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Chiral effects in heavy-ion collisions

QCD domains with P and CP
symmetries locally broken
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Interpretation of the results complicated by background contributions
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Observables %

ALICE
1 dN |
2 / iAo ~ 14 2v] 4 cos(AQq) +2a; o SIN(AQy) + 2V, cOS(2AQg) + ...,
o
‘NB S v;

2-part|C|e Correlator STAR, PRC 81, 054908 (2009)
Ny 8, =(cos[m(p,~@,)])
b [N
e | 5, : <COS<¢a_ ¢b)>:<cos[(¢a_lpRP)_<¢b_quP>]>
< ' ﬂ '1 =(cos(A @,—A @,))=(v, .V, ) +(a, ,a, ,)+B,,+ By,
*2:
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Observables

ALICE
1 dN
dAQq

~ 1+2v) o cos(AQy) + 2a; o SIN(AQy ) +2V2 4 COS(2AQy ) + ...
_—

‘ <l 2-particle correlator
+

STAR, PRC 81, 054908 (2009)
6, =(cos[m(p,—@,)])

<C05(¢a_ ¢b)>:<COS[( ¢a_lpRP)_<¢b_lPRP)]>
:<COS(A @A @b)>:<V1,a vl,b>+<al,aal,b>+Bin+Bout

e G

N

3_part|C|e correlator S. Voloshin, PRC 70, 057901 (2004)
ym,n:<cos(m (pa+n (pb_(m+n)ql|m+n|)>

<C05( @t ¢b_21PRP)>:<COS[( ¢a_lpRP)+( §0b_1PRP)]>
:<COS(A @,—A wb)>:<v1,aVl,b>_<a1,aal,b>+Bin_Bout
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Observables

ALICE
dN '
2 1 iAo ~ 142V 4 c0s(AQy) + 201 o SIN(AQy ) +2v2 o COS(2AQg ) + ...,
c
Lor B ‘ = = - -
_/j 2-partIC|e Correlator STAR, PRC 81, 054908 (2009)
s 6,=(cos[m(@,—,)])
{

<COS<¢a_ gﬁb)>:<COS[( qpa_lpRP)_<¢b_lPRP)]>
:<COS(A @A (ﬂb)>:<vl,a vl,b>+<al,aal,b>+Bin+Bout
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3-particle correlator

“F m,n ; ; m+n

<C05( @t ¢b_2lPRP)>:<COS[(¢a_qJRP)+(¢b_1PRP)]>
:<COS(A gpa_A gpb)>:<v1,aVl,b>_<a1,aal,b>+Bin_Bout
B, and B_, background contributions projected onto Wre and perpendicular to it

Bin o Bout o v2,cluster < COs ( ¢a+ gpb T 2 (pcluster ) >
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Anisotropic flow

ALICE
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Anisotropic flow
ALICE

high pressure
at center Pressure gradients (larger in the x
direction) push bulk “out” - “flow”

X
More particles seen in the x-direction

dN/do
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Anisotropic flow: initial spatial anisotropy — final
momentum anisotropy via collective interactions
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Anisotropic flow
ALICE

high pressure
at center Pressure gradients (larger in the x
direction) push bulk “out” - “flow”

X
More particles seen in the x-direction

dN/d¢

12v,cos(n(g—W,))
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Anisotropic flow %
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high pressure
at center Pressure gradients (larger in the x
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Anisotropic flow

. ALICE
high pressure
at center Pressure gradients (larger in the x
X» direction) push bulk “out” - “flow”

More particles seen in the x-direction

J. Bernhard et al., NP 19 (2019) 1113

€
dN/do

A — T i Water
0 P

SN_ 1 ]

EE 2n ppoTdy(1+Z ZVHCOS(H(QD_WH)) E » P

« Anisotropic flow: initial spatial anisotropy — final = | | vzﬂ
momentum anisotropy via collective interactions :

- V» quantify the event anisotropy ]
0.1 5 Quark—gluon plasma /

* Characterize key QGP properties like viscosity E | | | | |
2.0 25

0 0.5 1.0 15

- Nearly perfect fluid: 1/41 < n/s < 3/4m T
A. Dobrin - WONPAQCD 2025
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A Large lon Collider Experiment

* Inner Tracking System (ITS)

ALICE

- Tracking, vertexing

* Time Projection Chamber (TPC)

- Tracking, vertexing, particle identification based on
specific energy loss, ¥,

«  Time-of-Flight (TOF)

