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Biorthogonal QM

- QM: Observables are represented by Hermitian operators 

- Hermiticity is not a necessary condition for a real spectrum.

- Any pseudo-Hermitian operator 𝐴𝐴† = 𝜂𝜂 𝐴𝐴 𝜂𝜂† has a real spectrum if (unitary) 𝜂𝜂 is positive-definite 

𝐴𝐴 = 𝐴𝐴† ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴) ∈ ℝ

𝐴𝐴| ⟩𝜙𝜙𝑅𝑅 = 𝜆𝜆| ⟩𝜙𝜙𝑅𝑅 𝐴𝐴†| ⟩𝜙𝜙𝐿𝐿 = 𝜆𝜆∗| ⟩𝜙𝜙𝐿𝐿

Mostafazadeh, Journal od Mathematical Physics (2002)
Review on biorthogonal QM: Brody 2014 

Pseudo-Hermiticity generalizes PT symmetry condition introduced in Bender & Boettcher, PRL 1998



Non-Hermitian systems: Nonreciprocity

Canonical example: Hatano-Nelson model Hatano, Nelson, PRL 1996

NH skin effect: accumulation of a microscopic number of states at edge 
– breaking of the usual topological bulk-boundary correspondence 

𝑡𝑡 + 𝛿𝛿𝛿𝛿

𝑡𝑡 − 𝛿𝛿𝛿𝛿

V. M. Martinez Alvarez et al., PRB 97, 121401(R) (2018).
S. Yao and Z. Wang, PRL 121, 086803 (2018).
S. Yao, F. Song, and Z. Wang, PRL 121, 136802 (2018).
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Two-dimensional membrane of C atoms

Dirac Hamiltonian

Density of states

Quadratic chiral fermions!

Constant density of states

Ordering @ B=0
Velasco et al., Nat Nano 7, 156 (2012)
Freitag et al., PRB 87, 161402 (2013)ABC trilayer graphene → diverging DoS!

Hermitian Dirac(-like) fermions

Bilayer graphene – Bernal stacking 



Non-Hermitian Dirac operator

Dirac theory allows two Lorentz invariant operators: (1) Dirac kinetic energy
                                                                                    (2) Dirac mass

These two Hermitian operators mutually anticommute

Anti-Hermitian operator :

Proof :

CDW mass

Semenoff, PRL 1984



Non-Hermitian Dirac operator

General construction of Lorentz invariant NH Dirac operator :

V. J. & B. Roy, Comm Phys 2024
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Non-Hermitian Dirac operator

Eigenvalues:                                                           : Real for vH > vNH

Both 2D & 3D Dirac materials host a plethora of mass orders (M)
Any mass order can be used to define NH Dirac operator

Ryu et. al. PRB 80, 205319 (2009), Szabo & Roy, PRB 103, 205135 (2021), JHEP 2021 (4), 27

V. J. & B. Roy, Comm Phys 2024

General construction of Lorentz invariant NH Dirac operator :

Dirac theory allows two Lorentz invariant operators: (1) Dirac kinetic energy
                                                                                    (2) Dirac mass

These two Hermitian operators mutually anticommute

Anti-Hermitian operator :

Proof :

CDW mass

Semenoff, PRL 1984



Non-Hermitian monolayer graphene

Tight-binding Hamiltonian → Hermitian Dirac system:

Sublattice symmetry breaking Dirac mass (CDW):

NH Dirac fermions on honeycomb lattice:

Z. Gong, et. al. PRX 8, 031079 (2019): Appendix F

Non-Hermiticity in single-layer graphene: Hopping imbalance between sublattices
1D chain: Hatano & Nelson, PRL 1996
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Effective NH Hamiltonian

