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Introduction

Non-Hermitian Dirac fermions: A general principle of construction
Strongly-coupled non-Hermitian Dirac semimetal: Yukawa-Lorentz symmetry
Tilted NH Dirac semimetals

Observables detecting non-Hermiticity

Summary

« V. J. & B. Roy, Communications Physics 7, 169 (2024)
* S. Pino-Alarcon & V. J., PRB 111, 195126 (2025)

« S. Pino-Alarcon, J. P. Esparza & V. J., in preparation.



Biorthogonal QM

Mostafazadeh, Journal od Mathematical Physics (2002)
Review on biorthogonal QM: Brody 2014

- QM: Observables are represented by Hermitian operators
A = AT = Spectrum(4) € R

- Hermiticity is not a necessary condition for a real spectrum.

- Any pseudo-Hermitian operator AT = n An' has a real spectrum if (unitary) n is positive-definite

(Ylnle) = (Yr|or) > 0
Aldgr) = AlPg) ATM)L) = A"|¢pr)

Pseudo-Hermiticity generalizes PT symmetry condition introduced in Bender & Boettcher, PRL 1998



Non-Hermitian systems: Nonreciprocity

Canonical example: Hatano-Nelson model Hatano, Nelson, PRL 1996

NH skin effect: accumulation of a microscopic number of states at edge
— breaking of the usual topological bulk-boundary correspondence

V. M. Martinez Alvarez et al., PRB 97, 121401(R) (2018).
S. Yao and Z. Wang, PRL 121, 086803 (2018).
S. Yao, F. Song, and Z. Wang, PRL 121, 136802 (2018).



Hermitian Dirac(-like) fermions

Two-dimensional membrane of C atoms

Dirac Hamiltonian

H(k) —_ vo o k
vo~c/300~10°m/s

Density of states p(E)~—



Hermitian Dirac(-like) fermions

Two-dimensional membrane of C atoms

Dirac Hamiltonian

H(k) = Vo O - k Ehf'lll

vo~c/300~10°m/s

Density of states p(E)~—-
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Vo

e
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Bilayer graphene — Bernal stacking

ABC trilayer graphene — diverging DoS!

kZ — k2 2kyk,

H(k) = 04 Y 1 o,

2m

Quadratic chiral fermions!

2m

Constant density of states

Ordering @ B=0

Velasco et al., Nat Nano 7, 156 (2012)
Freitag et al., PRB 87, 161402 (2013)



Non-Hermitian Dirac operator

® Dirac theory allows two Lorentz invariant operators: (1) Dirac kinetic energy
(2) Dirac mass

These two Hermitian operators mutually anticommute

Anti-Hermitian operator : Hpjrac M CDW mass

Proof : (HDira.c JI)T — ﬂf? H]Jg}irac = M Hpirac = —Hpirac M
Semeno , PRL 1984
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Non-Hermitian Dirac operator

® Dirac theory allows two Lorentz invariant operators: (1) Dirac kinetic energy
(2) Dirac mass

These two Hermitian operators mutually anticommute

Anti-Hermitian operator : Hpjrac M CDW mass

Proof : (HDira.c JI) — J'ir H]Bu ac = M HD]I‘ ac — HDII"‘[C 1
Semeno , PRL 1984

® (General construction of Lorentz invariant NH Dirac operator :

d
Hu (k) Zr;,,z; oo | MY TSk
j=1 V. J. & B. Roy, Comm Phys 2024

® FEigenvalues: Enu(k i\/ v2 k| = v.|k| : Realfor vy > vy

Both 2D & 3D Dirac materials host a plethora of mass orders (M)
Any mass order can be used to define NH Dirac operator

Ryu et. al. PRB 80, 205319 (2009), Szabo & Roy, PRB 103, 205135 (2021), JHEP 2021 (4), 27



Non-Hermitian monolayer graphene

® Tight-binding Hamiltonian — Hermitian Dirac system: hl M(k) =t ( _a?* :E}L )
k

® Sublattice symmetry breaking Dirac mass (CDW): h&hw = ( %] _Dl )

® NH Dirac fermions on honeycomb lattice: {1'11“ E‘B“ =0
)18 a a la 0 1 A
he(k) = hi* (k) + ahg (k) hébw = tq ( (1 — )AL ( +[?,) k )

