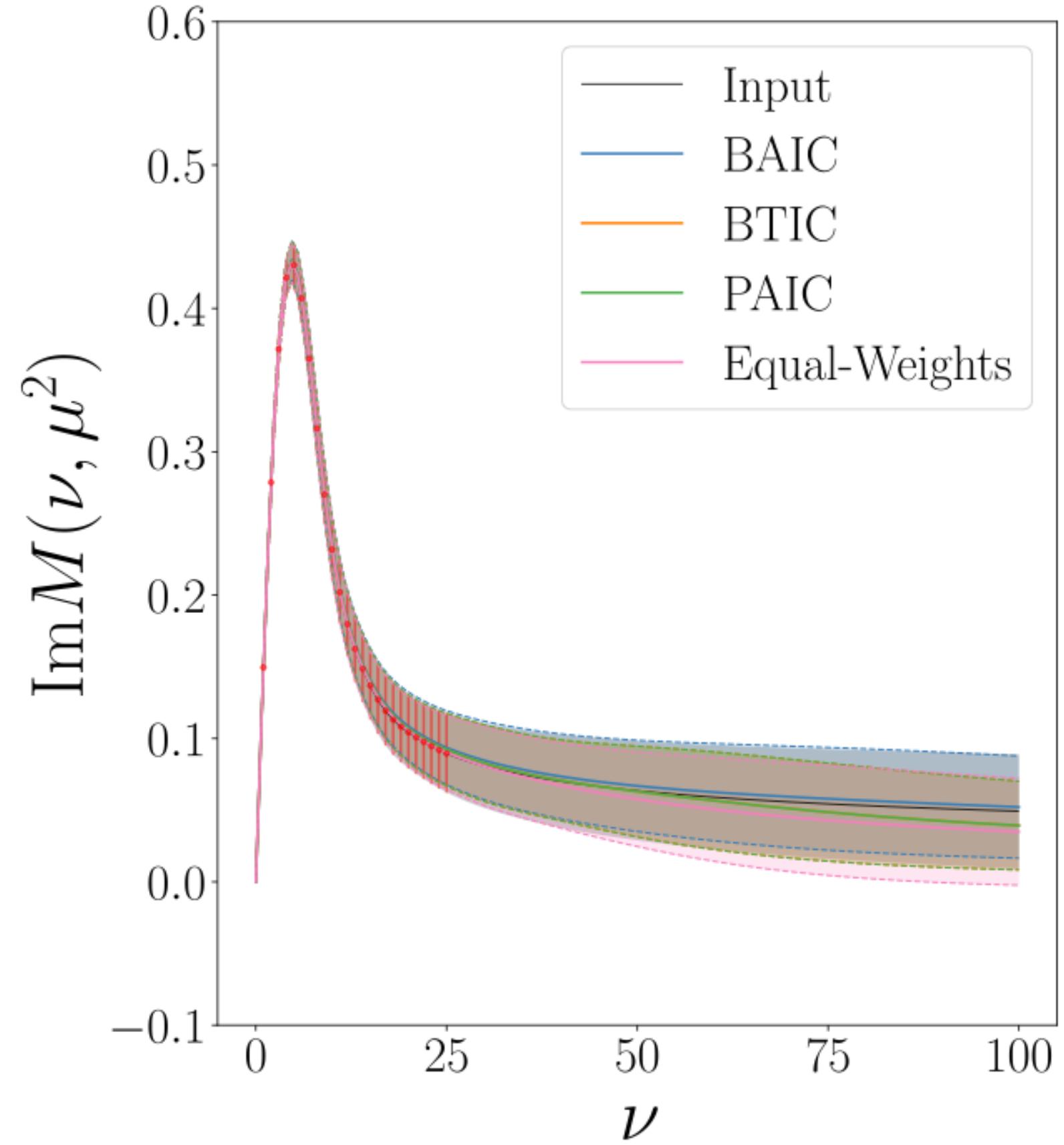
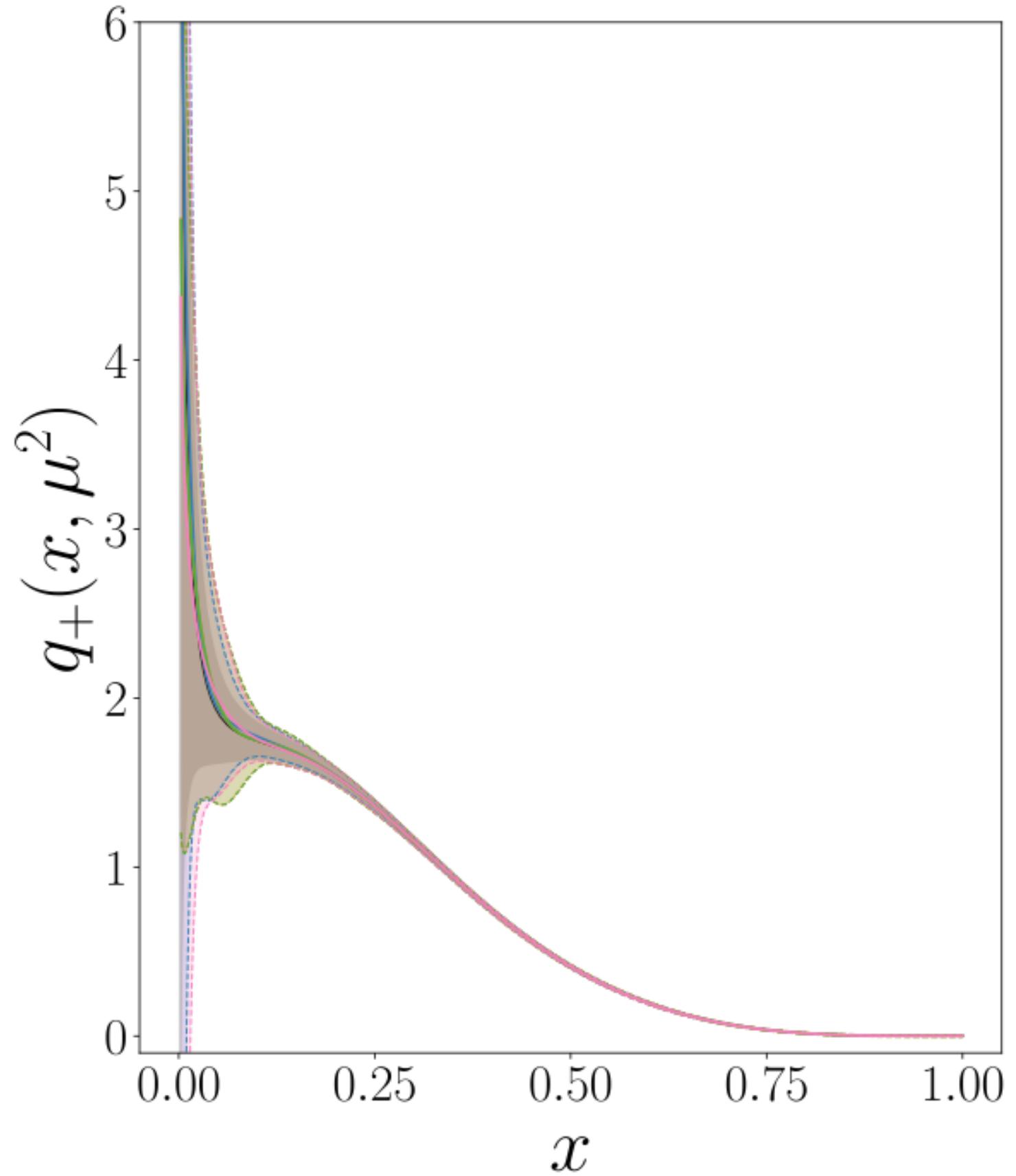
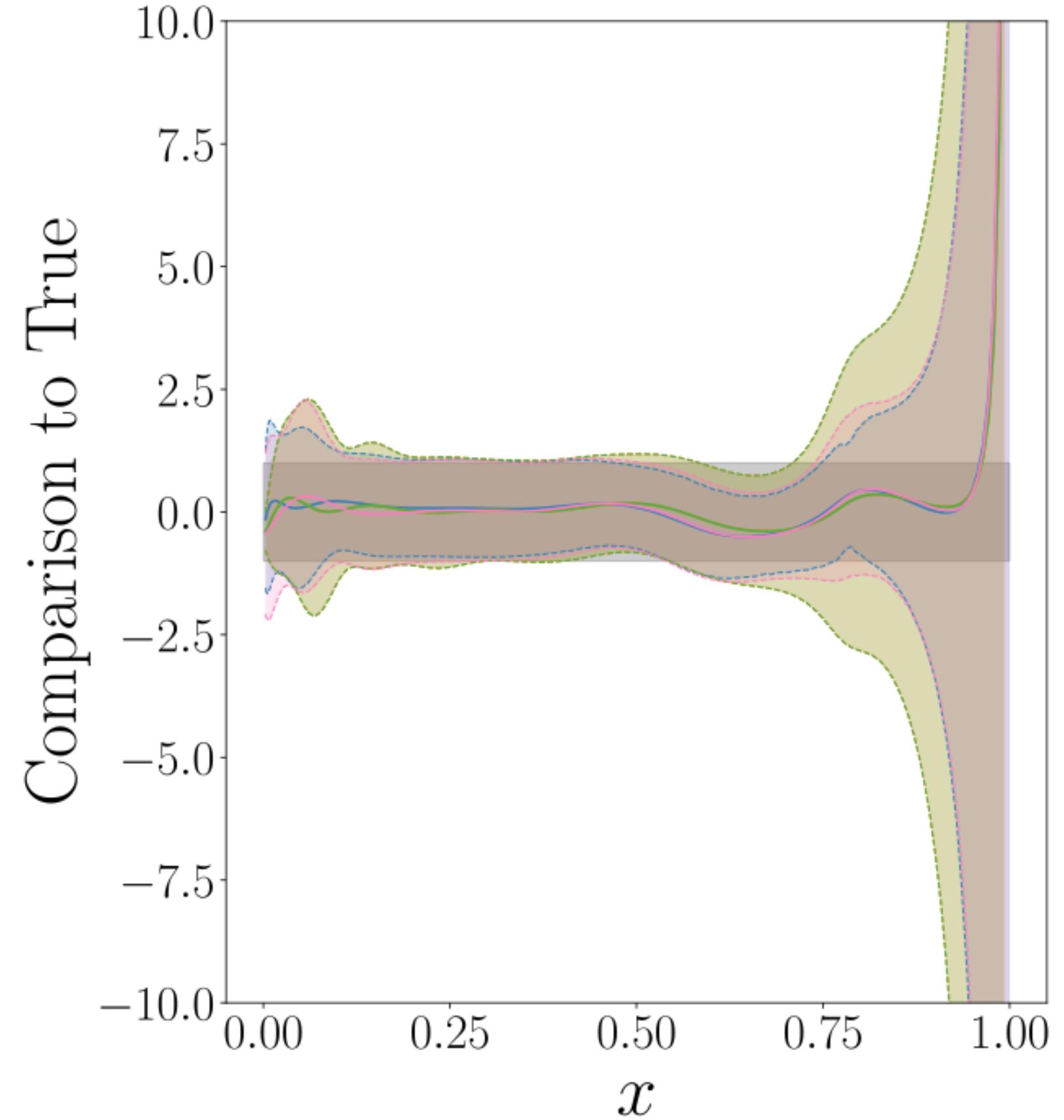


