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Motivation

* What?
> This talk is rooted in perturbation theory in Quantum Field Theory
> The idea is to explore its structure and uncover hidden
properties
e Why?
> What kind of numbers and functions appear in perturbative
predictions for physics observables?

> Can we leverage this knowledge to push computational
boundaries in QFTs?

* How?
> Let us work under the paradigm
Symmetry = Simplicity

and see if we get any mileage




Symmetries on steroids
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N =4 SYM In one slide

10d Yang-Mills SU(N) »  four dimensions

L=tr (—%FMNFMN + z@FNDN\II)

CLLQ v ~us
adjoint matter: gluon +

Six scalars + four fermions extended supersymmetry: unique
Interactions
g’N only one coupling g and one parameter N.

N
1672 faint resemblance with massless QCD?




N =4 SYM in one slide

10d Yang-Mills SU(N) »  four dimensions
L=tr (_EFJMNFJMN + iﬁFNDNlII) 0!4_ GGGGGG Pas
j ‘«‘ ‘ ‘, W, A=1.4
adjoint matter: gluon +

Six scalars + four fermions extended supersymmetry: unique
Interactions

g’N only one coupling g and one parameter N. e

A

Conformal

1672 faint resemblance with massless QCD? Rl ey

Rich structure: N =4is UV finite N
conformal: PSU(2,2|4)




N =4 SYM holography

10d Yang-Mills SU(N) »  four dimensions

L=tr (—%FMNFMN + @F”DN@)
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extended supersymmetry: unique
Interactions

adjoint matter: gluon +
six scalars + four fermions

\ >N only one coupling g and one parameter .
~ 1672
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faint resemblance with massless QCD? e Thory

Rich structure: N =4 is UV finite
conformal: PSU(2,2|4)
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strong coupling dual
lIB strings AdSs5 x S°

strong coupling holography




N =4 SYM exact results

Yang-Mills SU(N) four dimensions

r (_EFMNFMN + i@FNDNLIJ l QQGOOG Pas
: ©€66E -
adjoint matter: gluon +

Six scalars + four fermions oy extended supersymmetry: unique
Interactions

g’N only one coupling g and one parameter N. e

P —

Conformal

1672 faint resemblance with massless QCD? Field Theory

N =4 is UV finite
conformal: PSU(2,2|4)

Rich structure:

supersymmetry:

strong coupling dual localization

lIB strings AdSs5 x S°

. Integrability
] K exact results!!!
strong coupling holography .
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N =4 SYM solvability

Yang-Mills SU(N) four dimensions

. ©OOOLQ -
djoint matter: gl " ‘““‘ W, A=1.4

Six scalars + four fermions extended supersymmetry: unique
Interactions

r (—%FMNFMN + z@FNDN\II

g’N only one coupling g and one parameter N. e

P —

Conformal

1672 faint resemblance with massless QCD? Field Theory

Why it is interesting:

-
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* inspire novel techniques

* many data of objects whose
perturbative expansion is

solve a QFT similar to massless QCD

counterpart




An example: scattering

amplitudes




N = 4 scattering amplitudes

emergent properties of
scattering amplitudes
inN=4SYM

on-shell methods
Bern et al 1994-
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on-shell methods
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uniform duality with

transcendentality Wilson loops strong coupling
interpretation

Drummond et al Alday et al 2007

VLA bootstrap methods 2007-2009
Dixon et al 2011-

progress in
Feynman integrals

evidence for
integrability

dual conformal /

inspired Yangian symmetry

advances
in pheno

FE preE _ k, Integrability -1
reformulation B & 7S _ prescription

of QFT Pl '
Arkani-Hamed et al 2013

Basso et al 2013




Focus on this: transcendentality

uniform
transcendentality

* Meaning? It is a mathematical property exhibited by the
perturbative series of certain observables calculated with
dimensional regularization

* One associates a degree of transcendentality to certain
transcendental functions and numbers

* Uniform transcendentality occurs when such a degree is found to be
fixed for all terms at each perturbative order




Focus on this: transcendentality

uniform
transcendentality

* Meaning? It is a mathematical property exhibited by the
perturbative series of certain observables calculated with
dimensional regularization

* One associates a degree of transcendentality to certain
transcendental functions and numbers