Non-Hermiticity in single-layer graphene: Hopping imbalance between sublattices

Z. Gong, et. al. PRX 8, 031079 (2019): Appendix F 1D chain: Hatano & Nelson, PRL 1996



Non-Hermitian monolayer graphene

Effective NH Hamiltonian

hk = (UH + VNH0'3)O' - k

/tAB\I Spectrum: €, = vp k
Ne—— Fermi velocity
tpa

Vg :UH\/l_ﬁZ

B = vy/Vny

TB model with nonreciprocal hoppings: |f] < 1

Uy ~ average hopping amplitude

Expt - ultracold atoms: NH Aharonov-Bohm chain

'UNH ~ hopplng imbalance (StNtAB . tBA) Liang et al., Phys. Rev. Lett. 129, 070401 (2022).



Non-Hermitian monolayer graphene

Effective NH Hamiltonian

hk = (VH + VNHO-3)O' - k

LaB Spectrum: ¢, = vp k
€ =V
7~ N\ :
~——— Density of states
tpa N
p(6) = gz {110 = 18) + %500 (18] ~ 1)}

TB model with nonreciprocal hoppings: |f] < 1

Uy ~ average hopping amplitude

Expt - ultracold atoms: NH Aharonov-Bohm chain

'UNH ~ hopplng imbalance (St"’tAB . tBA) Liang et al., Phys. Rev. Lett. 129, 070401 (2022).



NH Dirac operator: Symmetry protection

® Non-spatial discrete symmetries : (1) Time-reversal (T, & C,),
of NH operator (Hyy) (2) Anti-unitary particle-hole (7. & C)
(3) Unitary particle-hole (PH)

(4) Pseudo-Hermiticity (PSH)

D. Bernard & A. LeClair, A Classification of Non-Hermitian Random Matrices (Springer, 2002)
Kawabata, Shiozaki, Ueda, Sato, Phys. Rev. X 9, 041015 (2019).

® Symmetries  TiHnu7.' = +Hnnm CiH!,Ci' = +Hxn
operations:
PH; 2 HxuPH7; = —Hyn PSH; 2 HlPSHT 3 = Hyn
Symmetries
Mass terms T+ Cs T_ C_ PH; PHs PSH; PSH>
K iMaMs K iMiMs K iMyMs K MK Ma K M3 K M, e aMiMs @My Ms
M, v v X X X v v X X X X
Mo v X X v v X v v X X v
Ms v X v X v v X v X X
i1 X X v v v X X X X v v

V. J. & B. Roy, Comm Phys 2024
No constant mass term can be added without breaking at least one symmetry!!




Responses of NH Dirac materials

Optical conductivity (OC) @ zero temperature & finite frequency (w):

Polarization tensor

> d [”’k _
Tr/ “// ‘ J; Gpliw+w.k) J; Gr(iv, k)]

+ o M)T,

Current operator in j th direction: J; = (v,

: Im (1w — w -+ 27
OCind=2: o(w) = ( , )
“ n—0
. Im H(?JJ — W + ?]?)
OCind=3: o(w)= -
“ n—0

Fermions

External EM field

| T )‘.IT
" Same as in Hermitian

Nw systems with Vg — vy

Ov

F.

o0

N;: Number of 4-component Dirac flavors & o,=e?/h

V. J. & B. Roy, Comm Phys 2024






Local interaction: Dynamic mass generation

® Dirac fermions — Vanishing density of states: p(E) ~ |[E| in 2D or |E|? in 3D

® Local four-fermion interaction — Spontaneous symmetry breaking
(sublattice, chiral, TRS, spin-rotational, ....)

Dynamic generation of Dirac mass — Insulator (electric or thermal)
Ordered phase — Nontrivial expectation value of mass bilinear: <11ﬁN1p> + ()

Hermitian matrix operator N: Must anticommute with the Dirac Hamiltonian
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® Dirac fermions — Vanishing density of states: p(E) ~ |[E| in 2D or |E|? in 3D

® Local four-fermion interaction — Spontaneous symmetry breaking
(sublattice, chiral, TRS, spin-rotational, ....)