# 3<sup>rd</sup> Level of inference

## Results

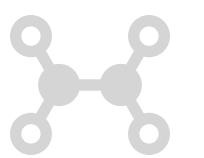


$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

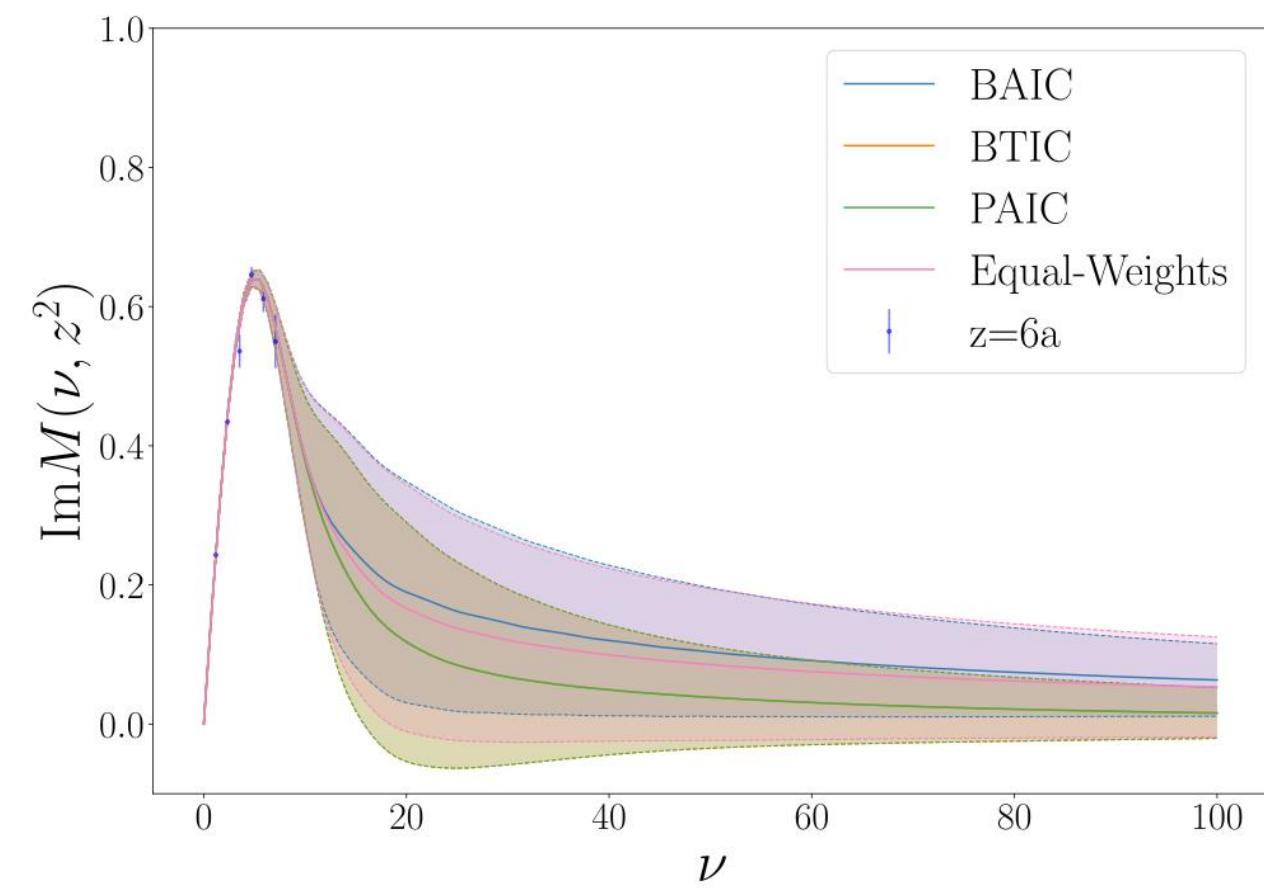
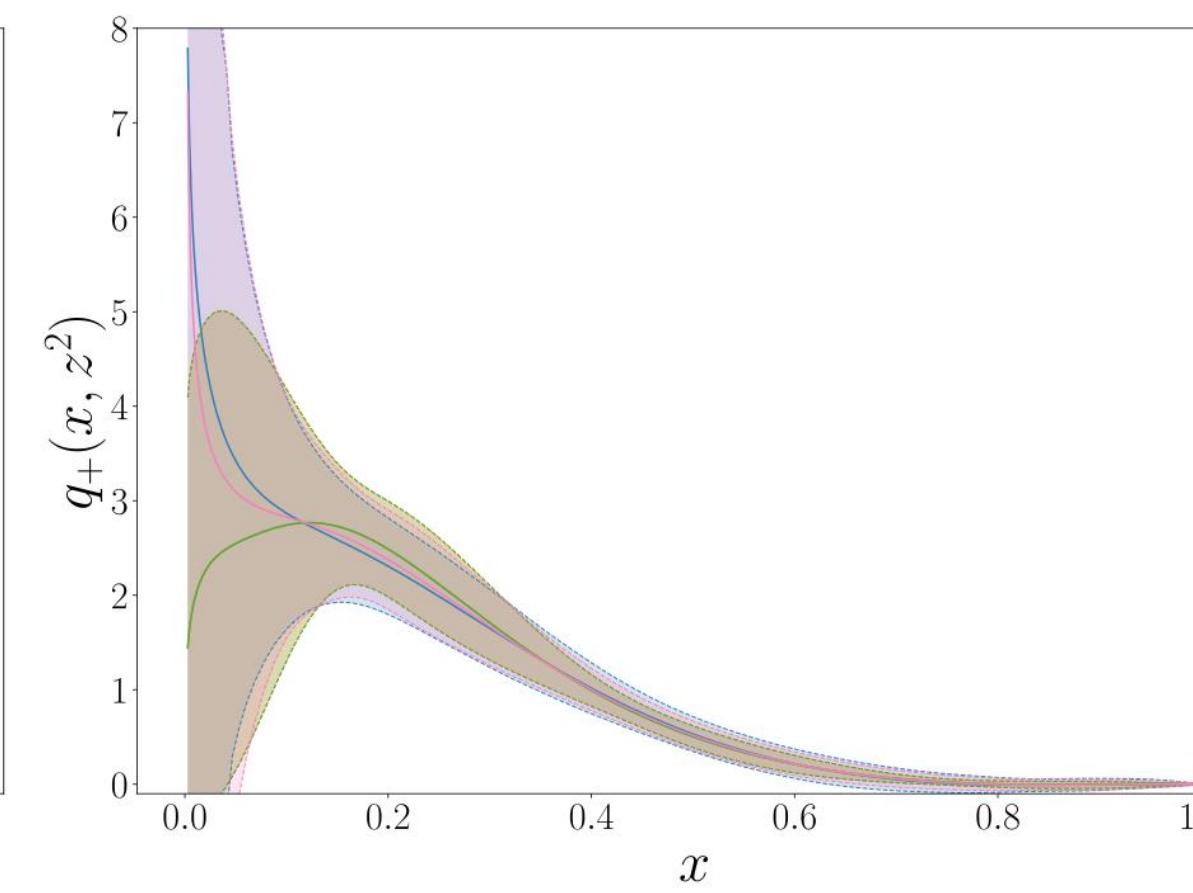