- Particle identification based on flight time

-
* VO detector
- Triggering, centrality, ¥,
* Track selection
- 02<p,<5GeVic, |n <0.8
q, selection v/CME/Y, n + Pb—Pb at Vsw = 5.02 TeV
VoC TPC VOA . - ~235M events
-3.7<n<-1.7 -0.8<n<0.8 2.8<n<3.1 n «  Xe—Xe at Vs = 5.44 TeV

12/02/25 A. Dobrin - WONPAQCD 2025 - ~1Mevents 12



CME @ LHC

ALICE
ALICE, EPJC 84, 813 (2024)
000 5 o, =02 Tov (sTAR) @ « Strong centrality dependence consistent with naive
® Pb-Pb, 5., =2.76 TeV ® expectations from CME
Pb—Pb, sNN=5.02 TeV . . .
- | i 0 * Similar magnitude between RHIC and LHC
0.002 : I
< O m — Different dilution effects (3x larger dN.w/dn at LHC than at
SR RHIC)
H o %
D‘D‘ D.- L - Different magnitude of the magnetic field
STAR (b) * Large contribution from background — local charge
— | Lo P2 Geve » conservation (LCC) coupled with anisotropic flow
o " S. Schlichting and S. Pratt, PRC 83, 014913 (2011)
A\ ALICE
= 0'5_0.2<pT<5GewG D. — Various approaches used to disentangle signal from
}:‘} i <0.8 D.‘ 4 background
< Cog Dq;. * Vary the background (v2) — event shape engineering
ot - « “Killing” the signal (B) — higher harmonics

0 10 20 30 40 50 60 70 +  Vary the signal (B) — different collision systems
Centrality (%)

12/02/25 A. Dobrin - WONPAQCD 2025 13



CME @ LHC

ALICE
-3 -3
1OX‘IIOI T T I T T T | T T T T | T T T T I T T T //\\ 1i<‘]ol T T I T T T | T T T T | T T T T I T T T ]
 ALICE Preliminary Pb-Pb | & - ALICE Preliminary Pb-Pb .
= 5.02 TeV (JHEP,09,160 (2020)) 5.36 TeV - \fO.S_* ]
| 0S o h-h O h-h i & %, i
I SS e h-h ® h-h 5 T §
© 5 ? - S o 0 ]
I g | VO gy g g g
»

L i &~ [ L ]
e . - K .
i o i 0.5F -
) P » o 4 - 5.02TeV (JHEP,09,160 (2020)) 5.36 TeV "
B % 2 e - 0s 0 h-h o h-h -
o — R — e R EtR L L LI LI L — " ss e h-h ® h-h i

) I - I L1 11 | I - | I T - I L1 11 | ) I T - [ ) I - ) I - I L1 | I - | I T - I L1 11 | ) - [ ) I -
0 10 20 30 40 50 60 70 _b 10 20 30 40 50 60 70
Centrality (%) Centrality (%)

* (Almost) no dependence on collision energy
- Non-flow contributions affect measurements in peripheral collisions

12/02/25 A. Dobrin - WONPAQCD 2025 14



ALICE

Varying the background using
event shape engineering
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—e— no cuts
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5F | S A0 <
= ={ 107 8 E
4F 1 = :
N: ] = 10 3:
10 il
2 10 |
1
1

Ohn |||||IIIIL|JII|II-II|III|_L|_|_|_|£

00 0.020.040.060.08 0.1 0.120.140.160.18 0.2 DR | TR | A
J. Schukraft et al., PLB 719, 394 (2013) v, 0 005 01 015 02 025 03
H. Petersen et al., PRC 88, 044918 (2013) Va

P. Huo et al., PRC 90, 024910 (2014)

» Select events with similar centralities and different shapes based on the event-by-event
flow/eccentricity fluctuations

Flow vector q,, distribution
Qn,X:ZCOS(n(pi) Qn:Qn,x’iQn,y
q,=1Q,|IIN M

Qn,y:Z sin(n (pi)

12/02/25 A. Dobrin - WONPAQCD 2025 16



CME with ESE (1)

