

Sixth Workshop on Nonperturbative Aspects of QCD

Universidad Técnica Federico Santa María 03.12.2025

Marco S. Bianchi

Universidad San Sebastián, Santiago, Chile

Transcendental Structures and Nonperturbative Resummation in Supersymmetric Two-Point Functions

Motivation

- What?

- This talk is rooted in **perturbation theory** in *Quantum Field Theory*
- The idea is to explore its structure and **uncover hidden properties**

- Why?

- What kind of **numbers** and **functions** appear in perturbative predictions for physics observables?
- Can we leverage this knowledge to **push computational boundaries** in QFTs?

- How?

- Let us work under the paradigm

Symmetry = Simplicity

and see if we get any mileage

Symmetries on steroids

$N = 4$ SYM in one slide

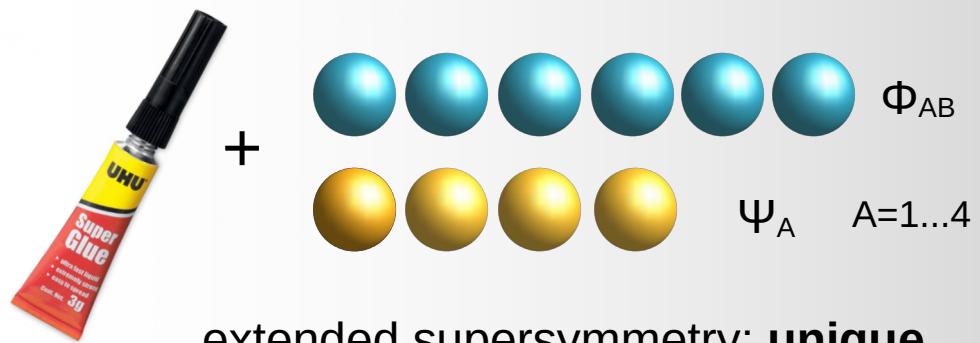
10 d

Yang-Mills $SU(\textcolor{blue}{N})$

four dimensions

$$\mathcal{L} = \text{tr} \left(-\frac{1}{2} F_{MN} F^{MN} + i \bar{\Psi} \Gamma^N \mathcal{D}_N \Psi \right)$$

adjoint matter: gluon +
six scalars + four fermions



$$\lambda = \frac{g^2 N}{16\pi^2}$$

only one coupling g and one parameter $\textcolor{blue}{N}$.
faint *resemblance* with *massless QCD*?

extended supersymmetry: **unique**
interactions

$N = 4$ SYM in one slide

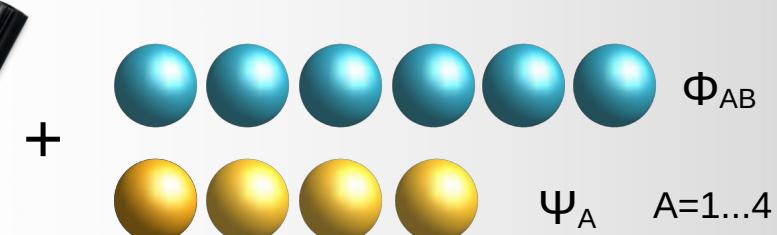
10 d

Yang-Mills $SU(N)$

four dimensions

$$\mathcal{L} = \text{tr} \left(-\frac{1}{2} F_{MN} F^{MN} + i \bar{\Psi} \Gamma^N \mathcal{D}_N \Psi \right)$$

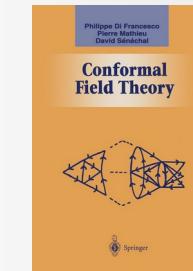
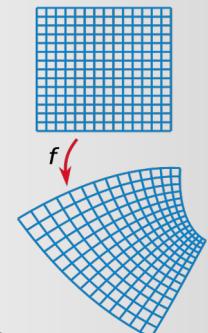
adjoint matter: gluon +
six scalars + four fermions



$$\lambda = \frac{g^2 N}{16\pi^2}$$

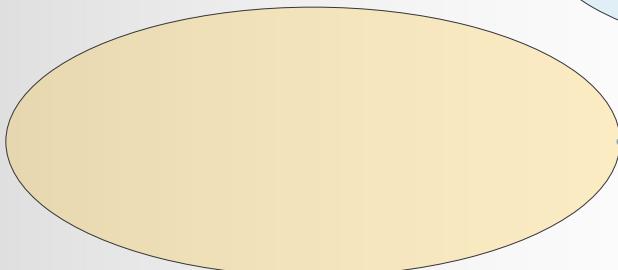
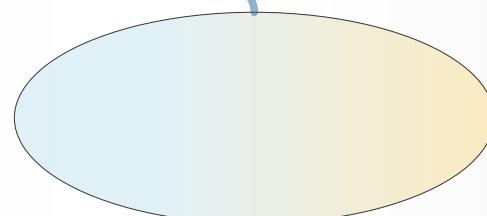
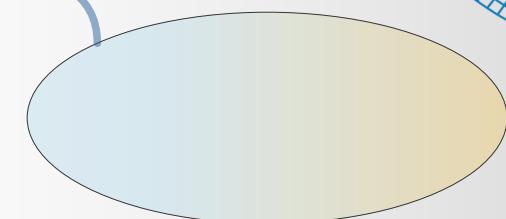
only one coupling g and one parameter N .
faint resemblance with *massless QCD*?

extended supersymmetry: **unique**
interactions



Rich structure:

$N = 4$ is UV finite
conformal: $PSU(2,2|4)$



$N = 4$ SYM holography

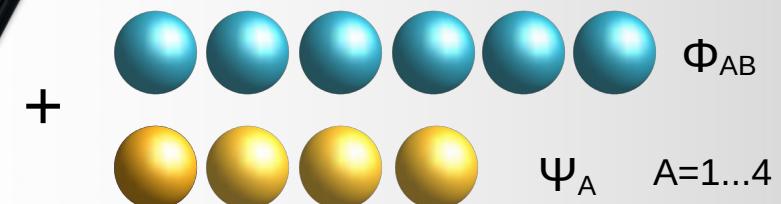
10 d

Yang-Mills $SU(N)$

four dimensions

$$\mathcal{L} = \text{tr} \left(-\frac{1}{2} F_{MN} F^{MN} + i \bar{\Psi} \Gamma^N \mathcal{D}_N \Psi \right)$$

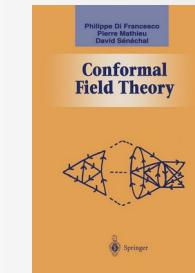
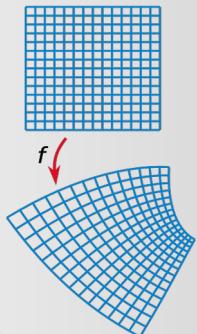
adjoint matter: gluon +
six scalars + four fermions



$$\lambda = \frac{g^2 N}{16\pi^2}$$

only one coupling g and one parameter N .
faint resemblance with *massless QCD*?

extended supersymmetry: **unique**
interactions



Rich structure:

$N = 4$ is UV finite
conformal: $PSU(2,2|4)$

strong coupling dual
IIB strings $AdS_5 \times S^5$

strong coupling

holography

$N = 4$ SYM exact results

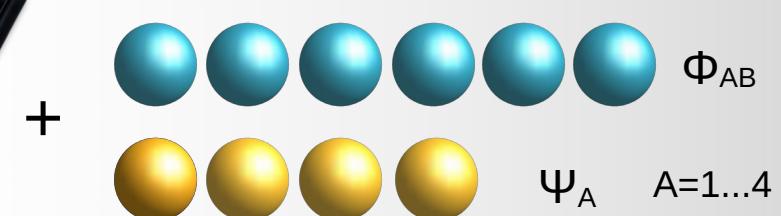
10 d

Yang-Mills $SU(N)$

four dimensions

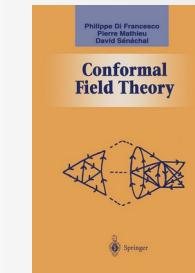
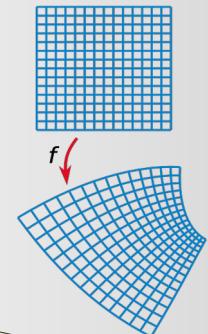
$$\mathcal{L} = \text{tr} \left(-\frac{1}{2} F_{MN} F^{MN} + i \bar{\Psi} \Gamma^N \mathcal{D}_N \Psi \right)$$

adjoint matter: gluon +
six scalars + four fermions



$$\lambda = \frac{g^2 N}{16\pi^2}$$

only one coupling g and one parameter N .
faint resemblance with *massless QCD*?



Rich structure:

$N = 4$ is UV finite
conformal: $PSU(2,2|4)$

**strong coupling dual
IIB strings $AdS_5 \times S^5$**

strong coupling

holography

integrability

**supersymmetry:
*localization***

exact results!!!

