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Outline of this talk

• QCD phase diagram at finite baryonic density and its critical exponents


• LQCD-based finite density EoS


• Femtoscopic measurements and Lévy sources


• Preliminary results


• Summary
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QCD phase diagram
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And its universality class

• In the vicinity of the CEP, where a 
second order phase transition 
occurs, critical phenomena 
occur


• To characterize this critical 
behavior, critical exponents are 
introduced


• In QCD, there exist 6 critical 
exponents, 2 of which are 
independent

Critical exponents of QCD
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And its universality class

• In Nucl. Phys. B 399, 395 (1993), a 
two-flavour model with massless 
quarks, the critical exponents were 
computed and it was shown that the 
universality class of this QCD is the 
same as that of the 3d-Ising model


• Due to the nature of HIC, the true 
universality class is the same as in the 
random 3d-Ising model [PRB 52, 6659 (1995)] :


• , , 
, , 

, 

η = 0.5 ± 0.05 ν = 1.1 ± 0.2
α = − 1.3 ± 0.6 β = 0.6 ± 0.1
γ = 2.2 ± 0.4 δ = 4.7 ± 0.3

Critical exponents of QCD
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Finite density QCD equation of state
Lattice-based T expansion and critical point
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Ising transition line aligns 
with QCD crossover line



Finite density QCD equation of state
Lattice-based T expansion and critical point
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Or HBT femtoscopy

• After a collision, the one-particle momentum 
distribution can be found as


• 


• In a similar way, the two-particle momentum 
distribution


• 


• When the emission process of the particles are 
independent of each other,  can be factorized 
as the product of ’s


•

𝒫1(p) ≡
d3N
dp3

𝒫2(p1, p2) ≡
d6N

d3p1d3p2

𝒫2
𝒫1

𝒫2(p1, p2) = 𝒫1(p1)𝒫1(p2)

Two-identical particle correlations
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Probability of emisión of a particle with momentum p

Probability simultaneous emission

of particles with momenta  and p1 p2

Annu. Rev. Nucl. Part. Sci. 55, 357 (2005)



Or HBT femtoscopy

• If this factorization is not valid, 
then it is because the emission 
processes are not independent of 
each other, but correlated due to:


• Conservation laws


• Decays


• Quantum nature of the particles


• Long etcetera …

Two-identical particle correlations
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Two-particle correlation functions
Femtoscopy

• From the theoretical point of view, this function is defined as


• 


• Correlation functions are usually described as functions of the pair relative 
momentum, , and the pair average momentum, . 
On-shell conditions imply that  is only a function of  and 

C2(p1, p2) =
𝒫2(p1, p2)

𝒫1(p1) ⋅ 𝒫1(p2)

q = p1 − p2 K = p1 + p2

2
C2 q K
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Two-particle correlation functions
Femtoscopy

• Two-particle correlation functions can also be related to the particle emission 
source in phase-space . Assuming that the emission is not initially 
correlated, that particles are bosons and that they not interact in their final state, 


• If the Fourier transformation of the source is , 

then


•

S(x, p)

S̃(q, p) = ∫ d4x eiq⋅xS(x, p)

C2(q, K) = 1 +
S̃(q, K)

2

S̃(0,K)
2
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Core - halo model [PRD 47, 3860 (1993), Z. Phys. C 71, 491 (1996)]

• The correlation function for , 
reaches a value of , with , 
this is due to the resonances that decay 
and form a halo around the interaction 
region


• A detector with finite resolution will not be 
able to solve the halo if its characteristic 
size is larger than the momentum 
resolution

qinv → 0
1 + λ 0 ≤ λ ≤ 1

Core HaloHalo

Correlation functions
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Core - halo model [PRD 47, 3860 (1993), Z. Phys. C 71, 491 (1996)]

• Let us assume that the detector has a momentum 
resolution  and that the source is made of two 
components, such that


• 


• Where the halo is composed of particles produced 
through the decays of resonance


• The characteristic scale of the halo is , then


•

Δq

S = Score + Shalo

Rhalo ≳
1

Δq

Rcore <
1

Δq
≲ Rhalo

Correlation functions
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Correlation functions
Core - halo model [PRD 47, 3860 (1993), Z. Phys. C 71, 491 (1996)]

• The core and halo distributions can be written as


• 


• 


• Since, for the halo, the region with  cannot be solved, then , and 
. Hence


•
, with 

𝒫1,core(K) = ∫ d4x Score(x, K) = S̃core(0,K) ≡ Ncore

𝒫1,halo(K) = ∫ d4x Shalo(x, K) = S̃halo(0,K) ≡ Nhalo

q < Δq S̃halo(q, K) ≈ 0
S̃(q, K) ≃ S̃core(q, K)

C2(q, K) = 1 + ( Ncore
Ncore + Nhalo )