ALICE

~ I I I I I I

Y - A
é ALICE Preliminary o
ﬂ. i Pb-Pb \s, = 5.02 TeV D EID 3
& 01 | 0.2< pT < 5.0 GeV/c |T]] < 0.8(; El]j ijD !':‘DD ]
G O s 2 &
> B o § 5] c& -
o ) o . 0 H
I B - S \ Large-q,: 10% high
(o}

i g CCC“ 0 0-10% q, B 50-60% q, '\’
0.05— ¥ 6110-20% q,  [B160-70% g, ]|

2 _
g o ©20-30%¢q,  18170-80%q, | Small-q.: 10% low
F 6 30-40% g 8 80-90% g, 2
d;g 2 2
- 9 40-50% q, 1 90-100% q,
- ® unbiased -

I I I I l 1
0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60%

Centrality

« @,”° used to select events with 30% larger or 25% smaller v, than the average

12/02/25 A. Dobrin - WONPAQCD 2025 17



CME with ESE (1)

ALICE

~ [ [ [ [ [ [ | ] "’o [ [ [ [ [ [
é ALICE Preliminary = - Pb-Pb (s, =5.02 TeV ALICE Preliminary -
a Pb-Pb |[Sy, = 5.02 TeV 3 g X% - 02<p <50GeV/c [n<0.8 .
o [ 02<p_<5.0Gev/c In<08 ” g bl = O [, T IS e Yo m
wo oot T §f F ¥ - T — TR e qual -
=i i DD L ] & c&c i | Qg -
g 5 & Large-q.: 10% high | oppsign same sign "% -
B K & \ 2 o 0-10%q, © 0-10%q, N,
= F & -0.2~ mi10-20%q, o1 10-20% g, 0, —
F o | m20-30% q, o1 20-30% q, % i
i ¥ © 0-10% g, B 50-60% q, | | m 28_28(?0 q, ®© 4318_‘5180;0 q, ®, |
[ o o - -50% q -50% q. ()
0.05 5 ! ©10-20%q,  [B/60-70%q, - 5 50-60%q. o 50-60% g % ¢ .
B 0]20-30% q 0 70-80%q. A - o _ | & 60-70% q 9 60-70% g o
P i 630-40%q. '8 80-90%q. - Small-q,: 10% low P40 m7osow g, i70-80% g, )
| T e [ @ 80-90%q, 19 80-90% q, P |
40-50% q, 90-100% q, - 90-100% g, o 90-100% g, ¢ -
- ® unbiased - | ml unbiased @] unbiased i
| 1 1 | | | -0.6 | 1 1 | | |
0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60%
Centrality Centrality

« @,”° used to select events with 30% larger or 25% smaller v, than the average
* Ve contains potential CME signal as well as background effects
- Background contributions are suppressed at the level of v,

L depends on the event shape selection in a given centrality bin
12/02/25 A. Dobrin - WONPAQCD 2025 18



x10°

CME with ESE (11)

I T T
| ALICE Preliminary
Pb—Pb s, = 5.02 TeV
[ 0.2< p,<5.0GeV/c |n <08

ol 0-5%

¢]¢¢

4007
=]

5-10%

10-20%
20-30%
30-40%
40-50%
50-60%

0.2

) Bf B & O

A |
0.04

0.06

N
0.08

* v, (opp-same) can be used to study the CME

Difference is positive for all centrality classes and decreases with centrality and v, (in a given
centrality bin)

12/02/25 A. Dobrin - WONPAQCD 2025
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CME with ESE (11)

%1073 dN/dn: ALICE, PRL 116, 222302 (2016)
) T T T I T T T I T T T I I I T I T t T T T I Ll L] L] I L] L] T 1 T T T 1 T T L} I T L] L] I L]
5 | ALICE Preliminary <] i 2 [ ALICE Preliminary ]
T Pb—Pb |5, = 5.02 TeV ' e Z 0.1 Pb-Pb |5, =5.02TeV E s
g 04~ gocp <50GeVic g <0.8 940 ] v L 02<p.<50GeV/ic [n]<0.8 ¥ -
= T i — T * &
- I8l 0-5% e } £ & Lesap o .
L o 5-10% il 3 T 1
&1 10-20% T “""*&ﬁ 1
: - =S a 13 -
a1 20-30% =2 Jogel o1 0-5%
0.2 % 30-40% . F —] T 0.05F ;"%ﬂ o 5-10% _
i 40-50% T 1 n Eﬁjﬂﬂ #10-20% -
&1 50-60% * i o §20-30% |
i LA T & % 30-40%
i ———1 R i - % 40-50%
ole...... g e i : 9 50-60% -
PR I T T N T S T N PR T T R N S T T IR 0 PR S S NN SR ST T [N T T SR AN TR SR SO T T TN S N N S R N
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12
Vo Vo

* v, (opp-same) can be used to study the CME

Difference is positive for all centrality classes and decreases with centrality and v, (in a given
centrality bin)

Difference approximately scales with v, and multiplicity — mostly background contribution
A. Dobrin - WONPAQCD 2025
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Does magnetic field depend on v, in
initial state models?