$N = 4$ SYM solvability

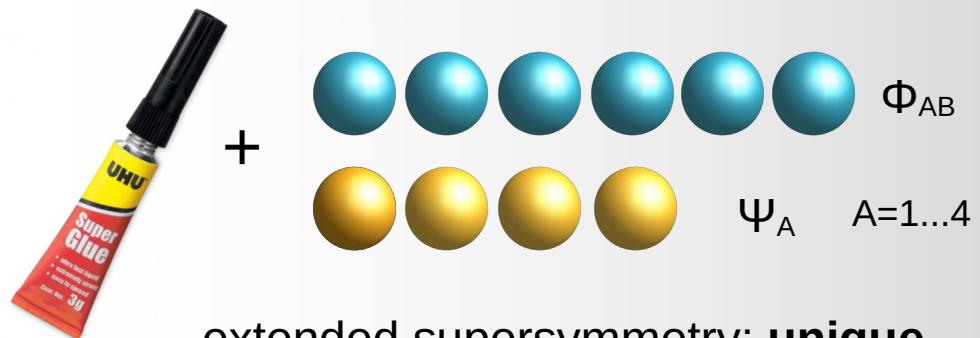
10 d

Yang-Mills $SU(\textcolor{blue}{N})$

four dimensions

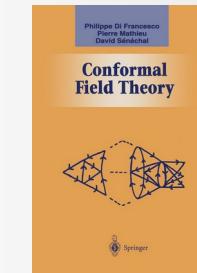
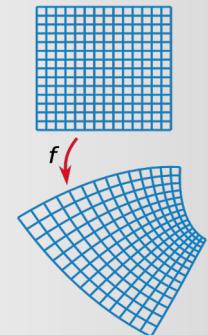
$$\mathcal{L} = \text{tr} \left(-\frac{1}{2} F_{MN} F^{MN} + i \bar{\Psi} \Gamma^N \mathcal{D}_N \Psi \right)$$

adjoint matter: gluon +
six scalars + four fermions

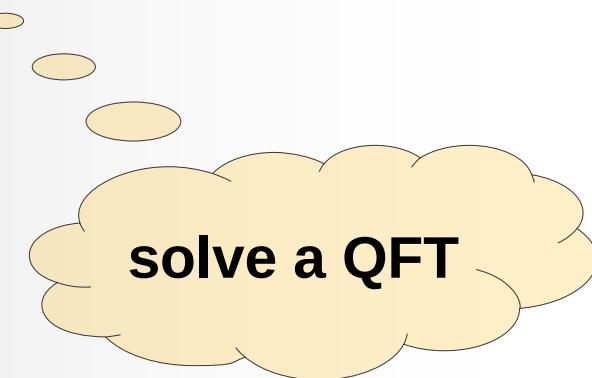


$$\lambda = \frac{g^2 N}{16\pi^2}$$

only one coupling g and one parameter $\textcolor{blue}{N}$.
faint resemblance with *massless QCD*?



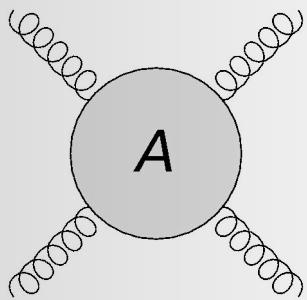
Why it is interesting:



- **inspire** novel techniques
- many data of objects whose perturbative expansion is **similar** to massless QCD counterpart

An example: scattering amplitudes

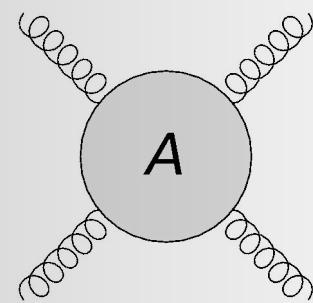
$N = 4$ scattering amplitudes



on-shell methods
Bern et al 1994-

emergent properties of
scattering amplitudes
in $N = 4$ SYM

$N = 4$ scattering amplitudes



progress in
Feynman integrals

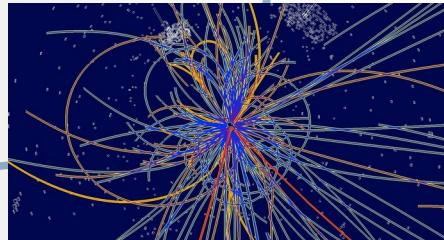
Henn 2013

inspired
advances
in *pheno*

on-shell methods
Bern et al 1994-

uniform
transcendentality

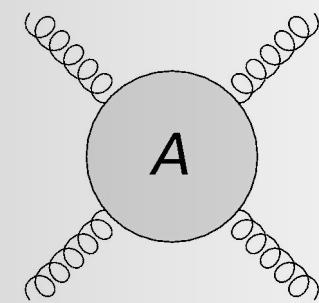
bootstrap methods
Dixon et al 2011-



emergent properties of
scattering amplitudes
in $N = 4$ SYM

Bern et al 2005
BDS
exponentiation

$N = 4$ scattering amplitudes



progress in
Feynman integrals

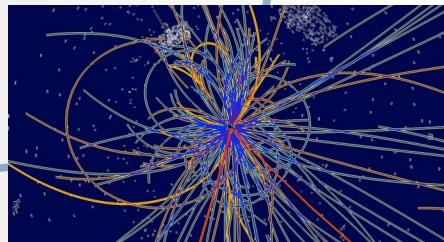
Henn 2013

inspired
advances
in **pheno**

on-shell methods
Bern et al 1994-

uniform
transcendentality

bootstrap methods
Dixon et al 2011-

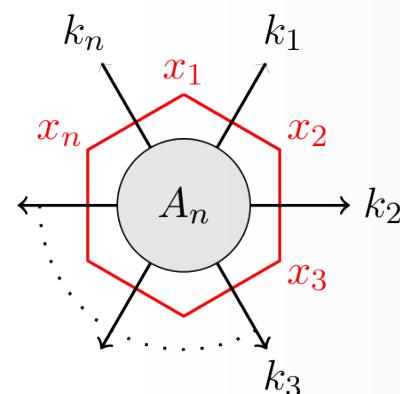


emergent properties of
scattering amplitudes
in $N = 4$ SYM

Drummond et al
2007-2009

duality with
Wilson loops

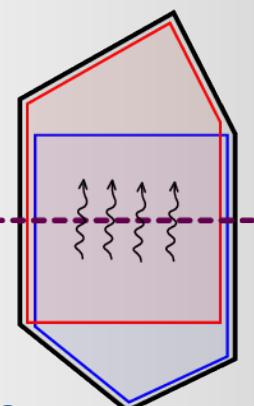
dual conformal /
Yangian **symmetry**



Bern et al 2005
BDS
exponentiation
strong coupling
interpretation
Alday et al 2007

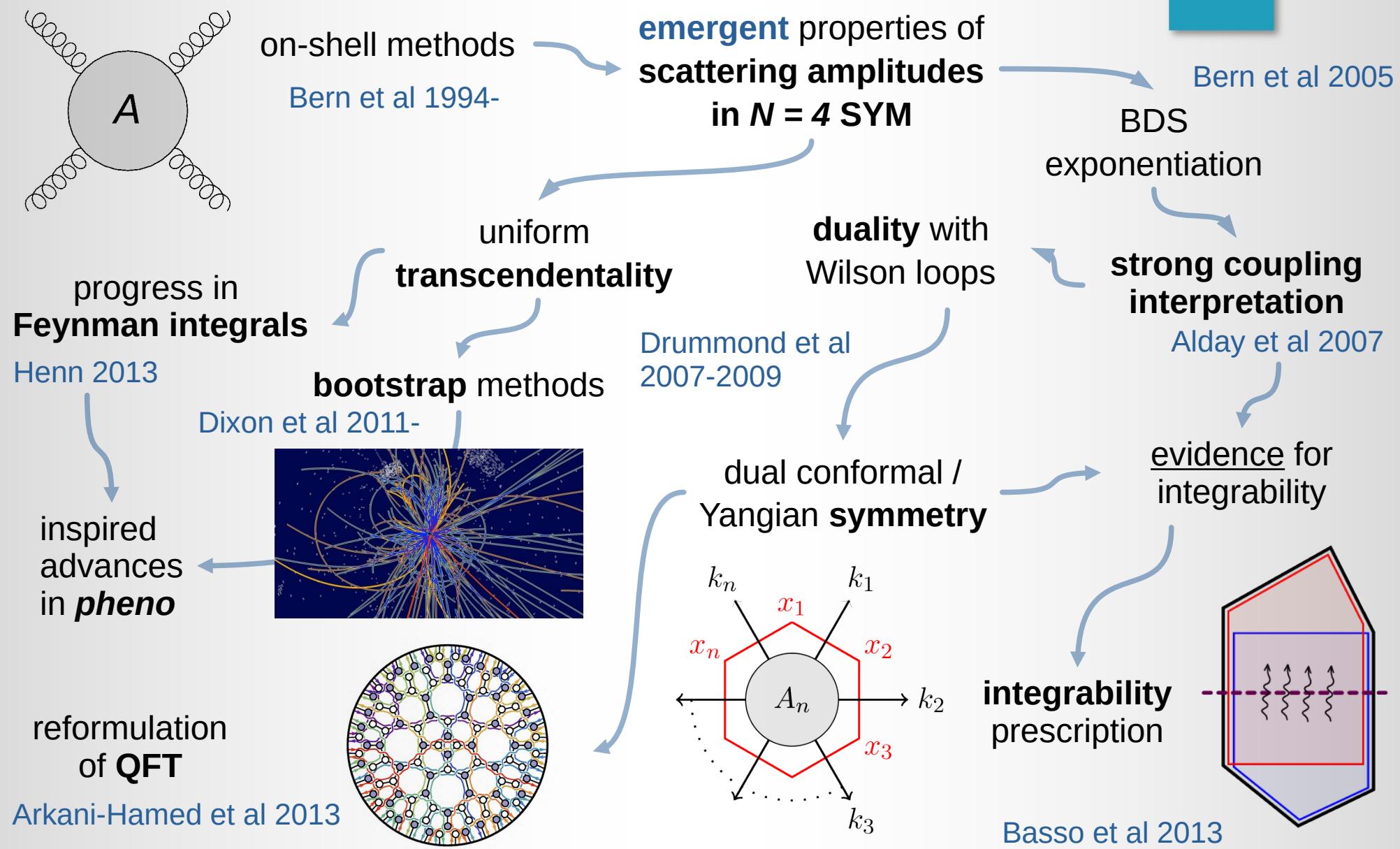
evidence for
integrability

integrability
prescription



Basso et al 2013

$N = 4$ scattering amplitudes



Focus on this: transcendentality

uniform
transcendentality

- Meaning? It is a mathematical property exhibited by the **perturbative series** of certain observables calculated with **dimensional regularization**
- One associates a **degree of transcendentality** to certain **transcendental functions and numbers**
- Uniform transcendentality occurs when such a degree is found to be **fixed** for all terms at each perturbative order