» Uniform transcendentality occurs when such a degree is found to be
fixed for all terms at each perturbative order

* It is a highly remarkable occurrence with little explanation

* It has been leveraged for perturbative calculations of scattering

amplitudes, both in N =4 and for phenomenological applications
v

bootstrap methods canonical form
Dixon et al 2011- Henn 2013




The power of

transcendentality




oncharov polylogarithms

In 2008 a bunch of heroes computed a very complicated six-point

scattering amplitude at two loopsin N =4 SYM
eyt 1 1) = i) Del Duca et al 2008
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oncharov polylogarithms

In 2008 a bunch of heroes computed a very complicated six-point
scattering amplitude at two loopsin N =4 SYM
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Goncharov polylogarithms

In 2008 a bunch of heroes computed a very complicated six-point

scattering amplitude at two loopsin N =4 SYM
Del Duca et al 2008

All terms exhibit the same 17 pages like that
transcendentality weight!




Goncharov polylogarithms

In 2008 a bunch of heroes computed a very complicated six-point

scattering amplitude at two loopsin N =4 SYM
Goncharov et al 2010

Thanks to properties of
transcendental functions it
was possible to reduce the
result to




New uniformly transcendental

magnitudes

MB 2306.06239 I




My calculation: the simplest ever

For some reason | have been computing 2pt functions of
some supersymmetric operators in N =4 SYM of the form

Op = Tr (X X) complex scalars

Their conformal dimension 2 is protected by SUSY tree level exact
and so are their 2pt and 3pt functions in 4 dimensions




-
protected 2pt functions

For some reason | have been computing 2pt functions of
some supersymmetric operators in N =4 SYM of the form

O[} = Tr (XX)

complex scalars

Their conformal dimension 2 is protected by SUSY tree level exact
and so are their 2pt and 3pt functions in 4 dimensions

Yet, working in d = 4-2¢ © @ @ OO
there can be O(¢) @ @ ® 8@

quantum corrections:

N(e )\) @ @ <g>
(22,)2+2¢ B RGS

to the 2pt function 20 (jb

(Oo(21)O0(22))) =
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Credits

For 2pt-function:

D D O O
(Oo(p)Oo(—p C”“b @ @

D O
ooo-éb

Inteqgrals:

> Master integrals
reduction

Feynman diagram
evaluation

Feynman diagram
generation FORM > master integral

QGRAF Vermaseren 1991 substitution

Color package Forcer
van Ritbergen et al 1999 Ruijl et al 2017

Nogueira 1993




master integrals reduction example

For 2pt-function:

D D O OO0
(Oo(p)Oo(—p Cb @ @

D O

OO0 éb
rational

- coefficients in d

master
Integrals

Tﬁ (1 2)2 ::: (66 5€+1) Z: 6(86 6€+1)_@_
16(3e— 1) (4e— 1)_@_ 12(ze 1)_@_ @
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of protected 2pt functions

For some reason | have been computing 2pt functions of
some supersymmetric operators in N =4 SYM of the form

O[} = Tr (XX)

complex scalars

Their conformal dimension 2 is protected by SUSY tree level exact
and so are their 2pt and 3pt functions in 4 dimensions

Yet, working in d = 4-2¢
there can be O(¢)
quantum corrections:

N(e,A) What numbers will

(Op(x1)Op(x2))) = (;L;%ng@e appear?

to the 2pt function




Zeta values and transcendentality

. 1
Riemann’s Zeta: ((s) = — =
n=1

1 1
Example: ¢3) =1+ 0 + 5 + .-+ = 1.202056903159594285399...




Zeta values and transcendentality

Riemann’s Zeta:

1
Multiple zeta values (MZV):  ((s1,...,8) = Z Sk

$1
ny>ng>--->n>0 141 ° 7T

depth: d = k weight: w=2S; « transcendental weight

Example: ((5,3) = 0.03770767252830723... - d=3,w=9




I
Zeta values and transcendentality

Riemann’s Zeta:

1
Multiple zeta values (MZV):  ((s1,...,8k) = y

S1 Sk
ny>ng >--->np >0 n T

depth: d = k weight: w=2S; « transcendental weight

Why MZVs?