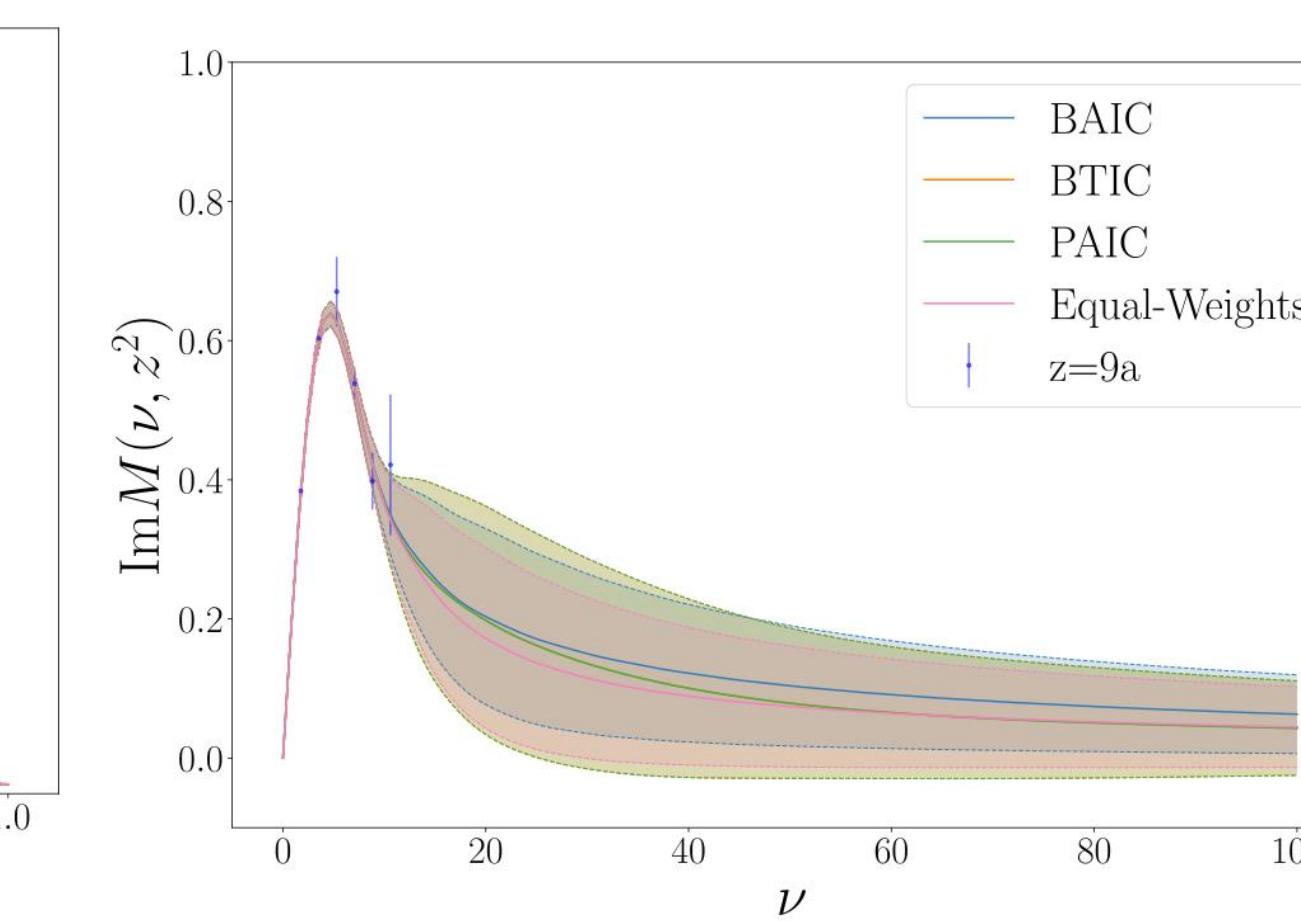
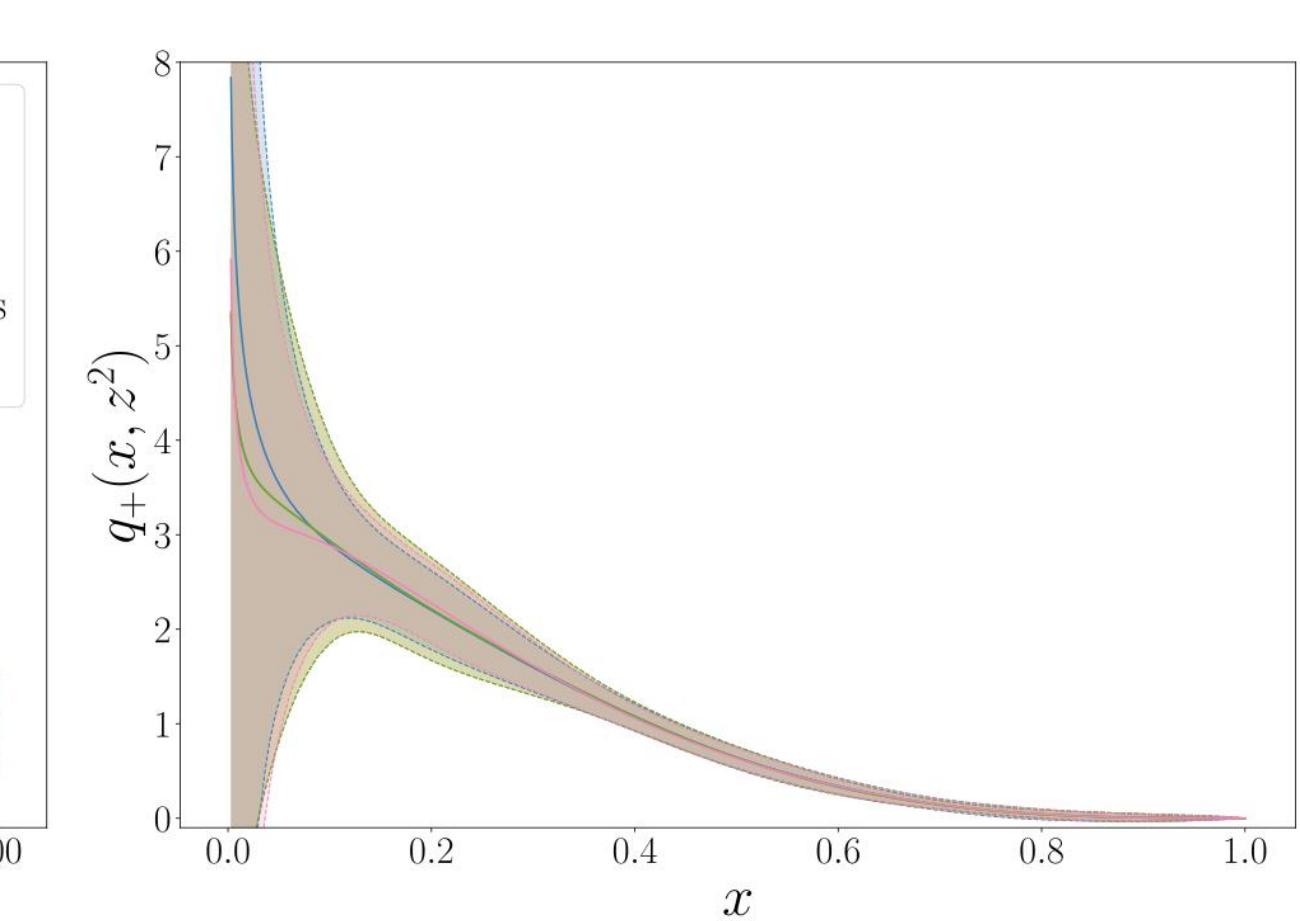
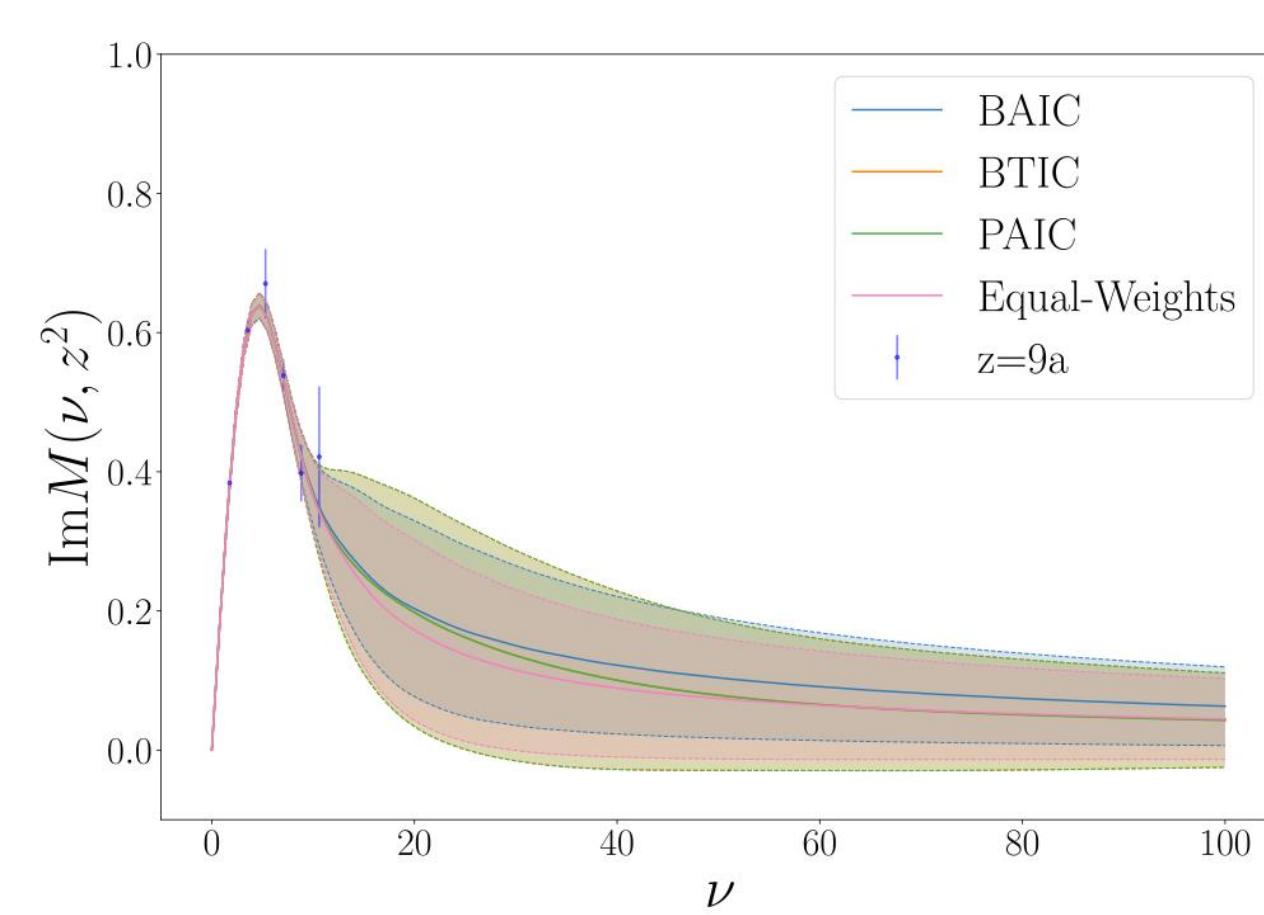
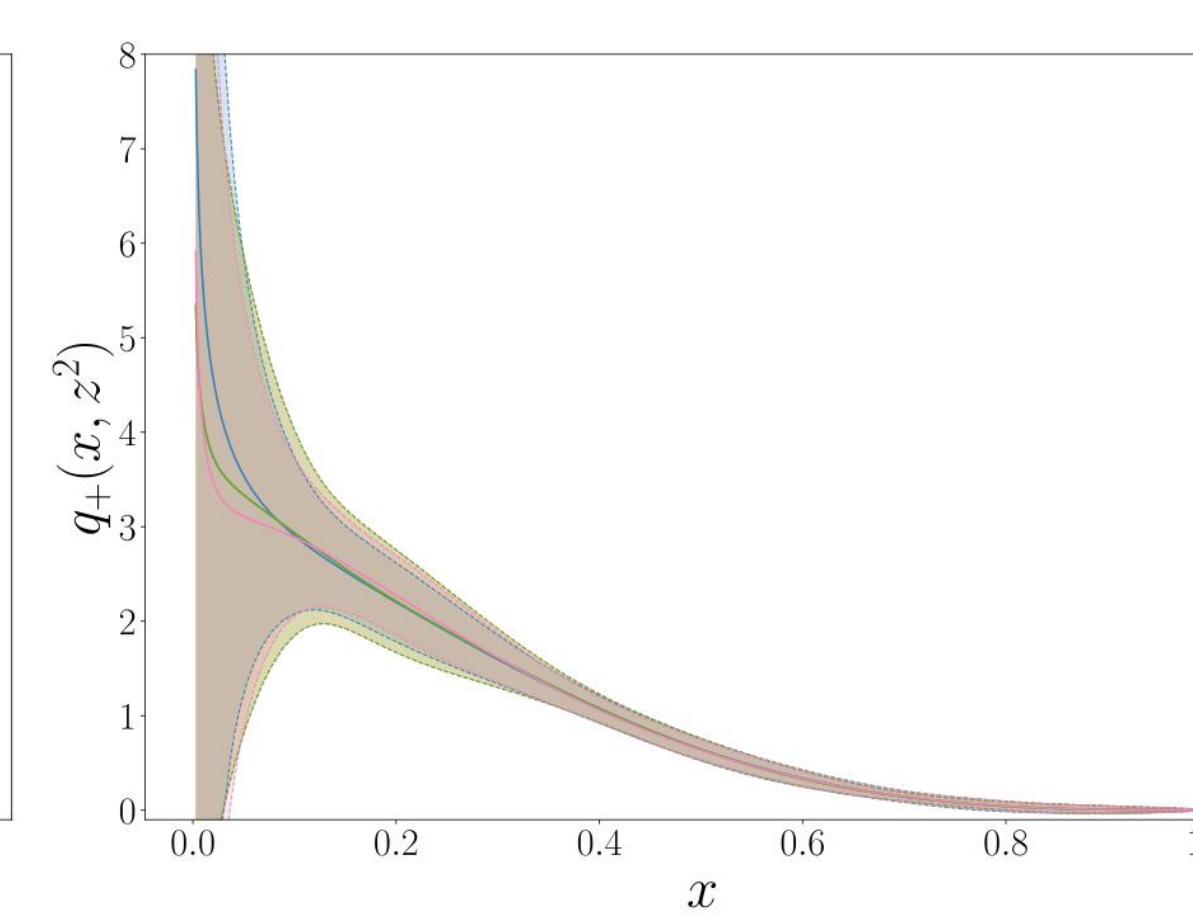
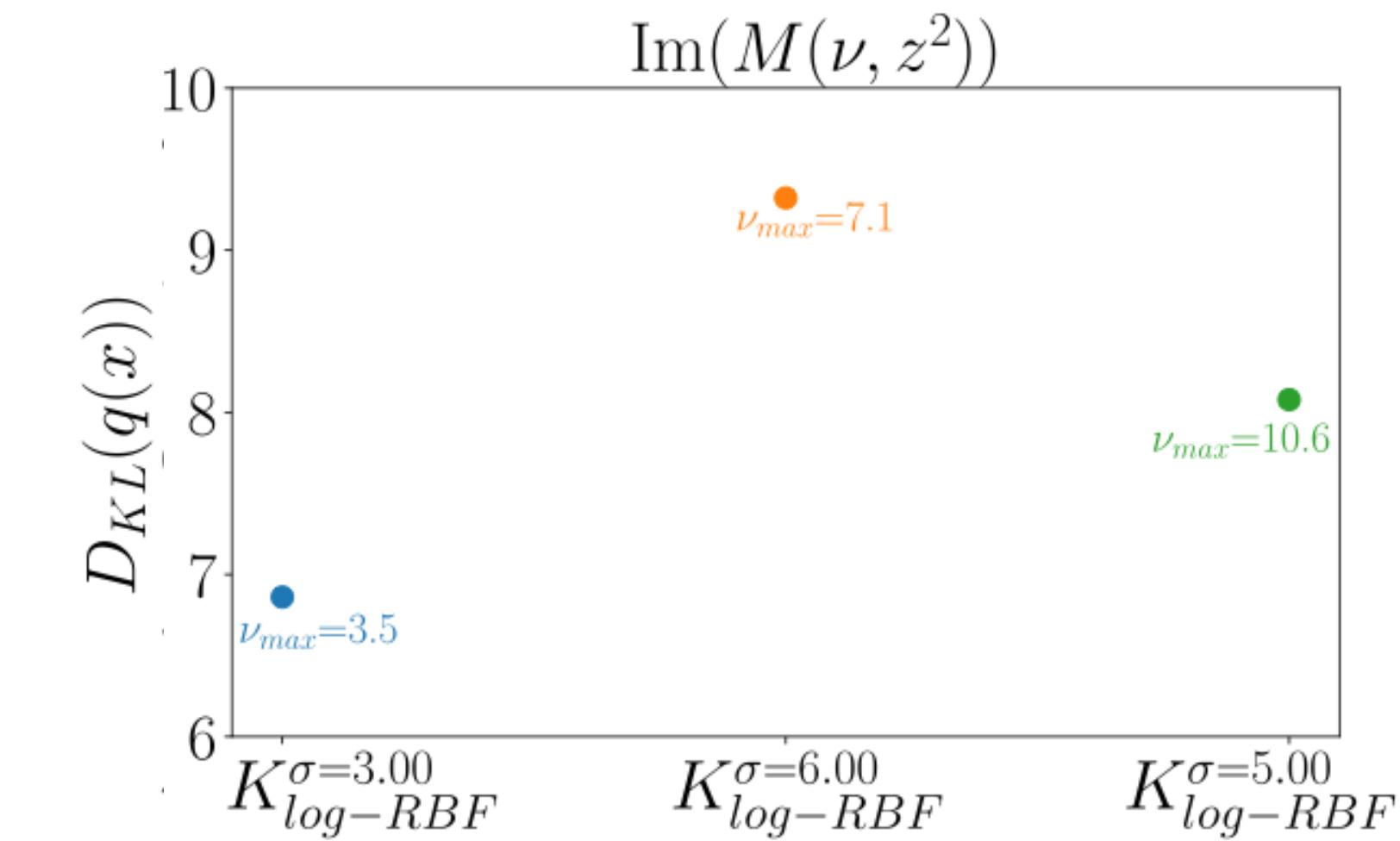