Focus on this: transcendentality

uniform
transcendentality

- Meaning? It is a mathematical property exhibited by the **perturbative series** of certain observables calculated with **dimensional regularization**
- One associates a **degree of transcendentality** to certain **transcendental functions and numbers**
- Uniform transcendentality occurs when such a degree is found to be **fixed** for all terms at each perturbative order
- It is a highly remarkable occurrence with **little explanation**
- It has been leveraged for perturbative calculations of scattering amplitudes, both in **$N = 4$** and for **phenomenological applications**

bootstrap methods
Dixon et al 2011-

canonical form
Henn 2013

The power of transcendentality

Goncharov polylogarithms

In 2008 a bunch of heroes computed a very complicated six-point scattering amplitude at two loops in $N = 4$ SYM

$$\begin{aligned}
 R_{\delta, WL}^{(2)}(u_1, u_2, u_3) = & \frac{1}{24} \pi^2 G\left(\frac{1}{1-u_1}, \frac{u_2-1}{u_1+u_2-1}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_1}, \frac{1}{u_1+u_2}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_1}, \frac{1}{u_1+u_3}; 1\right) + \\
 & \frac{1}{24} \pi^2 G\left(\frac{1}{1-u_2}, \frac{u_3-1}{u_2+u_3-1}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_2}, \frac{1}{u_1+u_2}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_2}, \frac{1}{u_2+u_3}; 1\right) + \\
 & \frac{1}{24} \pi^2 G\left(\frac{1}{1-u_3}, \frac{u_1-1}{u_1+u_3-1}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_3}, \frac{1}{u_1+u_3}; 1\right) + \frac{1}{24} \pi^2 G\left(\frac{1}{u_3}, \frac{1}{u_2+u_3}; 1\right) + \\
 & \frac{3}{2} G\left(0, 0, \frac{1}{u_1}, \frac{1}{u_1+u_2}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_1}, \frac{1}{u_1+u_3}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_2}, \frac{1}{u_1+u_2}; 1\right) + \\
 & \frac{3}{2} G\left(0, 0, \frac{1}{u_2}, \frac{1}{u_2+u_3}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_3}, \frac{1}{u_1+u_3}; 1\right) + \frac{3}{2} G\left(0, 0, \frac{1}{u_3}, \frac{1}{u_2+u_3}; 1\right) - \\
 & \frac{1}{2} G\left(0, \frac{1}{u_1}, 0, \frac{1}{u_2}; 1\right) + G\left(0, \frac{1}{u_1}, 0, \frac{1}{u_1+u_2}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_1}, 0, \frac{1}{u_3}; 1\right) + \\
 & G\left(0, \frac{1}{u_1}, 0, \frac{1}{u_1+u_3}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_1}, \frac{1}{u_1+u_2}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_1}, \frac{1}{u_1+u_3}; 1\right) - \\
 & \frac{1}{2} G\left(0, \frac{1}{u_1}, \frac{1}{u_2}, \frac{1}{u_1+u_2}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_1}, \frac{1}{u_3}, \frac{1}{u_1+u_3}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_2}, 0, \frac{1}{u_1}; 1\right) + \\
 & G\left(0, \frac{1}{u_2}, 0, \frac{1}{u_1+u_2}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_2}, 0, \frac{1}{u_3}; 1\right) + G\left(0, \frac{1}{u_2}, 0, \frac{1}{u_2+u_3}; 1\right) - \\
 & \frac{1}{2} G\left(0, \frac{1}{u_2}, \frac{1}{u_1}, \frac{1}{u_1+u_2}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_2}, \frac{1}{u_2}, \frac{1}{u_1+u_2}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_2}, \frac{1}{u_2}, \frac{1}{u_2+u_3}; 1\right) - \\
 & \frac{1}{2} G\left(0, \frac{1}{u_2}, \frac{1}{u_3}, \frac{1}{u_2+u_3}; 1\right) + \frac{1}{4} G\left(0, \frac{u_2-1}{u_1+u_2-1}, 0, \frac{1}{1-u_1}; 1\right) + \\
 & \frac{1}{4} G\left(0, \frac{u_2-1}{u_1+u_2-1}, \frac{1}{1-u_1}, 0; 1\right) - \frac{1}{4} G\left(0, \frac{u_2-1}{u_1+u_2-1}, \frac{1}{1-u_1}, 1; 1\right) + \\
 & \frac{1}{4} G\left(0, \frac{u_2-1}{u_1+u_2-1}, \frac{1}{1-u_1}, \frac{1}{1-u_1}; 1\right) - \frac{1}{4} G\left(0, \frac{u_2-1}{u_1+u_2-1}, \frac{u_2-1}{u_1+u_2-1}, \frac{1}{1-u_1}; 1\right) - \\
 & \frac{1}{2} G\left(0, \frac{1}{u_3}, 0, \frac{1}{u_1}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_3}, 0, \frac{1}{u_2}; 1\right) + G\left(0, \frac{1}{u_3}, 0, \frac{1}{u_1+u_3}; 1\right) + \\
 & G\left(0, \frac{1}{u_3}, 0, \frac{1}{u_2+u_3}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_3}, \frac{1}{u_1}, \frac{1}{u_1+u_3}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_3}, \frac{1}{u_2}, \frac{1}{u_2+u_3}; 1\right) - \\
 & \frac{1}{2} G\left(0, \frac{1}{u_3}, \frac{1}{u_3}, \frac{1}{u_1+u_3}; 1\right) - \frac{1}{2} G\left(0, \frac{1}{u_3}, \frac{1}{u_3}, \frac{1}{u_2+u_3}; 1\right) + \\
 & \frac{1}{4} G\left(0, \frac{u_1-1}{u_1+u_3-1}, 0, \frac{1}{1-u_3}; 1\right) + \frac{1}{4} G\left(0, \frac{u_1-1}{u_1+u_3-1}, \frac{1}{1-u_3}, 0; 1\right) - \\
 & \frac{1}{4} G\left(0, \frac{u_1-1}{u_1+u_3-1}, \frac{1}{1-u_3}, 1; 1\right) + \frac{1}{4} G\left(0, \frac{u_1-1}{u_1+u_3-1}, \frac{1}{1-u_3}, \frac{1}{1-u_3}; 1\right) - \\
 & \frac{1}{4} G\left(0, \frac{u_1-1}{u_1+u_3-1}, \frac{u_1-1}{1-u_3}, \frac{1}{1-u_3}; 1\right) + \frac{1}{4} G\left(0, \frac{u_3-1}{u_2+u_3-1}, 0, \frac{1}{1-u_2}; 1\right) + \\
 & \frac{1}{4} G\left(0, \frac{u_3-1}{u_2+u_3-1}, \frac{1}{1-u_2}, 0; 1\right) - \frac{1}{4} G\left(0, \frac{u_3-1}{u_2+u_3-1}, \frac{1}{1-u_2}, 1; 1\right) + \\
 & \frac{1}{4} G\left(0, \frac{u_3-1}{u_2+u_3-1}, \frac{1}{1-u_2}, \frac{1}{1-u_2}; 1\right) - \frac{1}{4} G\left(0, \frac{u_3-1}{u_2+u_3-1}, \frac{u_3-1}{u_2+u_3-1}, \frac{1}{1-u_2}; 1\right) - \\
 & \frac{1}{4} G\left(\frac{1}{1-u_1}, 1, \frac{1}{u_3}, 0; 1\right) + \frac{1}{2} G\left(\frac{1}{1-u_1}, \frac{1}{u_3}, 1, \frac{1}{1-u_1}; 1\right) +
 \end{aligned} \tag{H.1}$$

Del Duca et al 2008

In terms of **transcendental**
iterated integrals called
Goncharov polylogarithms

$$G(a_1, \dots, a_n; x) = \int_0^x \frac{dt}{t - a_1} G(a_2, \dots, a_n; t)$$

Transcendental weight
= # iterated integrals

Goncharov polylogarithms

In 2008 a bunch of heroes computed a very complicated six-point scattering amplitude at two loops in $N = 4$ SYM

Del Duca et al 2008

All terms exhibit the **same**
transcendentality weight!