Dynamic generation of Dirac mass — Insulator (electric or thermal)
Ordered phase — Nontrivial expectation value of mass bilinear: <11ﬁN1p> + ()

Hermitian matrix operator N: Must anticommute with the Dirac Hamiltonian

N2
® Scaling dimension of local four-fermions interaction: gy ("li'ﬁ-’ 1IJ)

[gn] =-11in 2D & -2 in 3D — (a) Weak interactions: Irrelevant

|.F. Herbut, V.J., B. Roy, PRB 2009 _ _

|.LF. Herbut, V.J., O. Vafek, PRB 2009 (b) Broken symmetry phase @ strong coupling via
gquantum phase transition

QMC: Herbut, Assaad, PRX 2013;

Otsuka, Yonuki, Sorella, PRX 2016



Examples of Dirac masses

® Charge density wave (CDW):

Semenoff PRL 53, 2449 (1983) unique mass matrix (N)

® Quantum anomalous Hall insulator (QAHI):
Breaks sublattice & time reversal symmetries

Haldane PRL 61, 2015 (1988)

® Antiferromagnet (AFM): Breaks sublattice
& spin rotational symmetries

Z

Other examples of masses: translational
symmetry breaking valence bond order, s-wave and
f~wave pairings, Kekule pair-density-wave etc.

S. Ryu, C. Mudry, C.-Y Hou & C. Chamon, PRB 80, 205319 (2010)
A. L. Szabo & B. Roy, PRB 103, 205319 (2019)



Mass: Fragmentation in NH Dirac systems

invari : : V. J. & B.Roy, C Phys 2024
® | orentz invariant construction of NH Dirac operator : Oy, Lomm Fhys

Selects a mass matrix M from the set of all Ns

l

Causes fragmentation among all Ns, depending on algebra between M and N

l

Two classes of mass orders in NH Dirac systems

® Commuting class mass (CCM): [N, M] =0

® Anti-commuting class mass (ACM): {N,M} =0

Effective field theory: Gross-Neveu-Yukawa theory



Scalar bosons: NH Yukawa theory

® Dynamic mass generation — Condensation of bosonic order-parameter field:
Composite of fermionic fields

l V. J. & B. Roy, Comm Phys 2024

Yukawa interaction between bosonic & fermionic degrees of freedom

Sy = g;ftiT/ddXZ ®;(r,x) UT(r,x)N,;¥(T, x)
j=1

Marginal in d=3+1
® Fermions: Two velocity parameters (v, Vyn) & effective Fermi velocity (Vi)

® Bosons: Unique bosonic velocity (Vg) — Bosonic Green's function:
1
w? + vik?

Gp(iw, k) =

Lorentz symmetry?

Fermionic self-energy Bosonic self-energy



CCM: Emergent NH Lorentz symmetry

® RG Flow equations: Hermitian & anti-Hermitian velocity components of Dirac fermions

| 4g°n Vg | 4¢°n U,
"53'”1{ — — 5 1 - vy & .-"31: = — > 1—-—= (I
Svg ("UF T "UB> Vg NH 3'1-’3 (‘UF T ’UE) v

F

I nT .{_?Q?-E 11g
® RG Flow equation: Bosonic velocity Pv, = —Ny L——= vy

1.0
RG fixed point Vu Ur

0.5
The system acquires a unique terminal velocity
for fermionic & bosonic degrees of freedom

— Vg = vg with both v, & vy being non-zerol!!

0.0 -
0.0 05 In(b) 10

Emergent Yukawa-Lorentz symmetry (Non-Hermiticity: retained)




ACM: Emergent Hermitian Lorentz symmetry

® RG Flow equations: Hermitian & anti-Hermitian velocity components of Dirac fermions

4¢°n v 8¢*n v
-*"3-1: = =, - I——=v & .-*"3-1: - = 1+ ,—E v
o 3vg (v + v5)° Ve ) N vy (vp + vp)? 20, -

2 2 2 9.2
. : . A _  ar. gmn Uy Vg 2V, ,
® RG Flow equation: Bosonic velocity 3, = —N¢ 208 (u§ — 2T @ (R
RG fixed point \
: : : ., 0.5
The system acquires a unique terminal velocity Uy Vg
for fermionic & bosonic degrees of freedom . .
— Ve = Vy = vg With vy, =0 ! NH B
0.0 0.5 lﬂ(b) 1.0

Emergent Hermitian Lorentz symmetry (Hermiticity: restored)



Tilted NH Dirac Semimetal

NH tilted strongly-coupled DSM: Hermitian tilted strongly-coupled DSM:

S. Pino-Alarcon & V. J., PRB 111, 195126 (2025) H. Rostami & V. J., PRR 2, 013069 (2020).
P. Reiser & V. J., JHEP 2024, 1 (2024).