# 3<sup>rd</sup> Level of inference

Lattice data (6 data points)

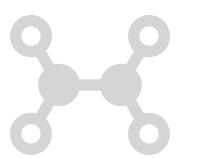


$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

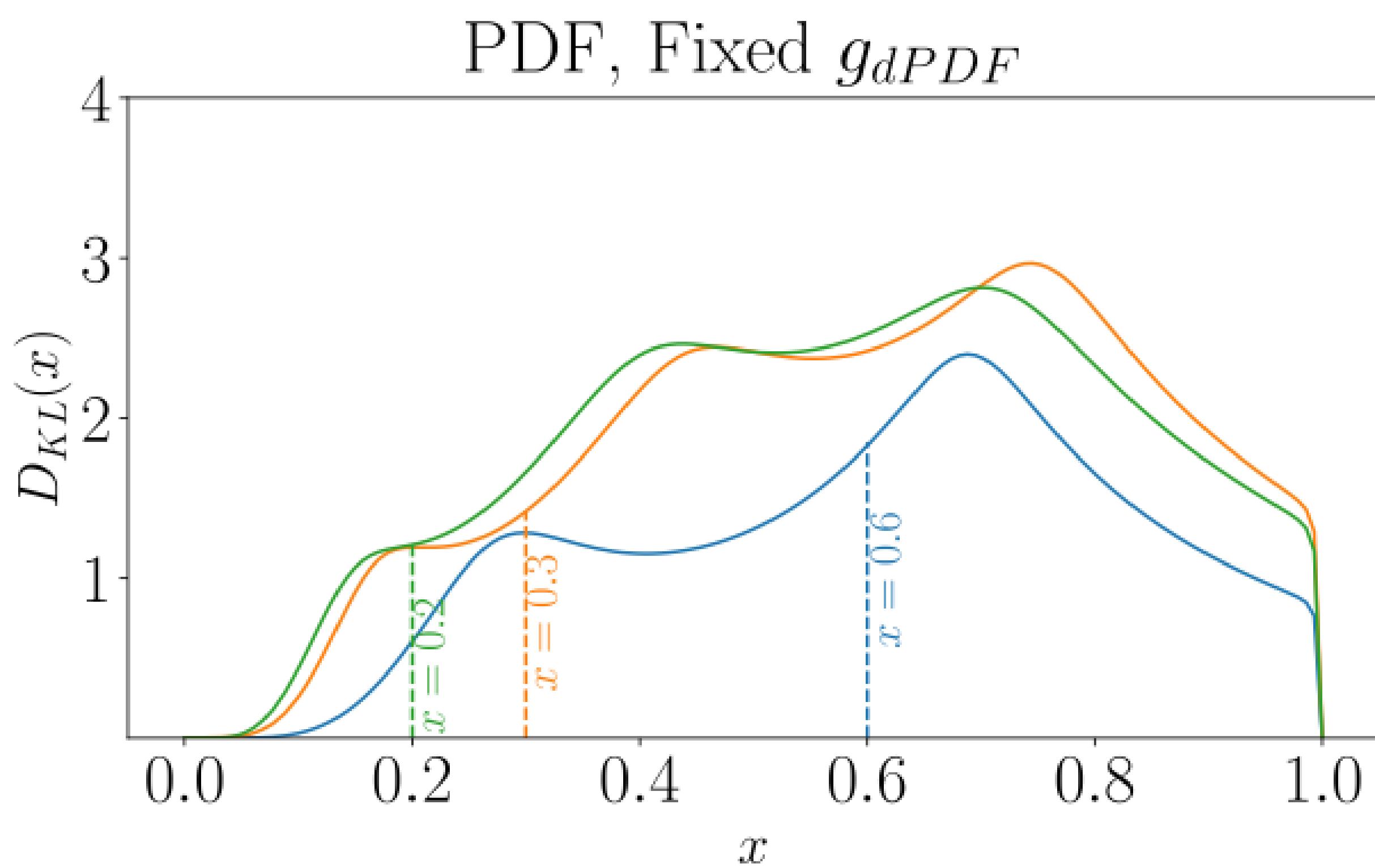
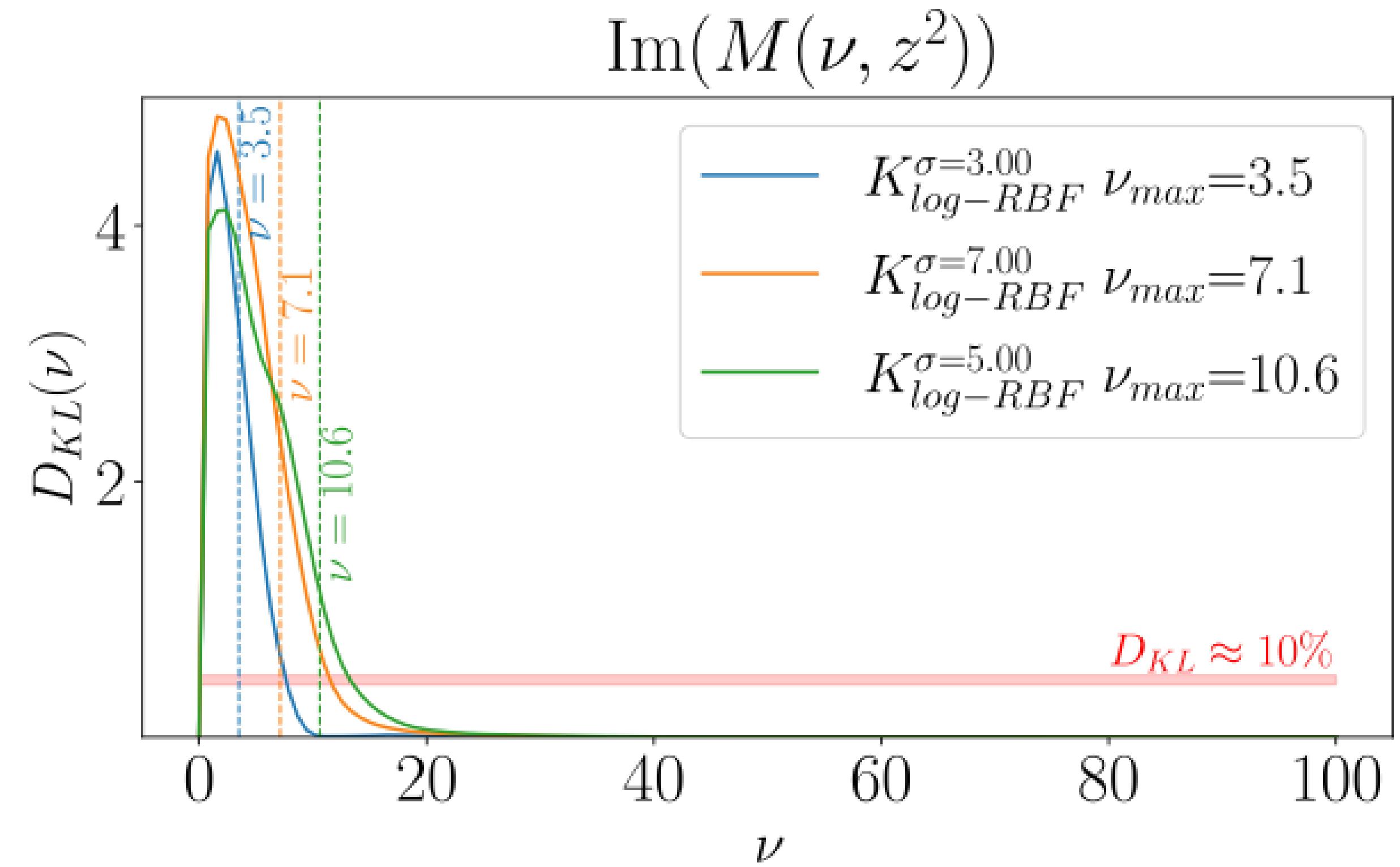