17 pages like that

Goncharov polylogarithms

In 2008 a bunch of heroes computed a very complicated six-point scattering amplitude at two loops in $N = 4$ SYM

Goncharov et al 2010

Thanks to properties of
transcendental functions it
was possible to reduce the
result to

$$R_6^{(2)}(u_1, u_2, u_3) = \sum_{i=1}^3 \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \text{Li}_4(1 - 1/u_i) \right) - \frac{1}{8} \left(\sum_{i=1}^3 \text{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72}$$

New uniformly transcendental magnitudes

MB 2306.06239

My calculation: the simplest ever

For some reason I have been computing **2pt** functions of some **supersymmetric** operators in $N = 4$ SYM of the form

$$O_0 = \text{Tr} (XX) \quad \text{← complex scalars}$$

Their **conformal dimension 2** is **protected** by SUSY **tree level exact** and so are their **2pt** and **3pt** functions in 4 dimensions

protected 2pt functions

For some reason I have been computing **2pt** functions of some **supersymmetric** operators in $N = 4$ SYM of the form

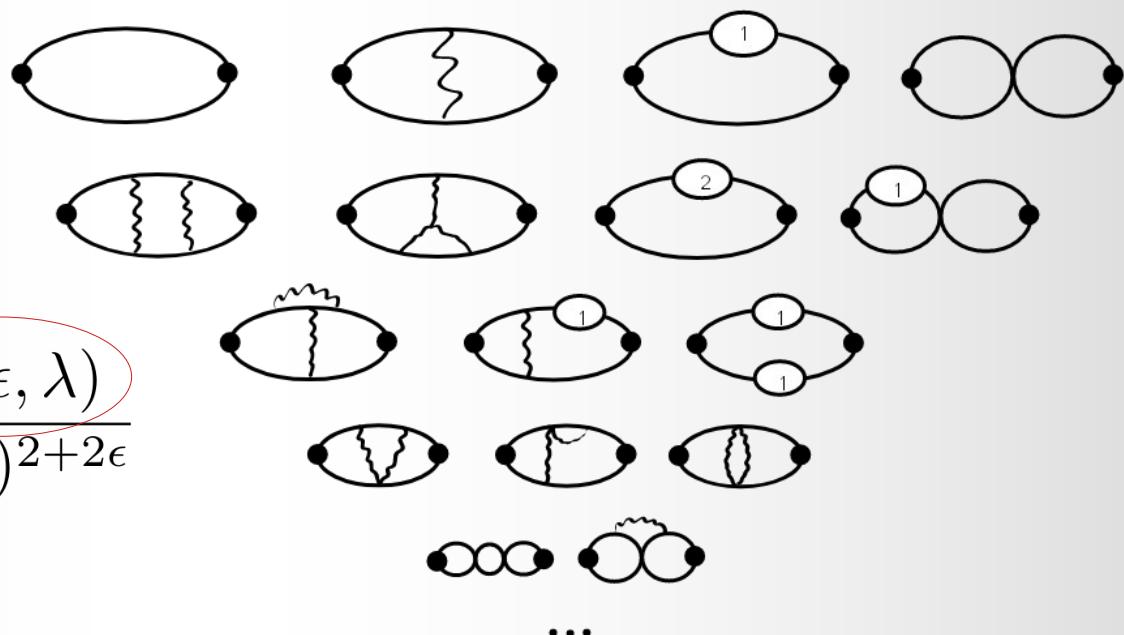
$$O_0 = \text{Tr} (XX) \quad \text{complex scalars}$$

Their **conformal dimension 2** is **protected** by SUSY tree level exact and so are their **2pt** and **3pt** functions in 4 dimensions

Yet, working in $d = 4-2\epsilon$
there can be $O(\epsilon)$
quantum corrections:

$$\langle \mathcal{O}_0(x_1) \mathcal{O}_0(x_2) \rangle = \frac{N(\epsilon, \lambda)}{(x_{12}^2)^{2+2\epsilon}}$$

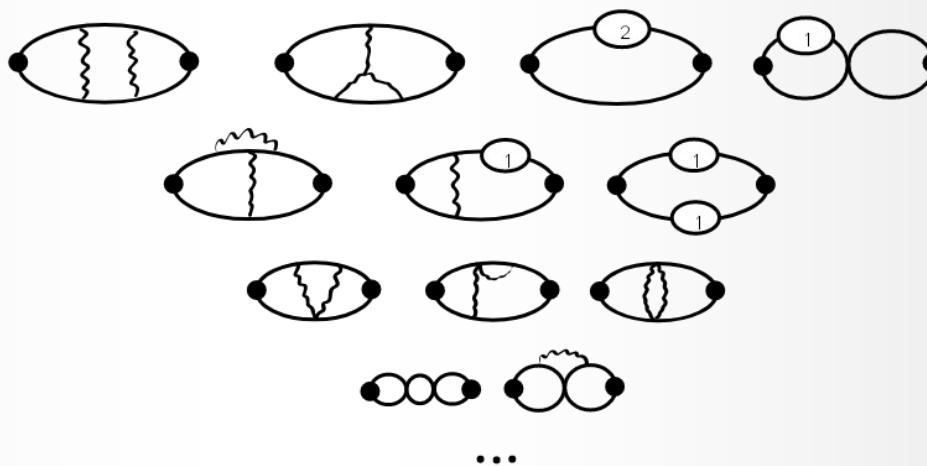
to the 2pt function



Credits

For 2pt-function:

$$\langle O_0(p)O_0(-p) \rangle^{(2)} =$$



Feynman diagram
generation
QGRAF

Nogueira 1993

Feynman diagram
evaluation
FORM
Vermaseren 1991

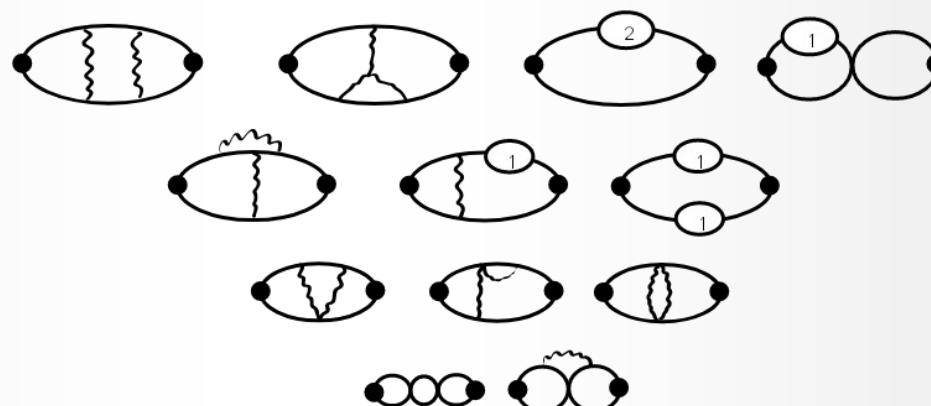
Color package
van Ritbergen et al 1999

Integrals:
→ Master integrals reduction
→ master integral substitution
Forcer
Ruijl et al 2017

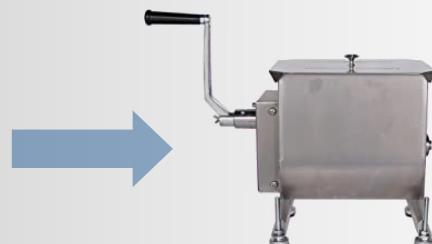
master integrals reduction example

For 2pt-function:

$$\langle O_0(p) O_0(-p) \rangle^{(2)} =$$



master integrals



of protected 2pt functions

For some reason I have been computing **2pt** functions of some **supersymmetric** operators in $N = 4$ SYM of the form

$$O_0 = \text{Tr} (XX) \quad \text{← complex scalars}$$

Their **conformal dimension 2** is **protected** by SUSY **tree level exact** and so are their **2pt** and **3pt** functions in 4 dimensions

Yet, working in $d = 4-2\epsilon$
there can be $O(\epsilon)$
quantum corrections:

$$\langle \mathcal{O}_0(x_1) \mathcal{O}_0(x_2) \rangle = \frac{N(\epsilon, \lambda)}{(x_{12}^2)^{2+2\epsilon}}$$

to the 2pt function

What numbers will appear?

Zeta values and transcendentality

Riemann's Zeta:
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

Example:
$$\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots = 1.202056903159594285399\dots$$

Zeta values and transcendentality

Riemann's Zeta:
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

Multiple zeta values (MZV):
$$\zeta(s_1, \dots, s_k) = \sum_{n_1 > n_2 > \dots > n_k > 0} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}}$$

depth: $d = k$ weight: $w = \sum s_i$ \leftarrow **transcendental weight**

Example: $\zeta(5, 3) = 0.03770767252830723\dots$ $\rightarrow d = 3 ; w = 9$

Zeta values and transcendentality

Riemann's Zeta:
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

Multiple zeta values (MZV):
$$\zeta(s_1, \dots, s_k) = \sum_{n_1 > n_2 > \dots > n_k > 0} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}}$$

depth: $d = k$ weight: $w = \sum s_i$ \leftarrow **transcendental weight**

Why MZVs?