ALICE

= T T I L] I T L] T I L] L} T I L] T L] I T L] L] I T L] T I L] L] T
_g [ 0 50-60% ¢ 10-20% ALICE Simulation i
_Z 0.015 | © 40-50% O 5-10% Pb—Pb sy = 5.02 TeV —
& [ % 30-40% © 05% Slavber MG soooooog  eBE(r,n,x,) = +Zagy sinh(Y, T 1) f d*x' po(2')[1 — 0= (x')]
gy - ¢ 20-30% —linear fit 5 ,
3 - o 7 T, —x)xe
2 0.01- - ] " (x, J_.} . -
£ [ a® RIS (&, — @)%+ 2sinh(Yp F 1)
@, oo W
] i . & wx X * ] D. Kharzeev et al., NPA 803, 227 (2008)
o> 0.005 I~ * ) M R AR LIae i
i : nx X o ¢ i
~ 3} B * g 9
#L:J%‘)oo Wd}ﬁﬁ****ﬁ*##
" i
1 e
L 1 L | L 1 L 1 _ 1 | L |

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Glauber: M. Miller et al, ARNPS 57, 205 (2007) Vo

« Perform a MC Glauber simulation to evaluate the dependence of the CME signal on v,

- Parameters are tuned to ALICE results
— Calculate magnetic field at the origin using spectators with the proper time 1=0.1 fm

- <|BJ*cos(2(W¥,-¥,))>, the expected contribution of the CME to y_,, shows a strong dependence on v

12/02/25 A. Dobrin - WONPAQCD 2025 21



Relating data and models

x107°
@ S B S B B B I - — T T T

8 ALICE Preliminary " E,xdﬂ i % C 0 50-60% ¢ 10-20%  ALICE Simulation i
. pa | T PR Y Sy =002 Tel 0b7 _ 2 0.015 © 40-50% © 510% Pb—Pb ysyy = 5.02 TeV —
o5 [ 02<p,<50GeVic Inl<08 9Ty i s [ % 3040% o 05% ClatberMG . o BRI ]
- g_?o/o/ - iy - ¢ 20-30% —linear fit =
- [m] —10% . = X B 2 e ]
& 10-20% ol = 0011 R —
[ W 20-30% o i > N o> B
0.2 'x= 30-40% o L Sl”_), | BT " *W i
B 40-50% sa® T i 8 i o e B 66006000009
& 50-60% *__w—*‘*’* “6—30.005 — b * i o o 0 0 2
.- LB jaaj o -
- ----linear fit —— y ~ ql - 25 o o
- +¢'€°° ﬁwﬂ-**‘ﬁ’%ﬂ’***ﬁ% _
i g papBews s 7 ¥4 ¥ R -
0 fsmesmmens _m_ga _ _______ E(f? 1_3 ____________________________________________ _ 0}s 58 o-o.a.o-o-o-g.g..g.?.?-?..Ei.lz.]-?-l.j.lj..n. ....... ]
R T T T T i s sl vs s les el es el s osleqg il igelsys

0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 VO.16
2

Va Glauber: M. Miller et al, ARNPS 57, 205 (2007)

« Fity, (opp-same) and <|BJ*cos(2(W¥,-W¥,))> with a linear function to disentangle the potential CME signal
from background

Pl(v2):p0(1+p1(v2—<v2>)/<v2>)

12/02/25 A. Dobrin - WONPAQCD 2025 22



Slopes of data and model fits

Q T I 1 L] T L] I L] T T 1 I 1 1 T
- |, Pb-Pb \Syn = 502 TeV ALICE Preliminary 4
_L 02<p, <50GeV/c |y <0.8 )
L R S g s —
i . e Data * |
B o MC-Glauber 7
B ¢ TRENTo i
0.5 —
|— 4} —
(@) o (@]
L o N -
(@]
- i o -
= @
Glauber: M. Miller et al, ARNPS 57, 205 (2007) N T Y T e
TRENTO: J. Moreland et al, PRC 92, 011901 (2015) 0 10 20 30 40 50 60