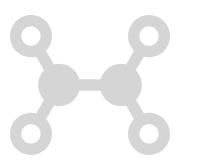
# 3<sup>rd</sup> Level of inference

## KL divergence



$$P(\mathcal{H}_i|M^l) = \frac{P(M^l|\mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$

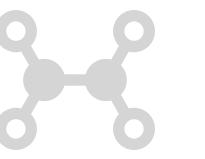




# Conclusions

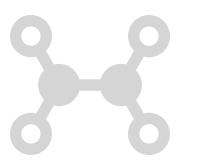
## Key points

- GP provides a systematic and flexible way to regulate the inverse problem
- Synthetic tests evaluate the reconstructed uncertainty bands.
- KL divergence shows information gained from synthetic and lattice data globally and locally.
- Results remain stable under changes in kernels, mean functions, and hyperparameters through model averaging.
- GPR reduces model bias and shows a transparent uncertainty quantification

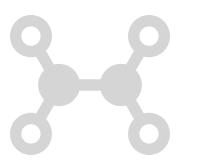


# Thanks!

[yacahuanamedra@wm.edu](mailto:yacahuanamedra@wm.edu)



# Back-up slides



# Kernels and Models

## Some equations...

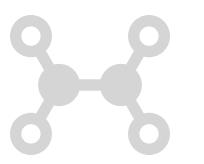
$$K_{f-\text{RBF}}(x, x'; \theta = \{\sigma, l^2\}) = \sigma \exp\left(-\frac{\|f(x) - f(x')\|^2}{2l^2}\right),$$

$$K_{plog-1}(x, x') = \sigma \sum_{n=1}^{\infty} (1-x)^n (1-x')^n = \sigma \frac{(1-x)(1-x')}{1 - (1-x)(1-x')}.$$

$$K_{plog-2}(x, x') = \sigma \sum_{n=1}^{\infty} \frac{(1-x)^n (1-x')^n}{n} = -\sigma \log(1 - (1-x)(1-x')).$$

$$\begin{aligned} K_{\text{combined}}\left(x, x'; \theta = \{\theta_1, \theta_2, s, x_0\}\right) &= \sigma(x; s, x_0) K_1\left(x, x'; \theta_1\right) \sigma(x'; s, x_0) + \\ &(1 - \sigma(x; s, x_0)) K_2\left(x, x'; \theta_2\right) (1 - \sigma(x'; s, x_0)) \end{aligned}$$

$$g_{\text{flat}}(x; \theta = \{N\}) = N \quad ; \quad g_{\text{PDF}}(x; \theta = \{N, \alpha, \beta\}) = N x^{\alpha} (1-x)^{\beta}$$



# Introduce Mellin moments

## Constraints in the 1st level

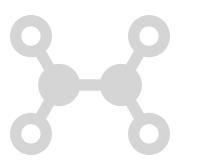
$$P_{const} = e^{-\frac{1}{2\lambda}(\int_0^1 dx q(x) - 1)^2 - \frac{1}{2\lambda_c}(\int_0^1 dx q(x) \delta(1-x))^2}$$

$$P_{Mellin} = P_{const} e^{-\frac{1}{2\lambda_n}(\int_0^1 dx q(x) x^{n-1} - b_n)^2}$$

In this case...  $b_n^{lattice} = b_n \pm \delta b_n$

$$\lambda_n = \frac{1}{\delta b_n}$$

The equivalence of data points in the x space has been already implemented before, we just have to generalize it.



# 1st level of inference

## Important results

$$P(q(x)|M^l, \theta, \mathcal{H}) = \frac{P(M^l|q(x), \theta, \mathcal{H})P(q(x)|\theta, \mathcal{H})}{P(M^l|\theta, \mathcal{H})}$$

$$\bar{q}(x; \theta) = \int q(x)P(q(x)|M^l, \theta, \mathcal{H})D[q(x)]$$

Mean of the Posterior

$$\bar{q}(x; \theta) = q_{PDF}(x) + K \cdot B^\perp [C + BKB^\perp] (M^l - B^l \cdot q_{PDF})$$

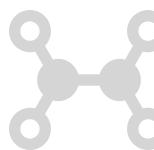
$$\overline{q(x)q(x')} = \int q(x)q(x')P(q(x)|M^l, \theta, \mathcal{H})D[q(x)]$$

Covariance of the Posterior

$$H(\theta) \equiv \overline{q(x)q(x')} = K(x, x') - KB^\perp [C + BKB^\perp]^{-1} BK$$

Effective evidence

$$E(\theta) \equiv -\log(P(M^l|\theta, \mathcal{H})) = \frac{1}{2} (M_i - Bq_{PDF})^\perp (C + BKB^\perp)^{-1} (M_i - Bq_{PDF}) + \frac{1}{2} \log[\det(C + BKB^\perp)] + \frac{N_x}{2} \log(2\pi)$$



# 2nd level of inference

## Kernel and Mean functions

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

Where does this hyperparameter come from?

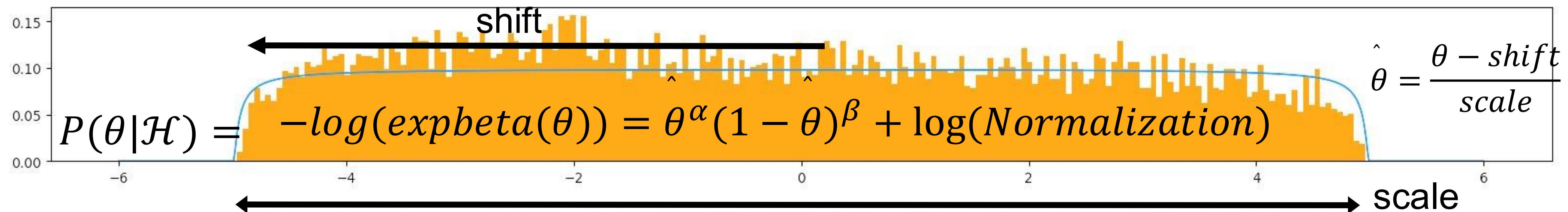
$$q_{PDF}(x) = Nx^\alpha(1-x)^\beta$$

+

$$K_{rbf}(x, x') = \sigma^2 e^{-\frac{|x-x'|^2}{2l^2}} \rightarrow \theta = \{N, \alpha, \beta, \sigma, l\}$$

How should we define the prior?

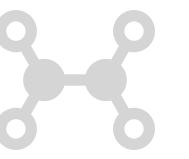
$$P(\theta|\mathcal{H}) = \{Normal(\theta), lognormal(\theta), expbeta(\theta)\}$$



We use HMC/Important Sampling to obtain the posterior

$$P(M^l|\mathcal{H}) = \int d\theta P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})$$

No functional variables anymore, we have to integrate over hyperparameters.



# 2nd level of inference

## Important results

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

Mean of the Posterior

$$\langle q(x) \rangle = \int P(\theta|M^l, \mathcal{H})\bar{q}(x; \theta)d\theta \quad \langle q(x) \rangle = \frac{\int e^{-E(\theta)}\bar{q}(x; \theta)d\theta}{\int e^{-E(\theta)}d\theta}$$