      
          Spectrum: 𝜖𝜖𝒌𝒌 = 𝑣𝑣𝐹𝐹 𝑘𝑘

Non-Hermitian monolayer graphene

𝑣𝑣𝐹𝐹 = 𝑣𝑣𝐻𝐻 1 − 𝛽𝛽2

Fermi velocity 

ℎ𝒌𝒌 = 𝑣𝑣𝐻𝐻 + 𝑣𝑣𝑁𝑁𝑁𝑁𝜎𝜎3 𝝈𝝈 � 𝒌𝒌

𝛽𝛽 = 𝑣𝑣𝐻𝐻/𝑣𝑣𝑁𝑁𝐻𝐻

𝑣𝑣𝐻𝐻 ~ average hopping amplitude
𝑣𝑣𝑁𝑁𝐻𝐻 ~ hopping imbalance (𝛿𝛿𝑡𝑡~𝑡𝑡𝐴𝐴𝐴𝐴 − 𝑡𝑡𝐵𝐵𝐵𝐵)

Expt - ultracold atoms: NH Aharonov-Bohm chain
Liang et al., Phys. Rev. Lett. 129, 070401 (2022).

TB model with nonreciprocal hoppings: 𝛽𝛽 < 1
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Density of states 
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NH Dirac operator: Symmetry protection

Non-spatial discrete symmetries : (1) Time-reversal (T+ & C+),
        of NH operator (HNH)              (2) Anti-unitary particle-hole (T- & C-)
                                                       (3) Unitary particle-hole (PH)
                                                       (4) Pseudo-Hermiticity (PSH)

Symmetries
operations:

No constant mass term can be added without breaking at least one symmetry!!
V. J. & B. Roy, Comm Phys 2024

D. Bernard & A. LeClair, A Classification of Non-Hermitian Random Matrices (Springer, 2002)
Kawabata, Shiozaki, Ueda, Sato, Phys. Rev. X 9, 041015 (2019).



Responses of NH Dirac materials
Optical conductivity (OC) @ zero temperature & finite frequency (ω):

External EM field

Fermions

Polarization tensor

Current operator in j th direction:

OC in d=2:

OC in d=3:

Same as in Hermitian
systems with vF → vH

Nf : Number of 4-component Dirac flavors & σ0=e2/h

V. J. & B. Roy, Comm Phys 2024



Interaction effects in NH Dirac semimetal



Local interaction: Dynamic mass generation

Dirac fermions → Vanishing density of states: ρ(E) ~ |E| in 2D or |E|2 in 3D

Local four-fermion interaction → Spontaneous symmetry breaking
                                                     (sublattice, chiral, TRS, spin-rotational, ….)

Dynamic generation of Dirac mass → Insulator (electric or thermal)

Ordered phase →  Nontrivial expectation value of mass bilinear:

Hermitian matrix operator N: Must anticommute with the Dirac Hamiltonian



Local interaction: Dynamic mass generation

Dirac fermions → Vanishing density of states: ρ(E) ~ |E| in 2D or |E|2 in 3D

Local four-fermion interaction → Spontaneous symmetry breaking
                                                     (sublattice, chiral, TRS, spin-rotational, ….)

Dynamic generation of Dirac mass → Insulator (electric or thermal)

Ordered phase →  Nontrivial expectation value of mass bilinear:

Hermitian matrix operator N: Must anticommute with the Dirac Hamiltonian

Scaling dimension of local four-fermions interaction:

[gN] = -1 in 2D & -2 in 3D → (a) Weak interactions: Irrelevant

                                              (b) Broken symmetry phase @ strong coupling via
                                                  quantum phase transition

I.F. Herbut, V.J., B. Roy, PRB 2009
I.F. Herbut, V.J., O. Vafek, PRB 2009

QMC: Herbut, Assaad, PRX 2013; 
Otsuka, Yonuki, Sorella, PRX 2016



Examples of Dirac masses
Charge density wave (CDW):
Breaks sublattice symmetry
Semenoff PRL 53, 2449 (1983)

Quantum anomalous Hall insulator (QAHI):
Breaks sublattice & time reversal symmetries
Haldane PRL 61, 2015 (1988)

Antiferromagnet (AFM): Breaks sublattice
& spin rotational symmetries

Other examples of masses:  translational
symmetry breaking valence bond order, s-wave and
f-wave pairings, Kekule pair-density-wave etc.