Centrality (%)

« Extract the CME fraction, f, _ relating the slopes of data and model fits according to

fCME*pl,MC"'(l _fCME) *1=D; daa
« Assumption: background contribution scales linearly with v, and the corresponding slope is unity
12/02/25 A. Dobrin - WONPAQCD 2025 23



CME fraction

L'EJ _' LI 1 1 ] 1 ] |

0.4 2 -

0.2 — —

ol %H ......... o TR s S -

_02F - ]

0 | ALICE Preliminary o MC-Glauber -

- | Pb-Pb {5, =5.02 TeV s T_ENTo -

04l 02<p <50GeVic li<038 h

Glauber: M. Miller et al, ARNPS 57, 205 (2007) 5 '1'0' s '2'0' — '3'0' s '4'0' — '5'0' —

TRENTO: J. Moreland et al, PRC 92, 011901 (2015) Centrality (O/ )
o

 CME fraction in 0-5% is currently statistically limited
e Combining the points from 5-60% gives
- fove (Glauber) = 0.028 + 0.021 — 7% at 95% C.L.

~  foue (TRENTO) = 0.025 + 0.018 — 6% at 95% C.L.
12/02/25 A. Dobrin - WONPAQCD 2025
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ALICE

“Killing” the signal using higher harmonics
ALICE, JHEP 09, 160 (2020)
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2-particle correlators

ALICE
x10° . . 10° . .
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3-particle correlators

ALICE
_ S 10 :
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3-particle correlators
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Centrality (%)

Centrality (%)

ALICE

Y11 and y1.3 sensitive to CME
Y12 and y22 probe only the background

Significant charge dependence, except y22

- Increases from central to peripheral collisions
Y11 and yi2 used to estimate the background
contribution to y11

AY1.1 = K2 A0 e
ke 2 K2
A'}’I,Z ~ K’3V3A61 S A 1.1 NAYI,Q X ——

V3 K3
AYr 2 = K4V4AO)
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* Consistent with 0 for 0-40% and then becomes negative

L

ALICE Pb-Pb m =2.76 TeV
o Data (Stat. Uncert.)

sl Correlated Uncert.

—-0.021+ 0.045 (fit)

o

1020 30 40 50
Centrality (%)

(o]
o

* Combining the points from 0—-40%

12/02/25

feve?™® ™V = -0.021 + 0.045 — 18% at 95% C.L.
feme®92™Y = 0.003 + 0.029 — 15% at 95% C.L.

CME fraction

(®)

ALICE
| S B S NN
- ALICE Pb-Pb |5 = 5.02 TeV ]
0.81 o Data (Stat. Urm@.) =
0.6 &8 Correlated Uncert. =
c —0.003 £ 0.029 (fit) .
0.4 E
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O35 ¢ E
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kg
N
AY1 1
Assumption: K» ~ K3

foMe=1—
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12/v2/25

ALICE, arXiv: 2211.04384

Model comparisons

Pb—Pb, |5, =502 TeV (c)
W ALICE
Blast wave + LCC
FEH AVFD (ng/s = 0.03-0.06 - LCC = 30-60%)
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Centrality (%)

ALICE
» Blast-Wave + Local Charge Conservation (LCC)

- Tune the parameters in each centrality class to reproduce v,
and pr spectra of , K, p

- Tune the number of sources emitting balancing pairs

- Underestimates Ay1,1 by up to =40%
* Disagreement increases from central to peripheral collisions

* Anomalous Viscous Fluid Dynamics (AVFD)
- EbyE IC + E/M fields (field lifetime as input)

- Tune the parameters in each centrality class to reproduce v,
and mU|t|p|IC|ty P. Christakoglou et al., EPJC 81, 717 (2021)

- Good agreement with data points

* Non-zero values for signal S. Shi et al., AP 394, 50 (2018)

Y. Jiang et al., CPC 42, 011001 (2018)
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Varying the signal using different collision systems:

Xe—Xe vs Pb—Pb collisions
ALICE, PLB 856, 138862 (2024)
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CME in Xe—Xe collisions
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« y .. consistent with charge separation
 0_: background dominates
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Model comparisons

ALICE

» Blast-Wave + Local Charge Conservation (LCC)

* Tune the parameters in each centrality class to reproduce
v, and pr spectra of m, K, p

* Tune the number of sources emitting balancing pairs

* Describes fairly well the measured data points
* Background dominates measurements
* Not observed in Pb-Pb collisions