Ubiquitous numbers appearing evaluating Feynman integrals
Conjecturally, they are all transcendental numbers

Linearly independent over rationals if their weights are different:
vector space is direct sum of subspaces or graded Q-algebra

w defines transcendental weight for MZVs




For instance: QCD beta function

At lowest order: n¢i1s the number of “quarks”

2




possesses zeta values

At lowest order: nr 1s the number of “quarks

2

At higher order (s pop up!

38 5
109 _ 38 2857 5033 3T

3 br= 5~ gt

149753

1078361 6508 )
3

+ 3964 (3 + ny ( 6o o7

-+ n

50065 6472 C) 1093 .
— TN
: 729 '/

7 BT 4T

n

7462
ng ( + 128 cg) n; (_T — 992 (5 + 2720 4’5)
21758 16000 416 1280 , (856 128
(-3 )+ )

243_1L 24




Quantum corrections

Back to my
calculation




Quantum corrections

Back to my

_ Factoring tree level result
calculation

(0o()O0(—p)) = 2(N* = 1)< - (1+nPA+nr2+n®)3 + O(\)

Quantum corrections are exposed, which are order &




Quantum corrections

Back to my

_ Factoring tree level result
calculation

(0o()O0(—p)) = 2(N* = 1)< - (1+nPA+nr2+n®)3 + O(\)

Quantum corrections are exposed, which are order &

@NLO: iIn DimRed scheme fd4_2€l Siegel 1979

a® < 1965e - 18 + (6:Cs — B4Gs) € + (6463 — 6o e+ (HLG3Ca + 426Gy

_588C7) EW—F ( 32<2<‘3 4 3872C‘)C‘3 1828rC8) 66 + (_5264—33 46647C C + 22287C4<5
+294C5Cr — 426009) €” + (—813CuCF — 1F0CaCCs + TGy + G — B () €
o (%CQC? 49702C5C3 24%779(8(3 + 13?2341%% + 205683@4@7 + 2130¢2Co
—31836C11) € (l[)'l?'84c-3 49421( C3 47224@-4@3@3 s 17912<~ C C 4 108)44C C s 5712C2C2

149328 71432982333 10
+ 5 CsG7 — 1415168 12)* +O( )




Quantum corrections

Back to my

_ Factoring tree level result
calculation

(0o()O0(—p)) = 2(N* = 1)< - (1+nPA+nr2+n®)3 + O(\)

Quantum corrections are exposed, which are order &

@NLO: w=2 w=3-1 w=4-2 w=5-3 w=6-4 w=7-5
nih =‘/<12C3E1 18C4€” + (623 — 84Cs) € + (64¢5 — B¢6) €' + (G1CaC + 42¢aGs
—588C7) EWJF ( 32@@ 4+ 3872@@3 1828’C8) 0 + (_526@3 46647C C i 22287C4<5
+294(5C7 — 4260¢) € + (—813¢a(5 — 188¢o(s(s + BB (s + (5 — BE33B(g) €°
N (%CQCS 49?02C5C3 249‘3779<8<3 4 1‘3(132341C Cﬁ 4 205 683C4C7 e 2130C2C9
—31836C11) € (10784C3 40421( CS :224 “41C5Cs3 17912( C C L 1085 44C- C i 5712C2C

149328 71432982333 10
+ 5 CsG7 — 1415168 12)* +O( )




Heuristic uniform transcendentality

@NNLO:

2 éoog;+ (244¢5 +2506) € + (T32¢3¢s — 100625 + 1718¢7) € + (B3¢

_12596C5,3_ 244(;2@% 179647C8) ( 1[)7'12@-3 4 10717C6C3 +5763C4C N 1718C2C7

Jr2219140 9) i + (1296< C . 16014C . 15641C4C3 - %CQC)C + 23420@@.