HNH = (’UH —+ "2,.-’NHﬂ[)]?..(_)+()¢"?,,?IIT}{?$

(M, Hp} =0 vr = \/v} — vy

Tilt matrices - Symmetric & Asymmetric 75 = 01 @ 79 and Tas = 09 @ 70

Quantum critical regime

(non—Fermi liquid)

Lorentz symmetry close to the QCP:
Velocities are not neccesarily equal

Broken
symmetry

phase Dirac

semimetal

0 [ ]
0

Bosonic mass (m3?)




1

p(E) =— — lim+ Im{Tr Gp(iw = w+in,k)}
e B = vNH/VH
Asymmetric tilt Symmetric tilt
A (E) — \/1_)82|E| PS(E) _ |E|
PAS m(1— a2 — F2)3/20, (1 —a? — B2}
o7, p(E) - p(E)
:‘j: — a=p=0.0 I — a=p=0.0
| — a=p=05 o3 —— a=p=05
! — a=0, B=05 02 —— =0, B=05

Weak interactions
Irrelevant



Kubo formula 4= mflw =2 w+in)

W

Symmetric tilt

0.5~

04

— B=0.0
— B=0.5

03~

0.2~

L L
-05 0.0 05

Asymmetric tilt oas@) Nf( y

0.5

0.4

— =0.0
—— B=0.5

03+

0.2

-05 0.0 0.5

0y, (i) = —Ta:/m d”[

n—0

os(w) =

d?k

2[J;Gp(zw + v, k) J,,Gp(iv, k)]

-0.5

2 (—2a% 4 B2 —

0.0

0.5

1) (a* 4252 -2

— a=0.0
— a=0.5

B

_ 52)3/2 (—a?

Sy 1)3/2

-0.5

0.0

0.5

RERSI

1- 32

— a=0.0
—— a=0.5



Strongly-coupled tilted NH Dirac Semimetal

S. Pino-Alarcon & V. J., PRB 2025

e — expansion close to d = 3 spatial dimensions near CDW QCP

Asymmetric tilt

1.0

CCM: .| | CCM
NH
Lorentz |

] Wiy
04F B
J — Vg
| — v
0.2 B
0.0 1 T ]
0 0 0

1 -

Vy

ACM: | ACM
Hermitian °¢|

[
Lorentz 5.6_\ -

] VNH
0.4 4

J - Vg

1 — v
0.2 . F

\"'"‘_‘—-————___

00 L L 1 L L L 1 L L n T T T T : T T ]
0.0 0.2 0.4 06 0.8 1.0
1n(b)

In all cases: Restoration of the Lorentz symmetry —

0.6 K .

] VNH
0.41 g

J — Vg

1 — v
02 ] F

00—+ vy ———
0.0 0.2 0.4 0.6 0.8 1.0

Symmetric tilt

{ —a
VH

ViNH

| —a

Ve

e T ey —

In(b)

CCM: Yukawa-Lorentz symmetry



Conclusions

- General principle of construction for NH Dirac Hamiltonians

- Strongly coupled NH Dirac fermions: Emergent Lorentz symmetry in
NH or open quantum systems (system-to-environment coupling)
- Tilted NH Dirac semimetals: Tilt can probe non-Hermiticity (OC)

- Lorentz symmetry restores at strong coupling — tilt irrelevant at QCP:
CCM — non-Hermiticity retained



	Quantum Criticality in �Non-Hermitian Dirac Matter
	Collaborators
	Outline
	Biorthogonal QM
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Non-Hermitian monolayer graphene
	Slide Number 12
	Slide Number 13
	NH Dirac operator: Symmetry protection
	Responses of NH Dirac materials
	Interaction effects in NH Dirac semimetal
	Local interaction: Dynamic mass generation
	Local interaction: Dynamic mass generation
	Examples of Dirac masses
	Mass: Fragmentation in NH Dirac systems
	Scalar bosons: NH Yukawa theory
	CCM: Emergent NH Lorentz symmetry
	ACM: Emergent Hermitian Lorentz symmetry
	Tilted NH Dirac Semimetal 
	The Density of States  
	Zero-frequency optical conductivity: Tilt probes non-Hermiticity 
	Strongly-coupled tilted NH Dirac Semimetal 
	Conclusions 