Covariance of the Posterior

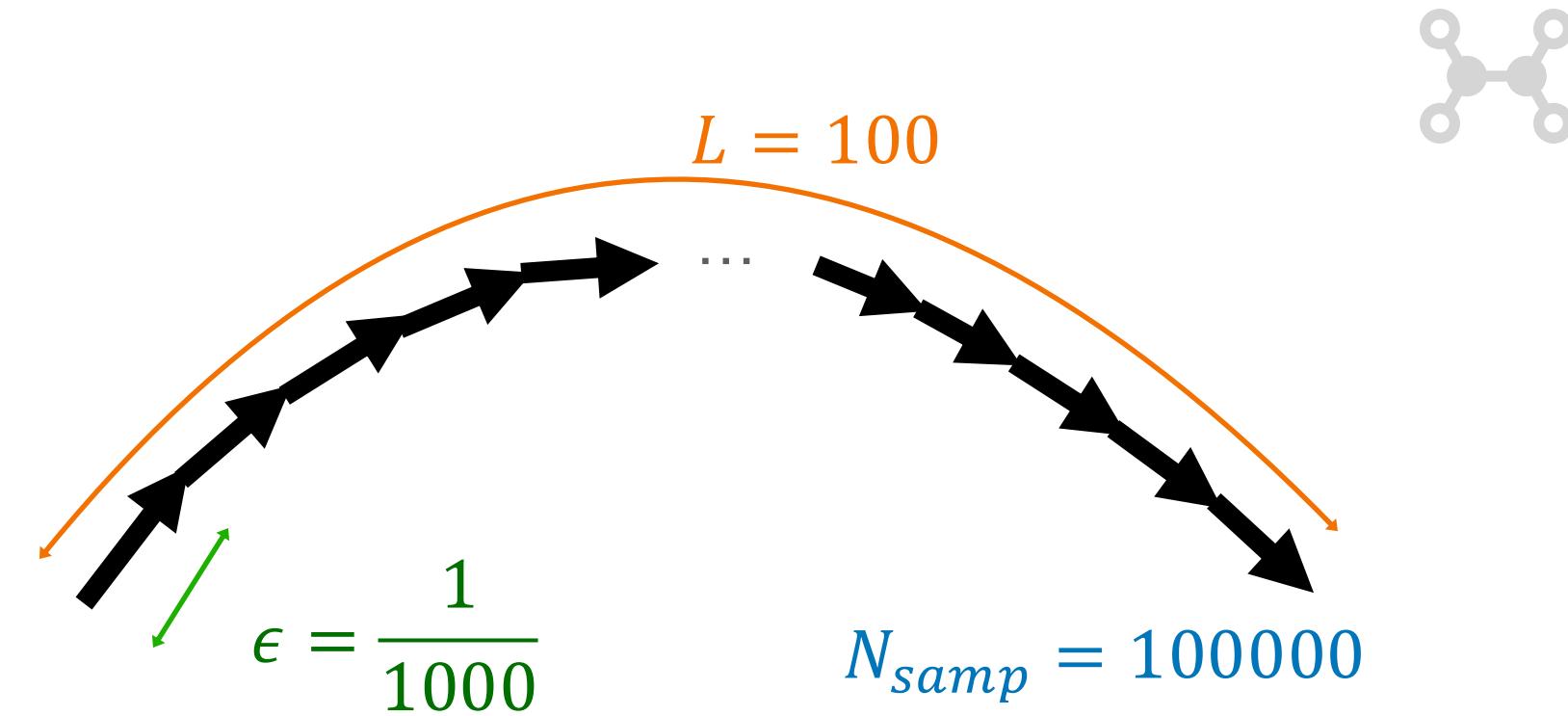
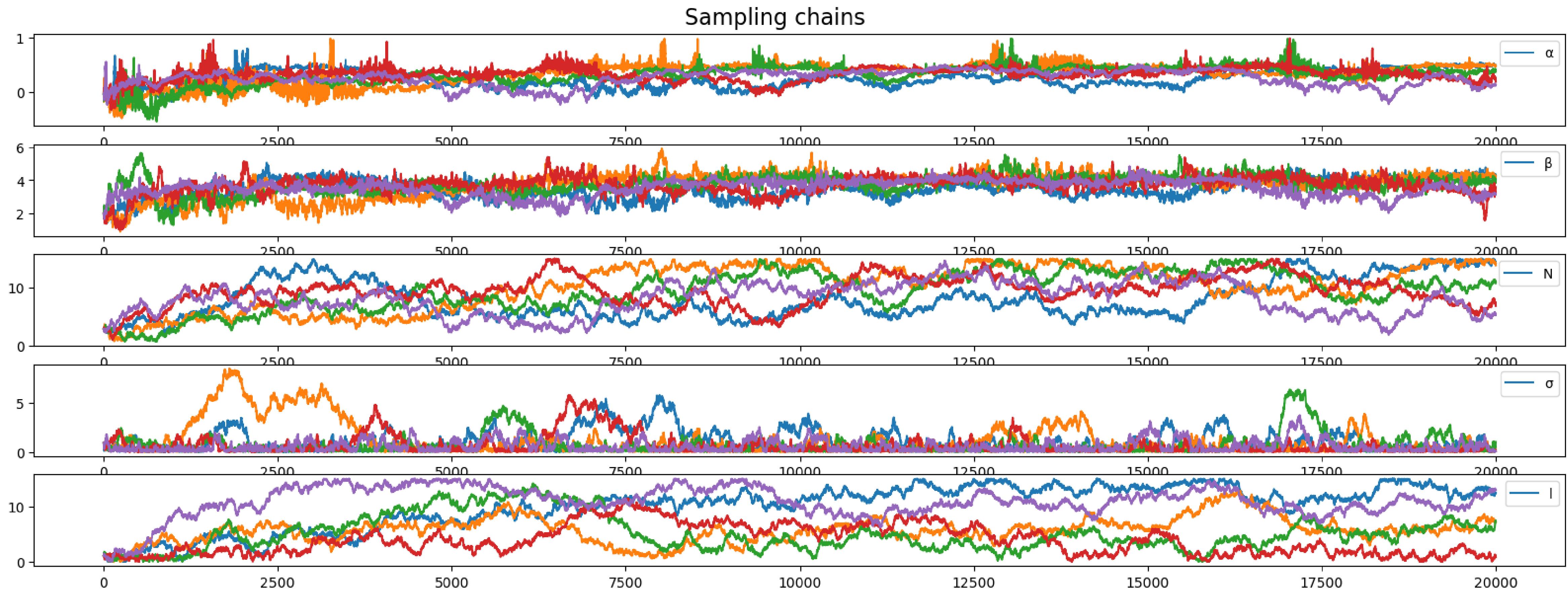
$$\langle q(x)q(x) \rangle \equiv \int (\bar{q}(x; \theta) - \langle q(x) \rangle)^2 P(\theta|M^l, \mathcal{H})d\theta$$

$$\langle q(x)q(x) \rangle = \frac{\int e^{-E(\theta)}[H(\theta) + (\bar{q}(x; \theta) - \langle q(x) \rangle)^2]P(\theta|\mathcal{H})d\theta}{\int e^{-E(\theta)}P(\theta|\mathcal{H})d\theta}$$

# Hybrid Monte Carlo

## Kernel and Mean functions

How does hyper parameters sampling looks like?





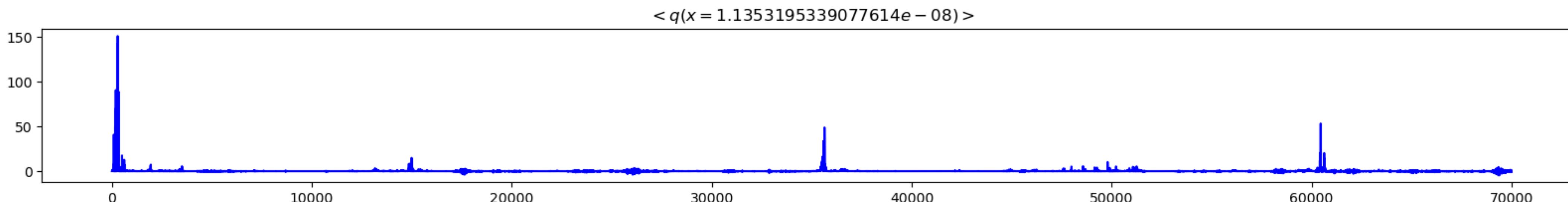
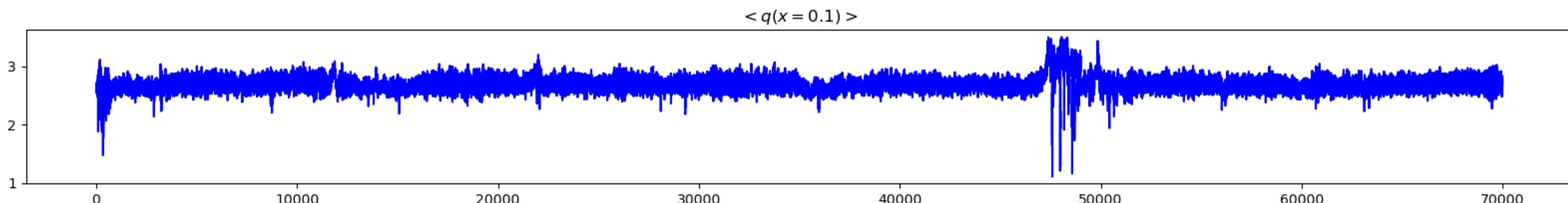
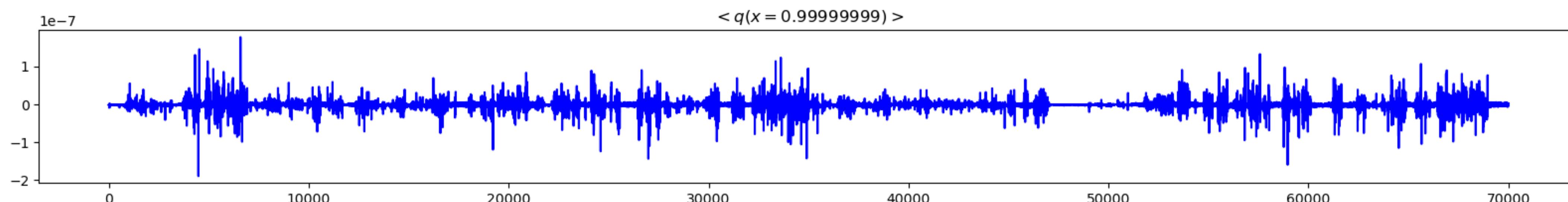
# HMC observables

## Kernel and Mean functions

How does  $\langle q(x) \rangle$ ,  $\langle q(x)q(x') \rangle$  sampling looks like

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

$$\langle q(x) \rangle \int d\theta P(\theta|M^l, \mathcal{H})\bar{q}(x)$$



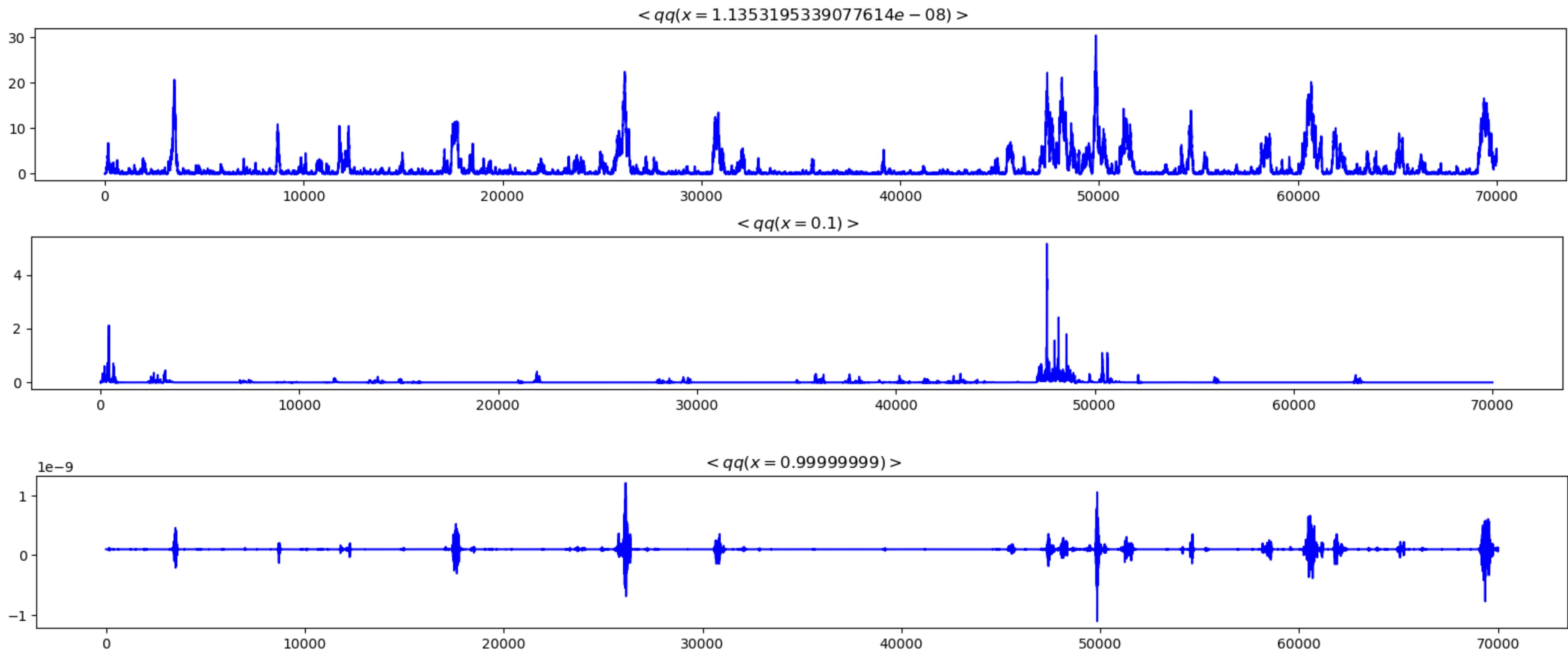


# HMC observables

## Kernel and Mean functions

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

How does  $\langle q(x) \rangle$ ,  $\langle q(x)q(x') \rangle$  sampling looks like?