+l401042010431C1 4278@3) <9 I (9504C3C) 5 — 092<-)33 T 10712 C?C‘} 3124902C §3
8‘368‘334— C 1 164813€ C 1 276033C C 1 36679873 49670(32< C ) el o( )

@NNNLO:

n® :@80@+ (—556003¢5 — 3430(s) € + (—120¢ — 13900¢6¢3 — 8340¢4(s

+147005Cr — B2220¢y) €8 + (18330¢, 5 — 2634045 + 8340625 Gz — T61707¢s — 38002
—%QO) € + (64368(3Cs,3 — TT152(5 55 + 8780(2C; + 52040(5¢5 — 384846(s¢s
_|_40041999<11 n 179855§ C . 10269410C C L 1612769(4( ) 65 4 (70184<4< : il 1223545C2C73

8 D, ;
_ 178720C . 69410( 1 1620880 Cl} 2182205 CGCB? 220740 JC Co( 1 2122965 §2§7<3

_smuo, C | 61883652 Lgm%ﬁ — 400117736081 12) e’ + O(e)




Heuristic uniform transcendentality

@NNLO: w=4 w=5-1 wW=6-2 w=7-3 w=8-4

éoog-e + (244G + 25066) € + (73236 — 10062Gs + 1718¢7) € + (BZB(G¢s

_12596C5,3 i 244(;2(‘% 179647C8) ( 1[)7'12(-3 4 10717C6C3 dn. 5763C4C B 1718C2C7

_|_2219140 9) E5 4 (1296< C N 16014C . 15641@1(3 i 7288<-2<- C + 23420676

—|_1401042010431C10 42778 ) <9 I (9504C3C) 5 — 592<~) 33 T 10712 C?C‘} 3124902<- C?,
8‘368‘33C C il 164813€ C 1 276033C C 4 36679873 49670(32C C ) cUN o( )

@NNNLO' W=6 w=7-1 w=8-2 W=9-3 w(€)=-1

— . w=10-4
n® :\—980c79+ (=5560¢3¢5 — 3430(s) € + (—13%¢5 — 13900¢6¢s — 8340C4¢s

+147005Cr — B2220¢y) €8 + (18330¢, 5 — 26340435 + 8340625z — T61707Gs — 28002
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Uniform transcendentality conjecture

Observation: up to NNNLO guantum corrections exhibit uniform
transcendentality

Conjecture 1: the perturbative series of 2pt functions of N =4 SYM
dimension-2 protected operators in dimensional regularization has
uniform transcendental weight 2L @ loop L to all orders




Uniform transcendentality conjecture

Observation: up to NNNLO guantum corrections exhibit uniform
transcendentality

Conjecture 1: the perturbative series of 2pt functions of N =4 SYM
dimension-2 protected operators in dimensional regularization has
uniform transcendental weight 2L @ loop L to all orders

Non-MZV numbers are expected to appear in propagator integrals

@8 loops. If they also appear in the two-point function, some

extension in defining transcendentality beyond MZVs is required.

But they might not ... Panzer et al 2017




Uniform transcendentality conjecture

Observation: up to NNNLO guantum corrections exhibit uniform
transcendentality

Conjecture 1: the perturbative series of 2pt functions of N =4 SYM
dimension-2 protected operators in dimensional regularization has
uniform transcendental weight 2L @ loop L to all orders

Non-MZV numbers are expected to appear in propagator integrals

@8 loops. If they also appear in the two-point function, some

extension in defining transcendentality beyond MZVs is required.

But they might not ... Panzer et al 2017

Can we infer a pattern for the leading terms highlighted in <
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Ask the OEIS

Reconstruct sequence for red circled O(¢e) terms: ask OEIS

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
2'3?5%8 OF INTEGER SEQUENCES ®

10221121

founded in 1964 by N. J. A. Sloane
[Search] Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A000888 a(n) = (2*n)! "2 / (n+1)*n!"3).
1, 2, 12, 100, 980, 10584, 121968, 1472328, 18404100, 236390440, 3103161776,
41469525552, 562496897872, 7726605740000, 107289439704000, 1503840313184400,
21252802073091300, 302539888334593800, 4334635827016110000, 62464383654579522000,
904841214653480504400 (list; graph; refs; listen; history; text; internal format)

OFFSET 0,2

COMMENTS a(n) is the number of walks of 2n unit steps North, East, South, or
West, starting at the origin, bounded above by y=x, below by y=-x and
terminating on the ray y = x >= 0. Example: a(1l) counts EN, EW; a(2)
counts ESNN, ESNW, ENSN, ENSW, ENEN, ENEW, EENN, EENW, EEWN, EEWW,
EWEN, EWEW. - David Callan, Oct 11 2005

Bijective proof: given such a NESW walk, construct a pair (P 1, P 2) of

lattice paths of upsteps U=(1,1) and downsteps D=(1,-1) as follows.
To get P 1, replace each E and S with U and each W and N with D. To
aget P 2, replace each N and E with U and each S and W with D. For




A second conjecture

Conjecture 2. according to the OEIS oracle, the O(¢) reads to all orders

(Oo(p)Op(—p))™
(Oo(p)Oo(—p))©

= (-1

(21 4 2)!2
(1 +2)(1 + 1) Cur €+ 0 (€)

Here is my all loop resummation!