* Anomalous Viscous Fluid Dynamics (AVFD)
 EbyE IC + E/M fields (field lifetime as input)

* Tune the parameters in each centrality class to
reproduce v, and multiplicity p. christakogiou etal., EPJC 81, 717 (2021)

* Good agreement with data points

« Signal consistent with zero S. Shietal., AP 394, 50 (2018)

Y. Jiang et al., CPC 42, 011001 (2018)
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(®)

ALICE
© [ ALCE
s g 02<p <5.0GeVic B
) i e SR
R ., @p B * Strong dependence on the charge
4— B - - - - -
: o @ elead * ualitatively similar centrality

2] o % " o Tt .-'-‘:a - ependence
‘2 3 & 9 % i od.yB8c ~ Larger magnitude in Xe—Xe than in
- - = o . n @ g ]

. U i .'. """""""""" E L e R TR e ..n. """ R i """ T E| Pb—Pb COI ISIONS

S | XeXesy=544TeV = P Pb-Pb s, =5.02 TeV * Dilution effects arising from different

x% ® same sign :l \ W same sign number of particles ( ME ~ 1/M)

B T o ' PN *  Similar values in Xe—Xe and Pb—Pb
o o e B A B e R Hic Co - al -
R - o Sat R collisions within uncertainties (vs
- . ) f':| [ " L | ” chh/drI)

j R A
vy L
070 20 30 20 50 80 0 500 1000 1500 2000
Centrality (%) dN,,/dn
ALICE, JHEP 09, 160 (2020) ALICE, PRL 116, 222302 (2016)

ALICE, PLB 790, 35 (2019)
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CME fraction in Xe—Xe and Pb—Pb collisions

ALICE
% O ALICE
D - L
* | 02<p <50GeVic _[|, 8N Xe-Xeysy,=5.44TeV
= <08 AR WEN Pb-Pb |5, =5.02 TeV
Es
u%j:%
' 5 B
4 ¢ t
2 § 8
88 ¢ ¢
- . - ] .l ..
_.- .. .. [ | - me .. - -
0 R R S I....I....I...._I ..... i . . ..... i I .. ..... o ' I ..... o P .. ..... i . ..... B
0O 10 20 30 40 50 60 O 500 1000 1500 2000
Centrality (%) dN,/dn
Y., (Opp-same) can be used to study CME
- Similar values in Xe—Xe and Pb—Pb collisions (vs dNc/dn) — large background contribution
35
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CME fraction in Xe—Xe and Pb—Pb collisions

5 ALICE 3 100 o
2 2 =V E = v "
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g Inl <0.8 § ||} T POPbYS,=502TeY T e ) S
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2 = + + = C MC Glauber
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® x ® Tm g Fe
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Y., (Opp-same) can be used to study CME

- Similar values in Xe—Xe and Pb—Pb collisions (vs dNc/dn) — large background contribution

Xe Xe __ Xe Xe
« CME fraction extracted using a two-component approach (AN, /d ) A y=sB +bv;
(dN_/d n)""A y2=sB™+bv.’
- Assumption: both signal and background scale with dNc./dn ch ab 2

*  dNev/dn used to compensate for dilution f _ sB
— <|BPcos(2(¥,-¥,))> from MC simulations M sB+bv,
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CME fraction in Xe—Xe and Pb—Pb collisions %

ALICE

w 1
B [ e MCGlauber o T.ENTo ® MC Glauber T.ENTo
[ p0=-0.003+0.010 p0=-0.001+0.012 [ p0=0.147+0.061 pO=0.150 +0.062
| ¥2NDF =11.6 /7 ¥NDF=117/7 | yYNDF=148/7 yYNDF=14.6/7
0.5 I
- ALICE +:
- 0.2<p <5.0GeVic i "
E |?;fll <08 +: ‘ & H | I
Ofo—*—w o : ¢ Ee | Eee +: """"""""""""""""""""""""""""""""""""""""
Xe-Xe |8, = 5.44 TeV - | Pb-Pb |5, = 5.02 TeV
_0.5|||||||||'|1|11I1|:u|-||||||||||||||TL|||||||||||||llrr}||r||r||||||||
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Centrality (%)

* Consistent with 0 for 0-30% and then becomes positive

* Combining the points from 0-70%

12/02/25

feve*® =-0.003 £ 0.010 — 2% at 95% C.L.
feve™ = 0.147 £ 0.061 — 25% at 95% C.L.
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Centrality (%)

foo= sB
M sB+bv,
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ALICE

Particle identification
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Particle identification (PID) in ALICE