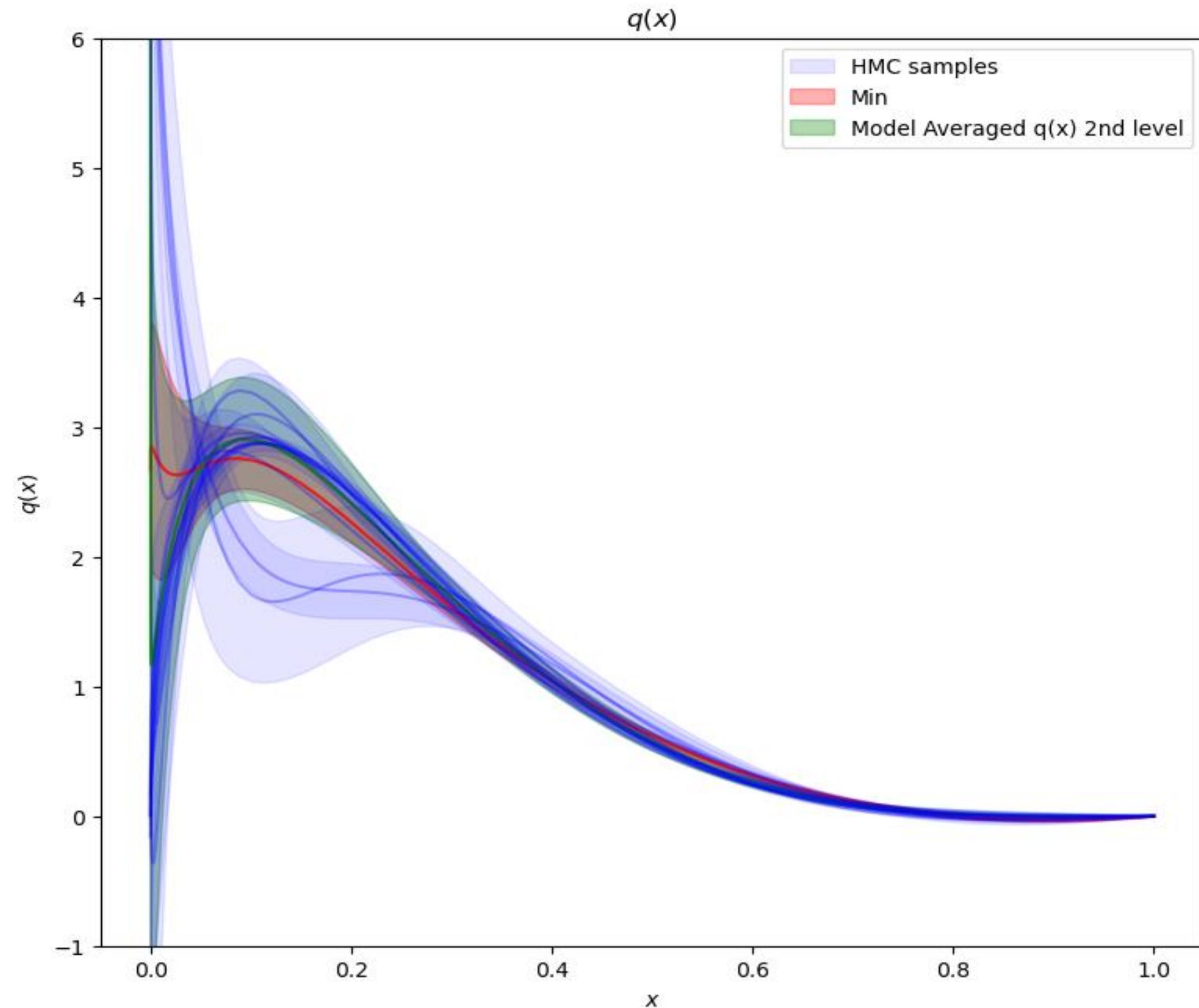
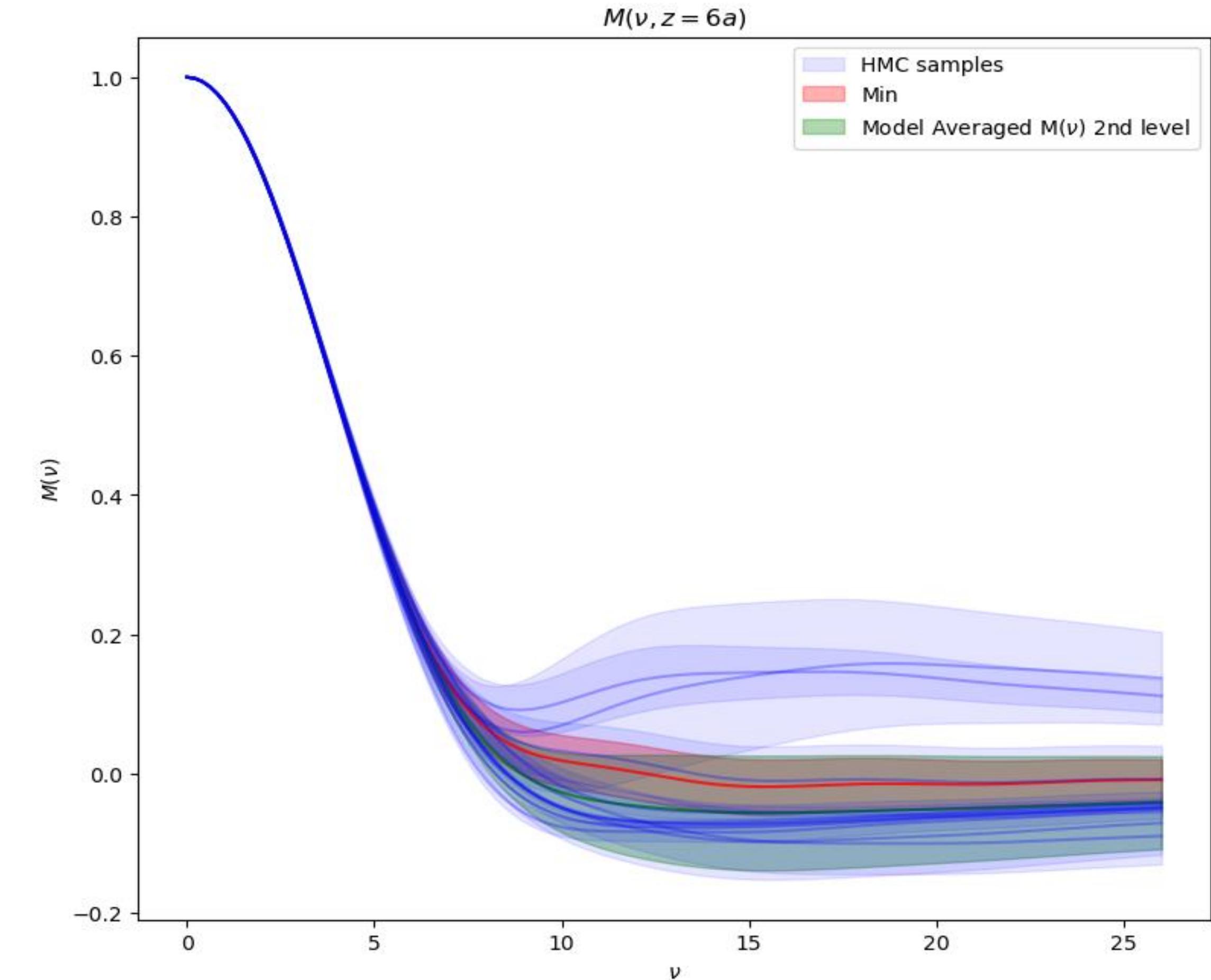


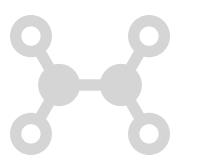
# 2nd level of inference

## Model averaged results

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

How does  $\langle q(x) \rangle$ ,  $\langle q(x)q(x') \rangle$  sampling looks like?