Re-summing the series

The perturbative series for the O(g) result

(21 4 2)!2
(I+2)(1+1)

4 Cout1€+ O (EQ)

can be re-summed using integral form of zeta and = < |

e (i (3] -1) 1) wero@

planar limit
understood




Re-summing the series

The perturbative series for the O(g) result

(21 4 2)!2
I+ 24 i eto (<)

can be re-summed  using integral form of zeta and = < |

ot =1+ [ i (0 (1] -4) 1) wero@

Some colleagues managed to check the
conjecture via a technique called supersymmetric

localization !!!
Pestun 2005, many others...




Re-summing the series

Interpolating function from

weak to strong coupling (Oo(p)Os(—1))
(Oo(p)Oo(—p))"”

can be re-summed

(Oo (P)Oo(—P)> _
(Oo (P) Oo(—p)) %

This invites a holographic calculation of the
correlation function at strong coupling using
AdS/CFT (in d = 4-2¢, though)




Applications

MB in progress I



B
First, get a link on the OEIS

A000888 a(m) = (2*n)!72 [ ((n+1)!*n!A3).

1, 2, 12, 160, 988, 18584, 121968, 1472328, 18404100, 236390440, 3103161776, 41469525552, 562496897872, 7726605740008,
167289439704000, 15603840313184400, 212528020730891300, 302539888334593800, 4334635827016110008, 62464383654579522000,
904841214653480504400

(list; graph; refs; listen; history; text; internal format)

DFFSET 0,2

COMMENTS a(n) is the number of walks of 2n unit steps North, East, South, or West, starting at the origin, bounded
above by y=x, below by y=-x and terminating on the ray y = x == 0. Example: a(l) counts EN, EW; a(2)
counts ESMM, ESNW, ENSN, ENSW, EMEN, EMEW, EENM, EENW, EEWN, EEWW, EWEN, EWEW. - David Callan, Oct 11 28865

Bijective proof: given such an NESW walk, construct a pair (P_1, P 2) of lattice paths of upsteps U=(1,1}
and downsteps D=(1,-1) as follows. To get P 1, replace each E and S with U and each W and N with D. To get
P 2, replace each N and E with U and each S and W with D. For example, EENSNW -= (UUDUDD, UUUDUD). This
mapping is 1-to-1 and its range is the Cartesian product of the set of Dyck n-paths and the set of
nonnegative paths of length 2n. The Dyck paths are counted by the Catalan number C n (AG86108) and the
nonnegative paths are counted (see for example the Callan link) by the central binomial coefficient
binomial({2n,n) (ABB0984). So this is a bijection from these NESW walks to a set of size C n*binomial(2n,n)
= a(n). - David Callan, Sep 18 2007

If A is a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic), then a(n) =
E[(tr(A™3))"{2n}]. - Andrew V. Sutherland, Apr 61 2008

Number of walks within N"2 (the first guadrant of Z"2) starting at (©,0), ending on the vertical axis and
consisting of 2 n steps taken from {(-1,-1), (-1,1}, (1,-1), (1,1)}. - Manuel Kauers, Nov 18 2088

a(n) is egual to the n-th moment of the following positive function defined on x in (@,16), in Maple
notation: (EllipticK(sqrt(1l-x/16}) - EllipticE(sqrt(1l-x/16)})/(Pi*2*sqrt(x)). This is the solution of the
Hausdorff moment problem and thus it is unique. - Karol A. Penson, Feb 11 2811

The partial sums of a(n)/A813709(n) absolutely converge to 1/Pi. - Ralf Steiner, Jan 21 2016

REFERENCES Eldon R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 93.
Thomas M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan & Co., London, 1958, p. 177.