- **Ubiquitous** numbers appearing evaluating Feynman integrals
- *Conjecturally*, they are all **transcendental** numbers
- Linearly **independent** over rationals if their weights are different: vector space is direct sum of subspaces or **graded** \mathbb{Q} -algebra
- w defines **transcendental weight** for MZVs

For instance: QCD beta function

At lowest order:

$$\beta_0 = 11 - \frac{2}{3} n_f$$

n_f is the number of “quarks”

possesses zeta values

At lowest order:

n_f is the number of “quarks”

$$\beta_0 = 11 - \frac{2}{3} n_f$$

At higher order ζ s pop up!

$$\beta_1 = 102 - \frac{38}{3} n_f \quad \beta_2 = \frac{2857}{2} - \frac{5033}{18} n_f + \frac{325}{54} n_f^2$$

$$\begin{aligned} \beta_3 = & \frac{149753}{6} + 3564 \zeta_3 + n_f \left(-\frac{1078361}{162} - \frac{6508}{27} \zeta_3 \right) \\ & + n_f^2 \left(\frac{50065}{162} + \frac{6472}{81} \zeta_3 \right) + \frac{1093}{729} n_f^3 \end{aligned}$$

$$\begin{aligned} \beta_4 = & n_f \left(\frac{4157}{6} + 128 \zeta_3 \right) + n_f^2 \left(-\frac{7462}{9} - 992 \zeta_3 + 2720 \zeta_5 \right) \\ & + n_f^3 \left(-\frac{21758}{81} + \frac{16000}{27} \zeta_3 - \frac{416}{3} \zeta_4 - \frac{1280}{3} \zeta_5 \right) + n_f^4 \left(\frac{856}{243} + \frac{128}{27} \zeta_3 \right) \end{aligned}$$

Quantum corrections

**Back to my
calculation**

Quantum corrections

Back to my calculation

Factoring tree level result

$$\langle O_0(p)O_0(-p) \rangle = 2(N^2 - 1) \text{---} \big(1 + n^{(1)}\lambda + n^{(2)}\lambda^2 + n^{(3)}\lambda^3 + \mathcal{O}(\lambda^4) \big)$$

Quantum corrections are exposed, which are **order ϵ**

$$\lambda = \frac{g^2 N}{16\pi^2}$$

Quantum corrections

Back to my
calculation

Factoring tree level result

$$\langle O_0(p)O_0(-p) \rangle = 2(N^2 - 1) \text{---} \bigcirc \text{---} (1 + n^{(1)}\lambda + n^{(2)}\lambda^2 + n^{(3)}\lambda^3 + \mathcal{O}(\lambda^4))$$

Quantum corrections are exposed, which are **order ϵ**

$$\lambda = \frac{g^2 N}{16\pi^2}$$

@NLO:

in **DimRed scheme**

$$\int d^{4-2\epsilon}l$$

Siegel 1979

$$\begin{aligned} n^{(1)} = & -12\zeta_3\epsilon - 18\zeta_4\epsilon^2 + (6\zeta_2\zeta_3 - 84\zeta_5)\epsilon^3 + \left(64\zeta_3^2 - \frac{657}{4}\zeta_6\right)\epsilon^4 + \left(\frac{741}{4}\zeta_3\zeta_4 + 42\zeta_2\zeta_5\right. \\ & - 588\zeta_7)\epsilon^5 + \left(-32\zeta_2\zeta_3^2 + \frac{3872}{5}\zeta_5\zeta_3 - \frac{18285}{16}\zeta_8\right)\epsilon^6 + \left(-\frac{566}{3}\zeta_3^3 + \frac{46647}{32}\zeta_6\zeta_3 + \frac{22287}{20}\zeta_4\zeta_5\right. \\ & + 294\zeta_2\zeta_7 - 4260\zeta_9)\epsilon^7 + \left(-813\zeta_4\zeta_3^2 - \frac{1936}{5}\zeta_2\zeta_5\zeta_3 + \frac{35824}{7}\zeta_7\zeta_3 + \frac{11424}{5}\zeta_5^2 - \frac{4843593}{640}\zeta_{10}\right)\epsilon^8 \\ & + \left(\frac{283}{3}\zeta_2\zeta_3^3 - \frac{49702}{15}\zeta_5\zeta_3^2 + \frac{2493779}{256}\zeta_8\zeta_3 + \frac{1366341}{160}\zeta_5\zeta_6 + \frac{205683}{28}\zeta_4\zeta_7 + 2130\zeta_2\zeta_9\right. \\ & - 31836\zeta_{11})\epsilon^9 + \left(\frac{10784}{27}\zeta_3^4 - \frac{49421}{8}\zeta_6\zeta_3^2 - \frac{47524}{5}\zeta_4\zeta_5\zeta_3 - \frac{17912}{7}\zeta_2\zeta_7\zeta_3 + \frac{108544}{3}\zeta_9\zeta_3 - \frac{5712}{5}\zeta_2\zeta_5^2\right. \\ & \left. + \frac{149328}{5}\zeta_5\zeta_7 - \frac{71432982333}{1415168}\zeta_{12}\right)\epsilon^{10} + \mathcal{O}(\epsilon^{11}) \end{aligned}$$

Quantum corrections

Back to my calculation

Factoring tree level result

$$\langle O_0(p)O_0(-p) \rangle = 2(N^2 - 1) \text{---} \big(1 + n^{(1)}\lambda + n^{(2)}\lambda^2 + n^{(3)}\lambda^3 + \mathcal{O}(\lambda^4) \big)$$

Quantum corrections are exposed, which are **order ϵ**

$$\lambda = \frac{g^2 N}{16\pi^2}$$

@NLO: w=2

w=3-1

w=4-2

w=5-3

w=6-4

w=7-5

$$w(\mathcal{E}) = -1$$

$$\begin{aligned}
n^{(1)} = & -12\zeta_3\epsilon - 18\zeta_4\epsilon^2 + (6\zeta_2\zeta_3 - 84\zeta_5)\epsilon^3 + \left(64\zeta_3^2 - \frac{657}{4}\zeta_6\right)\epsilon^4 + \left(\frac{741}{4}\zeta_3\zeta_4 + 42\zeta_2\zeta_5\right. \\
& - 588\zeta_7\left.\right)\epsilon^5 + \left(-32\zeta_2\zeta_3^2 + \frac{3872}{5}\zeta_5\zeta_3 - \frac{18285}{16}\zeta_8\right)\epsilon^6 + \left(-\frac{566}{3}\zeta_3^3 + \frac{46647}{32}\zeta_6\zeta_3 + \frac{22287}{20}\zeta_4\zeta_5\right. \\
& + 294\zeta_2\zeta_7 - 4260\zeta_9\left.\right)\epsilon^7 + \left(-813\zeta_4\zeta_3^2 - \frac{1936}{5}\zeta_2\zeta_5\zeta_3 + \frac{35824}{7}\zeta_7\zeta_3 + \frac{11424}{5}\zeta_5^2 - \frac{4843593}{640}\zeta_{10}\right)\epsilon^8 \\
& + \left(\frac{283}{3}\zeta_2\zeta_3^3 - \frac{49702}{15}\zeta_5\zeta_3^2 + \frac{2493779}{256}\zeta_8\zeta_3 + \frac{1366341}{160}\zeta_5\zeta_6 + \frac{205683}{28}\zeta_4\zeta_7 + 2130\zeta_2\zeta_9\right. \\
& - 31836\zeta_{11}\left.\right)\epsilon^9 + \left(\frac{10784}{27}\zeta_3^4 - \frac{49421}{8}\zeta_6\zeta_3^2 - \frac{47524}{5}\zeta_4\zeta_5\zeta_3 - \frac{17912}{7}\zeta_2\zeta_7\zeta_3 + \frac{108544}{3}\zeta_9\zeta_3 - \frac{5712}{5}\zeta_2\zeta_5^2\right. \\
& + \frac{149328}{5}\zeta_5\zeta_7 - \frac{71432982333}{1415168}\zeta_{12}\left.\right)\epsilon^{10} + \mathcal{O}(\epsilon^{11})
\end{aligned}$$

Heuristic uniform transcendentality

@NNLO:

$$n^{(2)} = 100\zeta_5\epsilon + (244\zeta_3^2 + 250\zeta_6)\epsilon^2 + (732\zeta_3\zeta_4 - 100\zeta_2\zeta_5 + 1718\zeta_7)\epsilon^3 + \left(\frac{7288}{3}\zeta_5\zeta_3 - \frac{1296}{5}\zeta_{5,3} - 244\zeta_2\zeta_3^2 + \frac{179647}{30}\zeta_8\right)\epsilon^4 + \left(-\frac{10712}{3}\zeta_3^3 + \frac{10717}{3}\zeta_6\zeta_3 + 5763\zeta_4\zeta_5 - 1718\zeta_2\zeta_7 + \frac{221140}{9}\zeta_9\right)\epsilon^5 + \left(\frac{1296}{5}\zeta_2\zeta_{5,3} - \frac{16014}{7}\zeta_{7,3} - 15641\zeta_4\zeta_3^2 - \frac{7288}{3}\zeta_2\zeta_5\zeta_3 + \frac{23420}{3}\zeta_7\zeta_3 + \frac{140021431}{1400}\zeta_{10} - \frac{4278}{7}\zeta_5^2\right)\epsilon^6 + \left(9504\zeta_3\zeta_{5,3} - \frac{58592}{5}\zeta_{5,3,3} + \frac{10712}{3}\zeta_2\zeta_3^3 - \frac{3124952}{45}\zeta_5\zeta_3^2 - \frac{836833}{18}\zeta_8\zeta_3 + \frac{164813}{4}\zeta_5\zeta_6 + \frac{276033}{10}\zeta_4\zeta_7 + \frac{36679873}{30}\zeta_{11} - \frac{4967092}{9}\zeta_2\zeta_9\right)\epsilon^7 + \mathcal{O}(\epsilon^8)$$