# 3rd level of inference

## Important results

$$P(\mathcal{H}_i | M^l) = \frac{P(M^l | \mathcal{H}_i) P(\mathcal{H}_i)}{P(M^l)}$$

$$q(x) \equiv \sum_i^{models} P(\mathcal{H}_i | M^l) \langle q(x) \rangle_i$$

Mean of the Posterior

$$q(x) = \frac{\sum_i^{models} e^{\frac{\Delta IC}{2}} \langle q(x) \rangle_i}{\sum_i^{models} e^{\frac{\Delta IC}{2}}}$$

Covariance of the Posterior

$$q(x)q(x) \equiv \sum P(\mathcal{H}_i | M^l) [\langle q(x) \rangle_i - q(x)]^2$$

$$q(x)q(x) \equiv \frac{\sum_i^{models} e^{\frac{\Delta IC}{2}} [\langle q(x)q(x) \rangle_i + (\langle q(x) \rangle_i - q(x))^2]}{\sum_i^{models} e^{\frac{\Delta IC}{2}}}$$

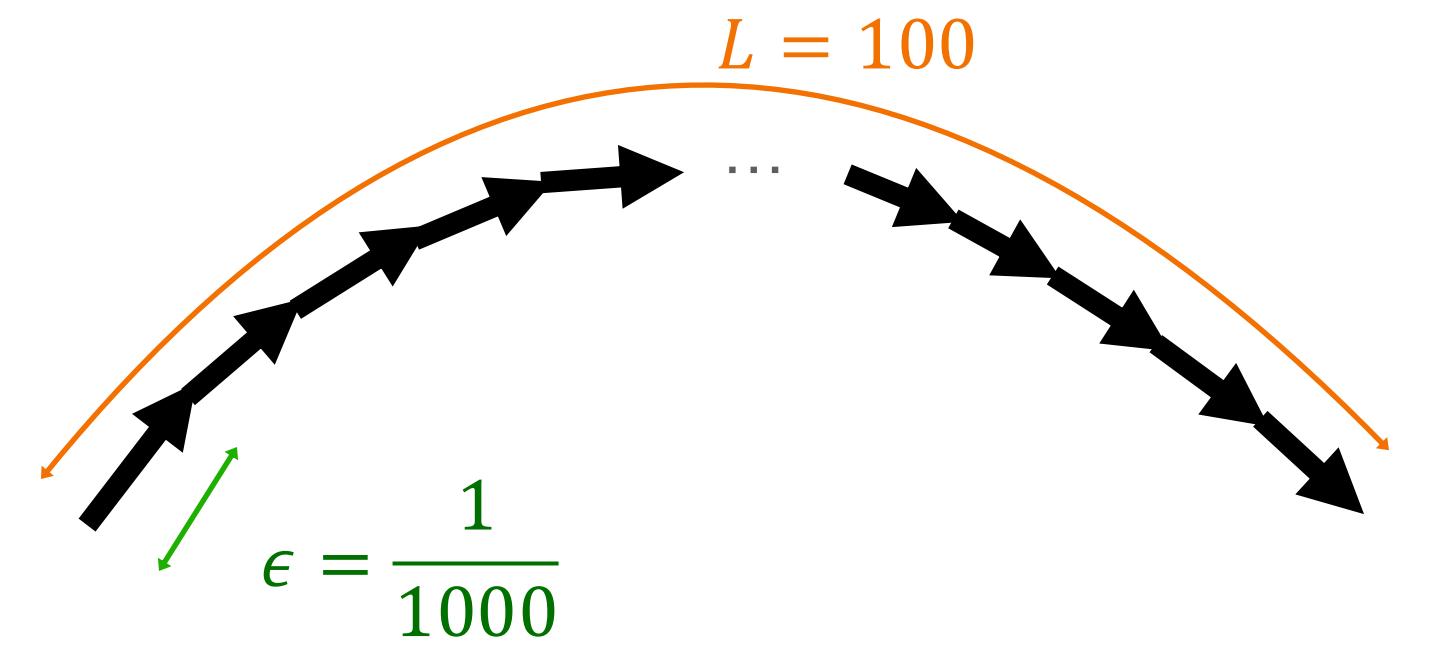
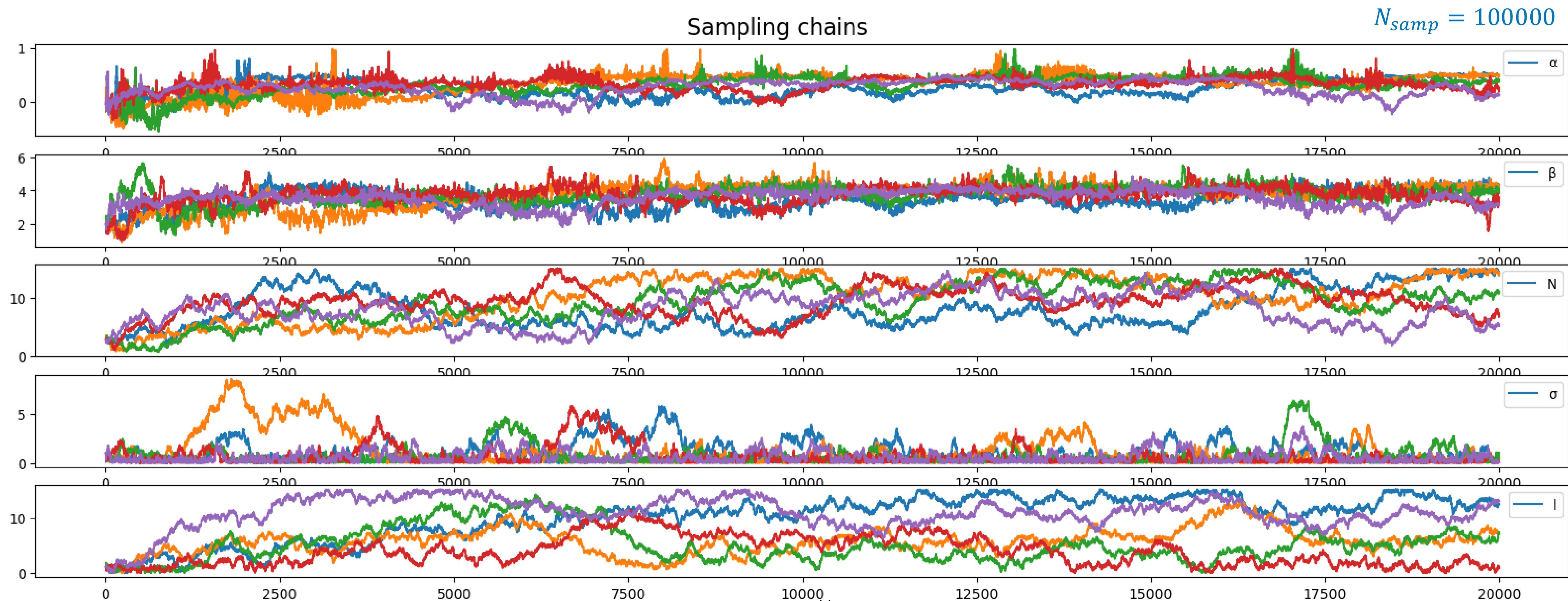


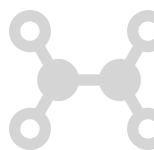
# Hybrid Monte Carlo

## Sampling procedure

Skip 20 trajectories, 12 hours  
(5 independent chains) —>

$$\tau \approx 100 - 500$$



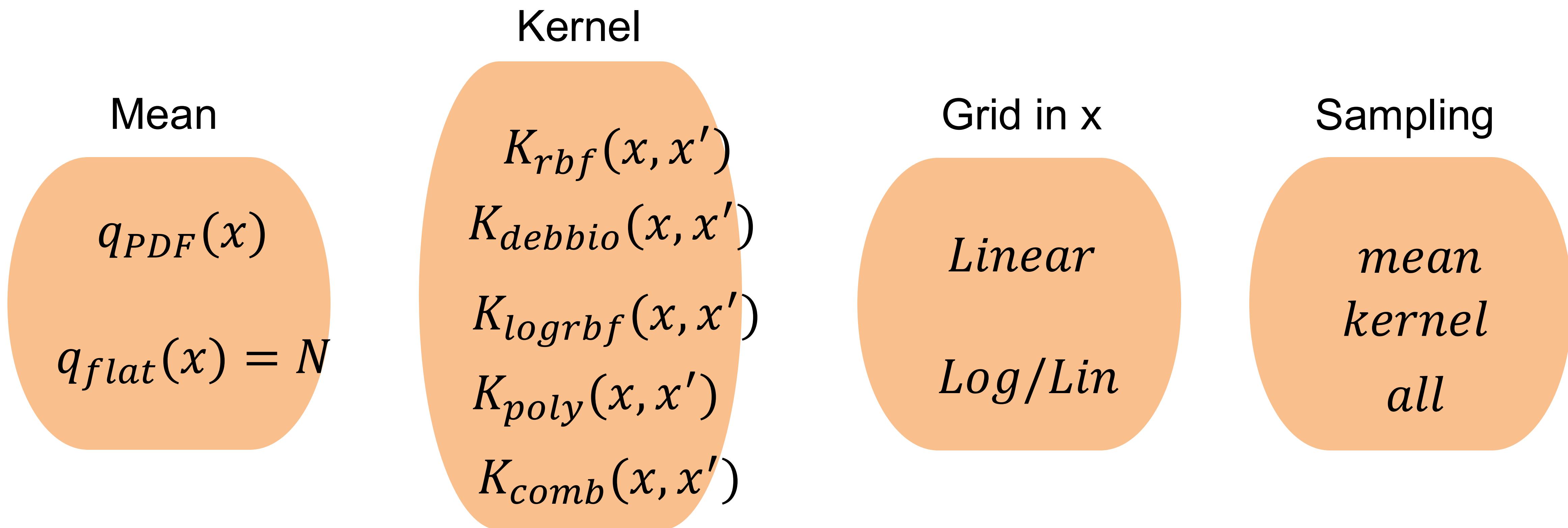


# 3rd level of inference

## Counting Models

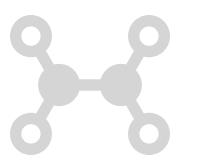
How many models do we actually explore?

$$P(\mathcal{H}_i | M^l) = \frac{P(M^l | \mathcal{H}_i)P(\mathcal{H}_i)}{P(M^l)}$$



About 20-30 models, and we give equal prior factors

$$P(\mathcal{H}_i) = \frac{1}{N_{Models}}$$



# Bayesian approach

## Bayes' Theorem (not that easy)

- How can we work with multiple conditions?

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B, C, D) = ?$$

$$P(A|B, C) = ?$$

- For now we can work with 2 conditions instead of 3

$$P(A, B|C) = P(A|B, C)P(B|C)$$

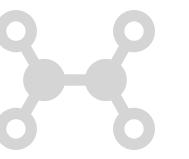
Textbook property

$$P(A, B) = P(B, A)$$

$$P(A|B, C) = \frac{P(A, B|C)}{P(B|C)} = \frac{P(B, A|C)}{P(B|C)} = \frac{P(B|A, C)P(A|C)}{P(B|C)}$$

$$C \rightarrow C, D$$

$$P(A|B, C, D) = \frac{P(B|A, C, D)P(A|C, D)}{P(B|C, D)}$$



# 2nd level of inference

## Important results

$$P(\theta|M^l, \mathcal{H}) = \frac{P(M^l|\theta, \mathcal{H})P(\theta|\mathcal{H})}{P(M^l|\mathcal{H})}$$

Mean of the Posterior

$$\langle q(x) \rangle = \int P(\theta|M^l, \mathcal{H})\bar{q}(x; \theta)d\theta \quad \langle q(x) \rangle = \frac{\int e^{-E(\theta)}\bar{q}(x; \theta)d\theta}{\int e^{-E(\theta)}d\theta}$$

Covariance of the Posterior

$$\langle (\bar{q}(x; \theta) - \langle q(x) \rangle)^2 \rangle = \int (\bar{q}(x; \theta) - \langle q(x) \rangle)^2 P(\theta|M^l, \mathcal{H})d\theta$$

$$\langle (\bar{q}(x; \theta) - \langle q(x) \rangle)^2 \rangle = \frac{\int e^{-E(\theta)}(\bar{q}(x; \theta) - \langle q(x) \rangle)^2 P(\theta|\mathcal{H})d\theta}{\int e^{-E(\theta)}P(\theta|\mathcal{H})d\theta}$$