ALICE

THE ALICE DETECTOR a. TS SPD (Pixel) 27T R Es e A setomanee]
b. ITS SDD (Drift) o0o- % L% % 20042018 108
c. ITS SSD (Strip) £ 800 )
d. VO and TO S 700= &
e. FMD B g
Q500 ]
" 400F 10
300 i
2005
1005 19
oo T 2 3 456

D
2 (Gevrc)

ITS
FMD, TO, VO
TPC

TRD

TOF

HMPID
EMCal

DCal

PHOS, CPV
10. L3 Magnet
11. Absorber

12. Muon Tracker
13. Muon Wall
14, Muon Trigger

©CoNOOAWNE

ALICE Performance E
Pb-Pb |5, =5.02TeV

10
p (GeV/c)

15. Dipole Magnet 15103 : : : s
17 AD z B v ]
18. ZDC (‘é‘ 0.8~ Inclusive JAp — pwu- ]

19. ACORDE 2 06 2<p <6GeVic
i . Y. . C§ ) 2l5<y<;‘HX ]
* 1, K, p identified using TPC and TOF Soa T m e 178 vt

3 ¥&/ndf = 1.0
. . 0 o 0.2 N
* Topological reconstruction for K ., A, J/%¥ and D-mesons R
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« 0_ andy,_: strong particle-type dependence (p > K> h)
- LCC for K-K
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CME for h-h, K-K, p-p
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Summary

ALICE

 Anomalous chiral searches performed in different collision systems

12/02/25

- Background dominates the measurements

Wep/WPep 4 -

: 95% C.L.

: ALICE
Two i« .
component: O Pb-Pb, {5y = 2.76 TeV

dol &

o : W O Pb-Pb, |s, = 5.02 TeV
Higher 3 3 Xe-Xe, Sy = 5.44 TeV
harmonics < o

N 5 ] ExRT IC
ESE k. © KLN IC

i« o ]|Glauber IC|

CME limit (%)

- Different approaches used to separate the signal from the background
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Backup

ALICE
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3-particle correlator: differential results

in Xe—Xe and Pb—Pb collisions ATeE

ALICE, PLB 856, 138862 (2024)
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CME for h-h, K-K, p-p, p-A\ %

ALICE
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v, and dN h/dn in Xe—Xe and Pb—Pb collisions %

ALICE
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Global polarization of A hyperons

ALICE, PRC 101, 044611 (2020); ALICE, PRC 105, 029902 (2022)

& | ALICE Pb-Pb o A Vsw=276TeV |  |5,=502TeV
I
o

% - _________________ + _________________ &

| | .

3 i 05< P, < 5.0 GeV/c
L | ] | | ] ] | ] ] 1 L1 | | ] | ] ] | ] ]
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
centrality (%) centrality (%)
| S~ | centrality | Py (%) | P (%) | _ _
56Ty | S13% | —0.01:£0.12(stat)£0.04 (syst) | —0.08=0.12 (stat) £0.07 (syst) « P, consistent with zero
OV 15.50% | —0.074+0.09 (stat.) £ 0.04 (syst) |  0.05+0.09 (stat.) & 0.03 (syst.)
5-15% | —0.07+0.16 (stat.)£0.07 (syst) | 0.06=+0.16 (stat.) £ 0.03 (syst.) sin (b — W
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average | 15-50% (Py)(%) ~ —0.01 4 0.05 (stat.) +-0.03 (syst.) ’ ALA Rpp
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Global polarization of A hyperons:
magnetic field estimation ALICE

ALICE, PRC 101, 044611 (2020); ALICE, PRC 105, 029902 (2022)
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Global polarization of A hyperons:

magnetic field estimation ALICE
%1012 ALICE, EPJC 84, 813 (2024)
ALICE, PRC 101, 044611 (2020); ALICE, PRC 105, 029902 (2022) ¥Au-Au (STAR) x10'2 - 1.4
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Magnetic field evidence

 Search for magnetic-induced charge currents using charge-dependent v,
- Faraday and Hall effects (competing effects)
LLM 1 11N
0.00004} TN  Rapidity slope of Av, = v,* - v,” expected to
vary with p_