Each mass: Represented by
    unique mass matrix (N)

S. Ryu, C. Mudry, C.-Y Hou & C. Chamon, PRB 80, 205319 (2010)
A. L. Szabo & B. Roy, PRB 103, 205319 (2019)



Mass: Fragmentation in NH Dirac systems

Lorentz invariant construction of NH Dirac operator :
                                                            
                                                        Selects a mass matrix M from the set of all Ns

Causes fragmentation among all Ns, depending on algebra between M and N

Two classes of mass orders in NH Dirac systems

Commuting class mass (CCM): [N, M] = 0

Anti-commuting class mass (ACM): {N,M} = 0

Effective field theory: Gross-Neveu-Yukawa theory

V. J. & B. Roy, Comm Phys 2024



Scalar bosons: NH Yukawa theory
Dynamic mass generation → Condensation of bosonic order-parameter field:
                                              Composite of fermionic fields

Yukawa interaction between bosonic & fermionic degrees of freedom

Fermionic self-energy Bosonic self-energy

Fermions: Two velocity parameters (vH , vNH)  & effective Fermi velocity (vF)

Lorentz symmetry?

Bosons: Unique bosonic velocity (vB) → Bosonic Green's function:

Marginal in d=3+1

V. J. & B. Roy, Comm Phys 2024



CCM: Emergent NH Lorentz symmetry
RG Flow equations: Hermitian & anti-Hermitian velocity components of Dirac fermions

&

RG Flow equation: Bosonic velocity

The system acquires a unique terminal velocity
for fermionic & bosonic degrees of freedom
→ vF = vB with both vH & vNH being non-zero!!

RG fixed point

Emergent Yukawa-Lorentz symmetry  (Non-Hermiticity: retained)



ACM: Emergent Hermitian Lorentz symmetry

RG Flow equations: Hermitian & anti-Hermitian velocity components of Dirac fermions

&

RG Flow equation: Bosonic velocity

The system acquires a unique terminal velocity
for fermionic & bosonic degrees of freedom
→ vF = vH = vB with vNH =0 !!

RG fixed point

Emergent Hermitian Lorentz symmetry  (Hermiticity: restored)

1.0

0.5



Tilted NH Dirac Semimetal 

Tilt matrices - Symmetric & Asymmetric

H. Rostami & V. J., PRR 2, 013069 (2020).
P. Reiser & V. J., JHEP 2024, 1 (2024). 

Hermitian tilted strongly-coupled DSM: 
S. Pino-Alarcon & V. J., PRB 111, 195126 (2025)

NH tilted strongly-coupled DSM: 

Lorentz symmetry close to the QCP: 
Velocities are not neccesarily equal



The Density of States  

Asymmetric tilt Symmetric tilt 

𝜌𝜌(𝐸𝐸) 𝜌𝜌(𝐸𝐸)

𝛼𝛼2 + 𝛽𝛽2 < 1 𝜌𝜌(𝐸𝐸 → 0) → 0 Weak interactions
irrelevant

S. Pino-Alarcon & V. J., PRB 2025



Zero-frequency optical conductivity: Tilt probes non-Hermiticity 

Kubo formula

Symmetric tilt 

Asymmetric tilt 

S. Pino-Alarcon, J.P. Esparza & V. J., in preparation.



Strongly-coupled tilted NH Dirac Semimetal 

𝜖𝜖 − expansion close to 𝑑𝑑 = 3 spatial dimensions near CDW QCP 

Asymmetric tilt

CCM:
NH 
Lorentz 

Symmetric tilt

CCM

ACM

In all cases: Restoration of the Lorentz symmetry – CCM: Yukawa-Lorentz symmetry

ACM:
Hermitian
Lorentz 

S. Pino-Alarcon & V. J., PRB 2025



Conclusions 

- Strongly coupled NH Dirac fermions: Emergent Lorentz symmetry in    
NH or open quantum systems (system-to-environment coupling)

- General principle of construction for NH Dirac Hamiltonians 

- Tilted NH Dirac semimetals: Tilt can probe non-Hermiticity (OC) 

- Lorentz symmetry restores at strong coupling – tilt irrelevant at QCP: 
  CCM – non-Hermiticity retained 
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