@NNNLO:

$$n^{(3)} = -980\zeta_7\epsilon + (-5560\zeta_3\zeta_5 - 3430\zeta_8)\epsilon^2 + \left(-\frac{17560}{3}\zeta_3^3 - 13900\zeta_6\zeta_3 - 8340\zeta_4\zeta_5 + 1470\zeta_2\zeta_7 - \frac{292220}{9}\zeta_9\right)\epsilon^3 + \left(\frac{18330}{7}\zeta_{7,3} - 26340\zeta_4\zeta_3^2 + 8340\zeta_2\zeta_5\zeta_3 - 76170\zeta_7\zeta_3 - \frac{391050}{7}\zeta_5^2 - \frac{4537861}{28}\zeta_{10}\right)\epsilon^4 + \left(64368\zeta_3\zeta_{5,3} - 77152\zeta_{5,3,3} + 8780\zeta_2\zeta_3^3 + 52040\zeta_5\zeta_3^2 - 384846\zeta_8\zeta_3 + \frac{40041999}{8}\zeta_{11} - \frac{179855}{2}\zeta_5\zeta_6 - \frac{10269410}{3}\zeta_2\zeta_9 - \frac{1616769}{4}\zeta_4\zeta_7\right)\epsilon^5 + \left(70184\zeta_4\zeta_{5,3} + \frac{1223545}{7}\zeta_2\zeta_{7,3} - \frac{178720}{3}\zeta_{6,4,1,1} - \frac{1569410}{9}\zeta_{9,3} + \frac{1620880}{9}\zeta_3^4 + \frac{218205}{2}\zeta_6\zeta_3^2 - \frac{2257405}{6}\zeta_4\zeta_5\zeta_3 + \frac{2129965}{3}\zeta_2\zeta_7\zeta_3 - \frac{39914030}{27}\zeta_9\zeta_3 + \frac{6138365}{21}\zeta_2\zeta_5^2 - \frac{1883141}{3}\zeta_5\zeta_7 - \frac{400117736081}{66336}\zeta_{12}\right)\epsilon^6 + \mathcal{O}(\epsilon^7)$$

Heuristic uniform transcendentality

@NNLO: **w=4**

$$n^{(2)} = 100\zeta_5\epsilon + (244\zeta_3^2 + 250\zeta_6)\epsilon^2 + (732\zeta_3\zeta_4 - 100\zeta_2\zeta_5 + 1718\zeta_7)\epsilon^3 + \left(\frac{7288}{3}\zeta_5\zeta_3 - \frac{1296}{5}\zeta_{5,3} - 244\zeta_2\zeta_3^2 + \frac{179647}{30}\zeta_8\right)\epsilon^4 + \left(-\frac{10712}{3}\zeta_3^3 + \frac{10717}{3}\zeta_6\zeta_3 + 5763\zeta_4\zeta_5 - 1718\zeta_2\zeta_7 + \frac{221140}{9}\zeta_9\right)\epsilon^5 + \left(\frac{1296}{5}\zeta_2\zeta_{5,3} - \frac{16014}{7}\zeta_{7,3} - 15641\zeta_4\zeta_3^2 - \frac{7288}{3}\zeta_2\zeta_5\zeta_3 + \frac{23420}{3}\zeta_7\zeta_3 + \frac{140021431}{1400}\zeta_{10} - \frac{4278}{7}\zeta_5^2\right)\epsilon^6 + \left(9504\zeta_3\zeta_{5,3} - \frac{58592}{5}\zeta_{5,3,3} + \frac{10712}{3}\zeta_2\zeta_3^3 - \frac{3124952}{45}\zeta_5\zeta_3^2 - \frac{836833}{18}\zeta_8\zeta_3 + \frac{164813}{4}\zeta_5\zeta_6 + \frac{276033}{10}\zeta_4\zeta_7 + \frac{36679873}{30}\zeta_{11} - \frac{4967092}{9}\zeta_2\zeta_9\right)\epsilon^7 + \mathcal{O}(\epsilon^8)$$

@NNNLO: **w=6**

$$n^{(3)} = -980\zeta_7\epsilon + (-5560\zeta_3\zeta_5 - 3430\zeta_8)\epsilon^2 + \left(-\frac{17560}{3}\zeta_3^3 - 13900\zeta_6\zeta_3 - 8340\zeta_4\zeta_5 + 1470\zeta_2\zeta_7 - \frac{292220}{9}\zeta_9\right)\epsilon^3 + \left(\frac{18330}{7}\zeta_{7,3} - 26340\zeta_4\zeta_3^2 + 8340\zeta_2\zeta_5\zeta_3 - 76170\zeta_7\zeta_3 - \frac{391050}{7}\zeta_5^2 - \frac{4537861}{28}\zeta_{10}\right)\epsilon^4 + \left(64368\zeta_3\zeta_{5,3} - 77152\zeta_{5,3,3} + 8780\zeta_2\zeta_3^3 + 52040\zeta_5\zeta_3^2 - 384846\zeta_8\zeta_3 + \frac{40041999}{8}\zeta_{11} - \frac{179855}{2}\zeta_5\zeta_6 - \frac{10269410}{3}\zeta_2\zeta_9 - \frac{1616769}{4}\zeta_4\zeta_7\right)\epsilon^5 + \left(70184\zeta_4\zeta_{5,3} + \frac{1223545}{7}\zeta_2\zeta_{7,3} - \frac{178720}{3}\zeta_{6,4,1,1} - \frac{1569410}{9}\zeta_{9,3} + \frac{1620880}{9}\zeta_3^4 + \frac{218205}{2}\zeta_6\zeta_3^2 - \frac{2257405}{6}\zeta_4\zeta_5\zeta_3 + \frac{2129965}{3}\zeta_2\zeta_7\zeta_3 - \frac{39914030}{27}\zeta_9\zeta_3 + \frac{6138365}{21}\zeta_2\zeta_5^2 - \frac{1883141}{3}\zeta_5\zeta_7 - \frac{400117736081}{66336}\zeta_{12}\right)\epsilon^6 + \mathcal{O}(\epsilon^7)$$

w(ϵ)=-1

w=10-4

Uniform transcendentality conjecture

Observation: up to NNNLO quantum corrections exhibit **uniform transcendentality**

Conjecture 1: the perturbative series of 2pt functions of $N = 4$ SYM dimension-2 protected operators in dimensional regularization has **uniform transcendental weight $2L$ @ loop L** to ***all orders***

Uniform transcendentality conjecture

Observation: up to NNNLO quantum corrections exhibit **uniform transcendentality**

Conjecture 1: the perturbative series of 2pt functions of $N = 4$ SYM dimension-2 protected operators in dimensional regularization has **uniform transcendental weight $2L$ @ loop L** to ***all orders***

Non-MZV numbers are expected to appear in propagator integrals @8 loops. If they also appear in the two-point function, some extension in defining *transcendentality* beyond MZVs is required. But they might not ...

Panzer et al 2017

Uniform transcendentality conjecture

Observation: up to NNNLO quantum corrections exhibit **uniform transcendentality**

Conjecture 1: the perturbative series of 2pt functions of $N = 4$ SYM dimension-2 protected operators in dimensional regularization has **uniform transcendental weight $2L$ @ loop L** to ***all orders***

Non-MZV numbers are expected to appear in propagator integrals @8 loops. If they also appear in the two-point function, some extension in defining *transcendentality* beyond MZVs is required. But they might not ...

Panzer et al 2017

Can we infer a pattern for the *leading terms* highlighted in ?

Ask the OEIS

Reconstruct sequence for red circled $O(\varepsilon)$ terms: **ask OEIS**

The OEIS is supported by [the many generous donors to the OEIS Foundation](#).

founded in 1964 by N. J. A. Sloane

[Search](#) [Hints](#)

(Greetings from [The On-Line Encyclopedia of Integer Sequences!](#)!)

A000888 $a(n) = (2*n)!^2 / ((n+1)!*n!^3).$

17

1, 2, 12, 100, 980, 10584, 121968, 1472328, 18404100, 236390440, 3103161776, 41469525552, 562496897872, 7726605740000, 107289439704000, 1503840313184400, 21252802073091300, 302539888334593800, 4334635827016110000, 62464383654579522000, 904841214653480504400 ([list](#); [graph](#); [refs](#); [listen](#); [history](#); [text](#); [internal format](#))

OFFSET 0,2

COMMENTS $a(n)$ is the number of walks of $2n$ unit steps North, East, South, or West, starting at the origin, bounded above by $y=x$, below by $y=-x$ and terminating on the ray $y = x \geq 0$. Example: $a(1)$ counts EN, EW; $a(2)$ counts ESNN, ESNW, ENSN, ENSW, ENEN, ENEW, EENN, EENW, EEWN, EEW, EWEN, EEW. - [David Callan](#), Oct 11 2005

Bijective proof: given such a NESW walk, construct a pair (P_1, P_2) of lattice paths of upsteps $U=(1,1)$ and downsteps $D=(1,-1)$ as follows. To get P_1 , replace each E and S with U and each W and N with D. To get P_2 , replace each N and E with U and each S and W with D. For

A second conjecture

Conjecture 2: according to the OEIS oracle, the $O(\epsilon)$ reads to all orders

$$\frac{\langle O_0(p)O_0(-p) \rangle^{(l)}}{\langle O_0(p)O_0(-p) \rangle^{(0)}} = (-1)^l \frac{(2l+2)!^2}{(l+2)(l+1)!^4} \zeta_{2l+1} \epsilon + \mathcal{O}(\epsilon^2)$$

Here is my all loop resummation!