2 S̃core(q, K)
2

S̃core(0,K)
2 λ = ( Ncore

Ncore + Nhalo )
2
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Correlation functions
And its parameterizations

• Once the correlation function is obtained, it can be fitted to extract the source characteristics


• As an example, assume a 1D source that can be factorized into a space-time distribution and a 
momentum distribution , with


• 


• Then


• 


• Where   and   is known as the characteristic function

S(x, p) = f(x) ⋅ g(p)

∫ dx f(x) = 1  and  ∫ dp g(p) = N

C2(q, K) = 1 + f̃(q)
2

≈ 2 − q2 (⟨x2⟩ − ⟨x⟩2) + … ≈ 1 + exp(−q2R2)

R2 = ⟨x2⟩ − ⟨x⟩2 f̃(q) = ∫ dx exp(iqx) f(x)
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Correlation functions
And its parameterizations

• Under which conditions are these Gaussian assumptions valid?


• The emission is a superposition of several independent proceses whose 
emission coordinate is separated by 


• If the variance that characterize this separation is finite, then by means of the 
central limit theorem, the probability distribution will tend to a Gaussian


• Since the Fourier transformation of a Gaussian is also a Gaussian, the 
correlation function will also be a Gaussian

δxi
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Correlation functions
And its parameterizations

• In the neighborhood of a CEP, where the correlation length diverges, and the 
distributions that characterize physical quantities behave as power-laws


• These kind of distributions have non-finite variance (and even non-finite 
mean) and hence have a non-analytic behavior for certain values


• Then the probability distribution will be different from a Gaussian


• These special case distributions are called Lévy distributions 
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Correlation functions
And its parameterizations

• The Lévy characteristic function is


• , with , 

,  and 


• A special case happens when ,  and , then


• 


• Therefore, 

f̃(q) = exp (−γα |q |α + i β γα sign(q) tan ( απ
2 ) + iqδ) 0 ≤ α ≤ 2

−1 ≤ β ≤ 1 γ > 0 −∞ < δ < ∞

β = 0 γ = R/21/α δ = x0

f̃(q) = exp (iqx0 + |qR |α ) ≈ 1 + iqx0 −
1
2

|qR |α

C2(q; α) = 1 + exp (− |qR |α )
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Relationship between the Lévy index and QCD critical exponents

• For QCD, the correlation function of the 
order parameter decays as a power-law 
in the vicinity of the critical point 




• For Lévy-type sources, the correlation 
between initial and final positions decays 
also as a power-law 


• Para , 


• In this model, 

ρ ∝ r−(d−2+η)

ρ ∝ r−(1+αLevy)

d = 3 η = αLévy

η = 0.5 ± 0.05

Correlation functions
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AIP C
onf. Proc. 828, 525 (2006)

τ = (T − Tc)/Tc



Two-pion correlation functions
With finite resolution at different energies
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�sNN [GeV] 4 5 6 7 8 9

R inv
[fm]

3.544.555.566.5

Finite Resolution
Complete set Primaries Secondaries

�sNN [GeV] 4 5 6 7 8 9

𝛼

1.451.551.651.75

Finite Resolution
Complete set Primaries Secondaries

EPJ A 60, 135 (2024)



Summary
And future work

• Two-pion correlation functions are a prime tool to study the interaction region 
of heavy-ion collisions


• Radii grow as the energy increases, and the Lévy index of stability decreases


• At low collision energies, the core has a large contribution from secondary 
pions


• This type of studies including EoS effects could help us determine if it can be 
used to signal critical phenomena


• Stay tuned for new results!
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Thank you!
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Backup
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Two-pion correlation functions
With ideal resolution at different energies
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�sNN [GeV] 4 5 6 7 8 9

R inv
[fm]

45
67
89

Ideal Resolution
Complete set Primaries Secondaries

�sNN [GeV] 4 5 6 7 8 9

𝛼

1.251.451.651.85

Ideal Resolution
Complete set Primaries Secondaries

EPJ A 60, 135 (2024)



And core - halo model

• In the core - halo model


• 


• This means that between 82 and 77 % of 
the pions come from the core


• Between 6 y 13 % of the pions are 
produced from primary processes, hence 
the core has a large fraction of secondary 
pions


• Since , then  fm

λ = ( Ncore
Ncore + Nhalo )

2

Δq ⋅ Rinv ∼ 1 Rinv ≲ 20

Two-pion correlation functions
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√sNN λall λprimary λsecondary

4.0 0.677 ± 0.003 0.907 ± 0.002 0.651 ± 0.004

5.8 0.632 ± 0.004 0.905 ± 0.003 0.647 ± 0.005

7.7 0.625 ± 0.004 0.9 ± 0.003 0.608 ± 0.003

9.2 0.595 ± 0.007 0.887 ± 0.005 0.602 ± 0.003