P (uQ-?) uxQ +u}’QV>
1
V] @) \/) (QLQE +QQP)
4
07 =@ - Y [ S
i=1 =1
)

u = (cos@,sing

b

Pb-Pb s,,=2.76 TeV, p.= 0.25, 0.5, 1 GeV/c

U. Gursoy et al., PRC 89, 054905 (2014)
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Magnetic field evidence

 Search for magnetic-induced charge currents using charge-dependent v,

- Faraday and Hall effects (competing effects)
x10°

AR L R R A B
o * Measurements performed for v,°* of charged

I ALICE 0 vi(h) | particles

03 v ]

| p.>02GeVic —— |
i S E—

0.5 | 5-40% Pb-Pb, 5, =5.02TeV —f— |

bars: stat. uncert.
boxes (filled/empty): syst. uncert. (corr./uncorr.) 7

1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1
-0.5 0 0.5
12/02/; n yrin - WONPAQCD 2025 51




Magnetic field evidence

 Search for magnetic-induced charge currents using charge-dependent v,

- Faraday and Hall effects (competing effects)

><I1 OI_3 T | T T T T | T T T T T T T
I ALICE 1 * Measurements performed for v,°* of charged
| 5-40% Pb-Pb, (5, = 5.02 TeV | particles
02 L Non-zero slope measured with a significance
i Vi) = vy(h) of 2.60

-0.2 - p.>0.2 GeV/c

| dAv,/dn=[1.68 £ 0.49 (stat) £ 0.41 (syst)] - 10* |
1 | 1 1 1

1 1 | 1 1 | 1 | | 1 1
-0.5 0 0.5
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Magnetic field evidence

 Search for magnetic-induced charge currents using charge-dependent v,

- Faraday and Hall effects (competing effects)

osk B AUE oipium o POPbis=502TeV el - * Measurements performed for v,°* of charged
. o 10°x vy(h) - é partiCIGS
N B S B4 ] Non-zero slope measured with a significance
_ By of 2.60
e e P ] : 10-40% 1 * and for v,°* of D° mesons
= __ arTS'stat. uncert. E -1 3<pT<6(GeV/C) —- — . " . g
0.5_ onés (fill;ed/emp.ty):syst. ulncert (corr./uncolrr.) o thfe‘ed-ijovinccl)rre.cted‘ E Non-zero Slope measured Wlth a S|gn|f|Cance
o ' N M L of 2.70
[ e 10 ) - ] T o vw-vd %F * 3 orders of magnitude larger than the one
§oT g of the charged hadrons
:; 0—"@::j:@::-‘-‘—‘ﬁ”":::@ """" S IR $ """""" 7]
5-40% 1 e 10-40%
p, >0.2 GeVic ’ 35,046 (GeVe)
—0.5[ dAv, /dn = [1.68 + 0.49 (stat) + 0.41 (syst)] - 10* ——  dAv,/dn=[4.9 + 1.7 (stat) + 0.6 (syst)] - 10"
— ‘—OI.SI — (I) — IO.ISI — I—OI.SI — (I) — IO.IS. —
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Magnetic field evidence

 Search for magnetic-induced charge currents using charge-dependent v,

- Faraday and Hall effects (competing effects)

os- B AR oipuwy  PePbsa-soTev O * Measurements performed for v,°* of charged
T | : ] particles
N " S B4 ] ~ Non-zero slope measured with a significance
_ By of 2.60
e e P ] : 10-40% 1 * and for v,°* of D° mesons
= __ arTS'stat. uncert. E -1 3<pT<6(GeV/C) —- — . " . g
0.5_ onés (fill;ed/emp.ty):syst. ulncert (corr./uncolrr.) Nc?tfe‘ed-ijovinccl)rre.cted‘ R Nfozr]'zero Slope measured Wlth a S|gn|f|Cance
os ' ] of 2.70
[ e 10 ) - ] T o vw-vd é * 3 orders of magnitude larger than the one
g g of the charged hadrons
C: THEREE . i — % ........... i * 1-2 orders of magnitude bigger and opposite sign
o 1 e (mostly Hall effect?)
5-40% T S . .
osidas . 3<p, <6(GeV/0) | * Important baseline for searches of the CME
—0.5[ dAv, /dn = [1.68 + 0.49 (stat) + 0.41 (syst)] - 10* ——  dAv,/dn=[4.9 + 1.7 (stat) + 0.6 (syst)] - 10"
— '—0I.5I — (I) — IO.ISI — I—OI.SI — (I) — IO.IS. —
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