Re-summing the series

The perturbative series for the $O(\epsilon)$ result

$$\frac{\langle O_0(p)O_0(-p) \rangle^{(l)}}{\langle O_0(p)O_0(-p) \rangle^{(0)}} = (-1)^l \frac{(2l+2)!^2}{(l+2)(l+1)!^4} \zeta_{2l+1} \epsilon + \mathcal{O}(\epsilon^2)$$

can be **re-summed** using integral form of zeta and $\Sigma \leftrightarrow \int$

$$\frac{\langle O_0(p)O_0(-p) \rangle}{\langle O_0(p)O_0(-p) \rangle^{(0)}} = 1 + \int_0^\infty \frac{2}{e^x - 1} \left({}_2F_3 \left(\begin{matrix} \frac{3}{2}, \frac{3}{2} \\ \frac{1}{2}, 2, 3 \end{matrix} \middle| -4x^2\lambda \right) - 1 \right) dx \epsilon + \mathcal{O}(\epsilon^2)$$

planar limit
understood

Re-summing the series

The perturbative series for the $O(\epsilon)$ result

$$\frac{\langle O_0(p)O_0(-p) \rangle^{(l)}}{\langle O_0(p)O_0(-p) \rangle^{(0)}} = (-1)^l \frac{(2l+2)!^2}{(l+2)(l+1)!^4} \zeta_{2l+1} \epsilon + \mathcal{O}(\epsilon^2)$$

can be **re-summed** using integral form of zeta and $\Sigma \leftrightarrow \int$

$$\frac{\langle O_0(p)O_0(-p) \rangle}{\langle O_0(p)O_0(-p) \rangle^{(0)}} = 1 + \int_0^\infty \frac{2}{e^x - 1} \left({}_2F_3 \left(\begin{matrix} \frac{3}{2}, \frac{3}{2} \\ \frac{1}{2}, 2, 3 \end{matrix} \middle| -4x^2\lambda \right) - 1 \right) dx \epsilon + \mathcal{O}(\epsilon^2)$$

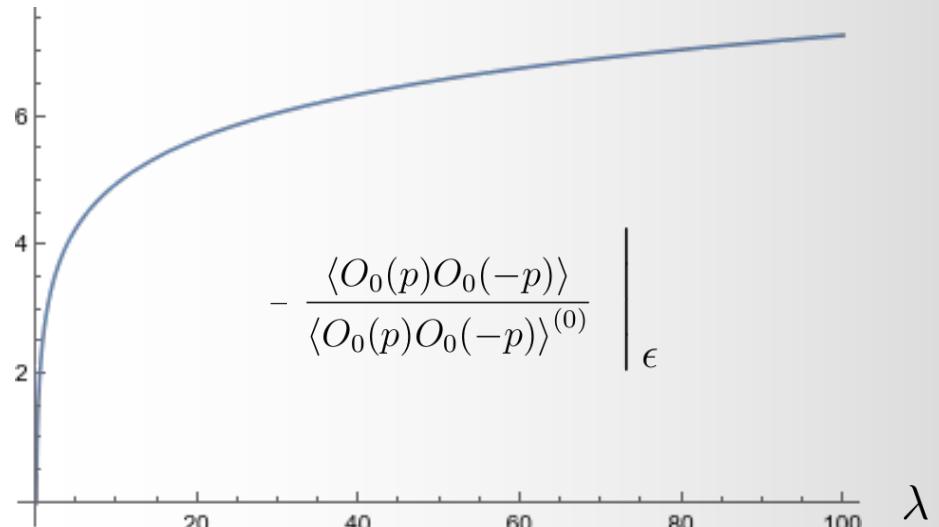
Some colleagues managed to check the conjecture via a technique called supersymmetric localization !!!

Pestun 2005, many others...

Re-summing the series

interpolating function from
weak to strong coupling

can be **re-summed**



$$\frac{\langle O_0(p)O_0(-p) \rangle}{\langle O_0(p)O_0(-p) \rangle^{(0)}} = 1 + \int_0^\infty \frac{2}{e^x - 1} \left({}_2F_3 \left(\begin{matrix} \frac{3}{2}, \frac{3}{2} \\ \frac{1}{2}, 2, 3 \end{matrix} \middle| -4x^2\lambda \right) - 1 \right) dx \epsilon + \mathcal{O}(\epsilon^2)$$

This **invites a holographic calculation** of the
correlation function at strong coupling using
AdS/CFT (**in $d = 4-2\epsilon$, though**)

?

Applications

MB in progress

First, get a link on the OEIS

A000888	$a(n) = (2^n)!^2 / ((n+1)!^n n!^3)$	+40 18
	1, 2, 12, 100, 980, 10584, 121968, 1472328, 18404100, 236390440, 3103161776, 41469525552, 562496897872, 7726605740000, 107289439704000, 1503840313184400, 21252802073091300, 302539888334593800, 4334635827016110000, 62464383654579522000, 904841214653480504400	
	(list ; graph ; refs ; listen ; history ; text ; internal format)	
OFFSET	0, 2	
COMMENTS	a(n) is the number of walks of $2n$ unit steps North, East, South, or West, starting at the origin, bounded above by $y=x$, below by $y=-x$ and terminating on the ray $y = x \geq 0$. Example: $a(1)$ counts EN, EW; $a(2)$ counts ESNN, ESNW, ENSN, ENSW, ENEN, ENEW, EENN, EENW, EEWN, EEWW, EWEN, EEW. - David Callan , Oct 11 2005 Bijective proof: given such an NESW walk, construct a pair (P_1, P_2) of lattice paths of upsteps $U=(1,1)$ and downsteps $D=(1,-1)$ as follows. To get P_1 , replace each E and S with U and each W and N with D. To get P_2 , replace each N and E with U and each S and W with D. For example, EENSNW \rightarrow (UUDDUD, UUUDDU). This mapping is 1-to-1 and its range is the Cartesian product of the set of Dyck n -paths and the set of nonnegative paths of length $2n$. The Dyck paths are counted by the Catalan number C_n (A000108) and the nonnegative paths are counted (see for example the Callan link) by the central binomial coefficient $\binom{2n}{n}$ (A000984). So this is a bijection from these NESW walks to a set of size $C_n \cdot \binom{2n}{n} = a(n)$. - David Callan , Sep 18 2007 If A is a random matrix in $USp(4)$ (4 X 4 complex matrices that are unitary and symplectic), then $a(n) = E[(\text{tr}(A^3))^{\{2n\}}]$. - Andrew V. Sutherland , Apr 01 2008 Number of walks within N^2 (the first quadrant of Z^2) starting at $(0,0)$, ending on the vertical axis and consisting of $2n$ steps taken from $\{(-1,-1), (-1,1), (1,-1), (1,1)\}$. - Manuel Kauers , Nov 18 2008 $a(n)$ is equal to the n -th moment of the following positive function defined on x in $(0,16)$, in Maple notation: $(\text{EllipticK}(\sqrt{1-x/16}) - \text{EllipticE}(\sqrt{1-x/16})) / (\text{Pi}^2 \cdot \sqrt{x})$. This is the solution of the Hausdorff moment problem and thus it is unique. - Karol A. Penson , Feb 11 2011 The partial sums of $a(n)/A013709(n)$ absolutely converge to $1/\text{Pi}$. - Ralf Steiner , Jan 21 2016	
REFERENCES	Eldon R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 93. Thomas M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan & Co., London, 1958, p. 177.	
LINKS	Vincenzo Librandi , Table of n, a(n) for n = 0..100 Marco S. Bianchi , Protected and uniformly transcendental , arXiv:2306.06239 [hep-th], 2023.	

Practical application?

- The UT property “***predicts***” that certain combinations of master integrals are of uniform transcendental weight
- This could be **useful** for **reconstructing** their **analytic** expansion from numerics
- Though at the level I am working (4 loops) MIs have been already expanded up to transcendentality 12 and **most** can be made UT by some overall rescalings

Lee, Smirnov, Smirnov 2011

Practical application?