LINKS SERTETLY-ToE LI RLTET.T. 1 N N T T o T 2 T
Marco S. Bianchi, Protected and uniformly transcendental, arXiv:2306.86239 [hep-th], 2023.




Practical application?

* The UT property “predicts” that certain combinations of master
Integrals are of uniform transcendental weight

* This could be useful for reconstructing their analytic expansion
from numerics

* Though at the level | am working (4 loops) Mls have been already
expanded up to transcendentality 12 and most can be made UT

by some overall rescalings
Lee, Smirnov, Smirnov 2011




Practical application?

* The UT property “predicts” that certain combinations of master
Integrals are of uniform transcendental weight

* This could be useful for reconstructing their analytic expansion
from numerics

* Though at the level | am working (4 loops) Mls have been already
expanded up to transcendentality 12 and most can be made UT

by some overall rescalings
Lee, Smirnov, Smirnov 2011

* Our result suggests that we should be able to do better and find a
full basis of uniformly transcendental integrals!




Uniformly transcendental basis

* Let’s try to construct a basis of uniformly transcendental master

Integrals at four loops

MB in progress

Lo S0 o E > &5 oo

<30 €75 ooo- L o <5
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Hidden simplicity

* Let’'s appreciate the UT basis in action

* The four-loop result in a non UT basis looks like

(3e+1)2 2(3e+1) 2(3e+1)(de+1) 16(6e—1)(6e+1)
e(5e+1)®_ Be+1 @_ e(5e+1) @_ (4e+1)(5e+1) @}

20(5e—1)(19¢2+13¢+2) N 8¢ 16(4e—1)(5e—1) (10462 +69¢+10)
+ 3e(3e+1)(5e+1) S (4e+1)(56+1)®_ 9¢2 (4e+1)(5e+1) @

4(6e+1)(2e—1) 4(2e—1) 4(2e—1) 32(363€2+205E+26)(26—1)2
e(de+1) @ s - _®O_ 2 @“ + 9¢2(3e+1)(5e+1)
8(300€2+1426+15 ) (2e—1)? 8(36—1)2(32965+22352+495+4)(26—1) 16(2e—1)2
B 3e2(4e+1)(5e+1) _@_ + 3e3(3e+1)(4e+1)(5e+1) -+ (3e+1)(5e+1)

12(3e—1) (12862 +65¢+8) (2e—1) 0(5e—1)(2e=1) B\ i 16(de—1)(324€?+157e+18) (2e—1)? 8

3 €2(4e+1) (5e+1) €(3e+1) . 3€3(4e+1)(5e+1)
4 4(4e—1)(5e— 1)(35926 +2938¢2 +7616+63 (2¢—1) @ 4(3e—1)(5¢— 1)(5288(—: +2629¢24579¢+38 (26—1)

3e3(3e+1)(4e+1)(5e+1) 9e3(3e+1)(de+1)(5e+1)

20(5¢—1)(2¢—1)2 4(3e—1)(de—1)(5¢—1)(14484¢3+10379¢2+2433¢+190)
B €3 _ 9¢3(3e+1)(4e+1)(5e+1)

48(4e+1)(2e—1) 16(3e—1)(4e—1) (12573 +833¢>+165¢+10 ) (2e—1)
e(be+1) + 9e3(3e+1)(4e+1)(5e+1) @

48(2e—1)2 4(3e—1) (40862 +187c+21) (2c—1)? )3
B O~ - 3 (A1) (5et1) ~DCO-+ & —OOC0-
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Hidden simplicity

* Let’'s appreciate the UT basis in action

* In a UT basis it simplifies to

@

— 40

00 -
g
_6-® s (L

* With only rational coefficients!
» Hallmark of hidden simplicity of N=4 SYM




Conclusions




Conclusions

* Transcendentality has been playing a prominent role in
perturbative calculations in QFTs

* Uniform transcendentality appears in several magnitudes of
N=4SYM

* No deep explication is available for such a property
* Yet it has been leveraged for phenomenological applications

* We have uncovered this property in some new magnitudes:
two-point functions of (lowest dimension) protected operators

* This transcendental structure helped guessing an all-loop re-
summation

* We exposed simplicity by constructing a basis of master
Integrals with manifest uniform transcendentality




Thank youl!
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