- The UT property “***predicts***” that certain combinations of master integrals are of uniform transcendental weight
- This could be **useful** for **reconstructing** their **analytic** expansion from numerics
- Though at the level I am working (4 loops) MIs have been already expanded up to transcendentality 12 and **most** can be made UT by some overall rescalings

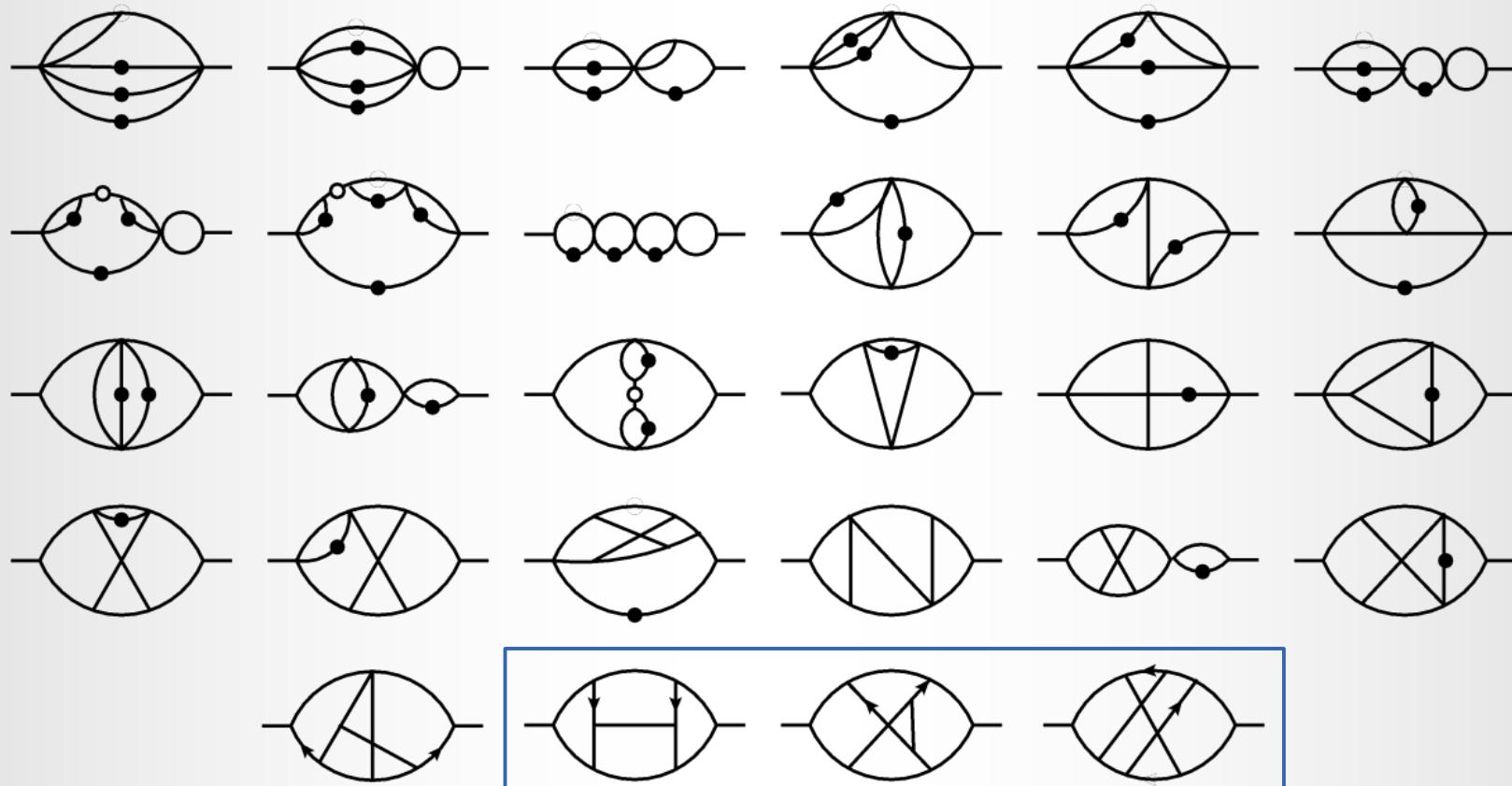
Lee, Smirnov, Smirnov 2011

- Our result suggests that we should be able to do better and find a **full basis of uniformly transcendental integrals!**

Uniformly transcendental basis

- Let's try to construct a basis of uniformly transcendental master integrals at four loops

MB in progress



Hidden simplicity

- Let's appreciate the UT basis in action
- The four-loop result in a non UT basis looks like

$$\begin{aligned}
 & \frac{(3\epsilon+1)^2}{\epsilon(5\epsilon+1)} \text{---} \text{---} \frac{2(3\epsilon+1)}{5\epsilon+1} \text{---} \text{---} \frac{2(3\epsilon+1)(4\epsilon+1)}{\epsilon(5\epsilon+1)} \text{---} \text{---} \frac{16(6\epsilon-1)(6\epsilon+1)}{(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & + \frac{20(5\epsilon-1)(19\epsilon^2+13\epsilon+2)}{3\epsilon(3\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \frac{8\epsilon}{(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \frac{16(4\epsilon-1)(5\epsilon-1)(104\epsilon^2+69\epsilon+10)}{9\epsilon^2(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & - \frac{4(6\epsilon+1)(2\epsilon-1)}{\epsilon(4\epsilon+1)} \text{---} \text{---} + \frac{4(2\epsilon-1)}{\epsilon} \text{---} \text{---} + \frac{4(2\epsilon-1)}{\epsilon} \text{---} \text{---} + \frac{32(363\epsilon^2+205\epsilon+26)(2\epsilon-1)^2}{9\epsilon^2(3\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & - \frac{8(300\epsilon^2+142\epsilon+15)(2\epsilon-1)^2}{3\epsilon^2(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} + \frac{8(3\epsilon-1)^2(329\epsilon^3+223\epsilon^2+49\epsilon+4)(2\epsilon-1)}{3\epsilon^3(3\epsilon+1)(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} + \frac{16(2\epsilon-1)^2}{(3\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & - \frac{12(3\epsilon-1)(128\epsilon^2+65\epsilon+8)(2\epsilon-1)}{\epsilon^2(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} + \frac{60(5\epsilon-1)(2\epsilon-1)}{\epsilon(3\epsilon+1)} \text{---} \text{---} + \frac{16(4\epsilon-1)(324\epsilon^2+157\epsilon+18)(2\epsilon-1)^2}{3\epsilon^3(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & + \frac{4(4\epsilon-1)(5\epsilon-1)(3592\epsilon^3+2938\epsilon^2+761\epsilon+63)(2\epsilon-1)}{3\epsilon^3(3\epsilon+1)(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} - \frac{4(3\epsilon-1)(5\epsilon-1)(3288\epsilon^3+2629\epsilon^2+579\epsilon+38)(2\epsilon-1)}{9\epsilon^3(3\epsilon+1)(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & - \frac{20(5\epsilon-1)(2\epsilon-1)^2}{\epsilon^3} \text{---} \text{---} - \frac{4(3\epsilon-1)(4\epsilon-1)(5\epsilon-1)(14484\epsilon^3+10379\epsilon^2+2433\epsilon+190)}{9\epsilon^3(3\epsilon+1)(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & - \frac{48(4\epsilon+1)(2\epsilon-1)}{\epsilon(5\epsilon+1)} \text{---} \text{---} + \frac{16(3\epsilon-1)(4\epsilon-1)(1257\epsilon^3+833\epsilon^2+165\epsilon+10)(2\epsilon-1)}{9\epsilon^3(3\epsilon+1)(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} \\
 & - \frac{48(2\epsilon-1)^2}{\epsilon^2} \text{---} \text{---} - \frac{4(3\epsilon-1)(408\epsilon^2+187\epsilon+21)(2\epsilon-1)^2}{\epsilon^3(4\epsilon+1)(5\epsilon+1)} \text{---} \text{---} + \frac{8(2\epsilon-1)^3}{\epsilon^3} \text{---} \text{---} \\
 \end{aligned}$$

Hidden simplicity

- Let's appreciate the UT basis in action
- In a UT basis it simplifies to

$$\begin{aligned} & - \text{Diagram 1} \frac{127}{6} + \text{Diagram 2} \frac{112}{9} + \text{Diagram 3} \frac{16}{3} + \text{Diagram 4} \frac{269}{6} \\ & + \text{Diagram 5} \frac{512}{3} + \text{Diagram 6} \frac{56}{3} + \text{Diagram 7} \frac{176}{9} - 29 \text{Diagram 8} \\ & - 40 \text{Diagram 9} - 15 \text{Diagram 10} - 58 \text{Diagram 11} + 8 \text{Diagram 12} - 48 \text{Diagram 13} \\ & - 48 \text{Diagram 14} + 240 \text{Diagram 15} + 66 \text{Diagram 16} + 12 \text{Diagram 17} + 8 \text{Diagram 18} \\ & - 6 \text{Diagram 19} + 32 \text{Diagram 20} + 4 \text{Diagram 21} - 4 \text{Diagram 22} + 8 \text{Diagram 23} \end{aligned}$$

Diagrams are represented as horizontal lines with vertices and internal lines connecting them. Vertices are marked with dots (black or white) and lines are solid or dashed. Coefficients are rational numbers.

- With **only rational coefficients!**
- Hallmark of hidden simplicity of $N=4$ SYM

Conclusions

Conclusions

- **Transcendentality** has been playing a prominent role in perturbative calculations in QFTs
- **Uniform transcendentality** appears in several magnitudes of $N = 4$ SYM
- **No deep explication** is available for such a property
- Yet it has been **leveraged** for phenomenological applications
- We have uncovered this property in some **new magnitudes: two-point functions** of (lowest dimension) protected operators
- This transcendental structure helped guessing an **all-loop resummation**
- We exposed simplicity by constructing a **basis** of master integrals with manifest **uniform transcendentality**

Thank you!