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Outline of this talk

 QCD phase diagram at finite baryonic density and its critical exponents
 LQCD-based finite density EoS

 Femtoscopic measurements and Lévy sources

* Preliminary results

 Summary



QCD phase diagram
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Critical exponents of QCD

And Its universality class

* |n the vicinity of the CEP, where a
second order phase transition

pPQCD
occurs, critical phenomena
OoCccur
. . " ~5no
* [o characterize this critical
behavior, critical exponents are il
introduced 1. IstPT.
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 In QCD, there exist 6 critical
exponents, 2 of which are
Independent

arXiv:2011.10940



Critical exponents of QCD

And Its universality class

* |n Nucl. Phys. B 399, 395 (1993), a
two-flavour model with massless
quarks, the critical exponents were
computed and it was shown that the
universality class of this QCD is the
same as that of the 3d-Ising model

pPQCD

 Due to the nature of HIC, the true
universality class is the same as in the
random 3d-Ising model [prs 52, 6659 (1995); :

e n=05x0.05v=1.1x0.2,
a=—-—13x0.6,=0.6=x0.1,
y=22x204,0=4.7+0.3 arXiv:2011.10940
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Finite density QCD equation of state

Lattice-based T expansion and critical point
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Finite density QCD equation of state

Lattice-based T expansion and critical point

PRD 109, 094046 (2024)
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Two-identical particle correlations
Or HBT femtoscopy

* After a collision, the one-particle momentum
distribution can be found as

d°N

. 9“1(1)) — T —PProbability of emisién of a particle with momentum p - if 2 identical to b

p a
* |n a similar way, the two-particle momentum Po

distribution
+

_ d6N Probability simultaneous emission -

. P 2(p19 Pz) ~ d3p.d3 of particles with momenta p; and p,
P1d-pP>

* When the emission process of the particles are
independent of each other, &, can be factorized

as the product of &,’s

o PP, Pr) = P1(P)P(P))

Annu. Rev. Nucl. Part. Sci. 85, 357 (2005)



Two-identical particle correlations
Or HBT femtoscopy

e |f this factorization is not valid,
then it Is because the emission
processes are not independent of
each other, but correlated due to: Pa

if a identical to b

e Conservation laws

| +

 Decays

e Quantum nature of the particles

* Long etcetera ... Annu. Rev. Nucl. Part. Sci. 55, 357 (2005)
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Two-particle correlation functions

Femtoscopy

 From the theoretical point of view, this function is defined as

L@ 2(p IE pz) - Two-particle momentum distribution

P1(P1) - L1(po)

* Correlation functions are usually described as functions of the pair relative
P1 TP

momentum, g = p, — p,, and the pair average momentum, K = -
On-shell conditions imply that C, is only a function of q and K

. G(p,py) =

One-particle momentum distribution
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Two-particle correlation functions

Femtoscopy

Two-particle correlation functions can also be related to the particle emission

source in phase-space S(x, p). Assuming that the emission is not initially
correlated, that particles are bosons and that they not interact in their final state,

. If the Fourier transformation of the source is S(g, p) = J'd4x e'S(x, p),
then

‘S(%K)‘z
C,(g,K)=1+——

‘ 5(0.K) ‘ :
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Correlation functions

Core - halo model [PRD 47, 3860 (1993), Z. Phys. C 71, 491 (1996)]

» The correlation function for gj,, — 0,

reaches avalueof 1 + 4, withO < 4 < 1,
this Is due to the resonances that decay

and form a halo around the interaction Halo
region

Halo

e A detector with finite resolution will not be
able to solve the halo If its characteristic

size is larger than the momentum "3
resolution

13



Correlation functions

Core - halo model [PRD 47, 3860 (1993), Z. Phys. C 71, 491 (1996)]

e | et us assume that the detector has a momentum
resolution A g and that the source is made of two

components, such that

o S p— SCOre -+ Shalo Halo Halo

 Where the halo is composed of particles produced
through the decays of resonance

1 ,
. The characteristic scale of the halo is Rhgi0 2 A then ‘“
q
1 b
. Keore < N S Rhalo
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Correlation functions

Core - halo model [PRD 47, 3860 (1993), Z. Phys. C 71, 491 (1996)]

e The core and halo distributions can be written as

. P corelK) = Jd4x Score(X; K) = Score(O»K) = Ncore

. P haloK) = Jd“x Shalot, K) = Shalo(O»K) = Nhalo

+ Since, for the halo, the region with ¢ < A, cannot be solved, then Shalo(q, K) = 0, and
5(g, K) =~ Scorelg, K). Hence

2

2 | & 2
Cy(q,K) =1+ ( Noore ) “ooreld ) with 4 = ( Noore )
2\Y>» — 3 —
Neare + N ~ 2 Neare + N
core halo Score(oa K) core halo
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Correlation functions

And Its parameterizations

 Once the correlation function is obtained, it can be fitted to extract the source characteristics

* As an example, assume a 1D source that can be factorized into a space-time distribution and a
momentum distribution S(x, p) = f(x) - g(p), with

: Jde(X) =1 and [dp gp) =N

Where R? = (x?) — (x)? and f(q) = de exp(igx) f(x) is known as the characteristic function

16



Correlation functions

And Its parameterizations

 Under which conditions are these Gaussian assumptions valid?

 The emission Is a superposition of several independent proceses whose
emission coordinate is separated by ox;

 |f the variance that characterize this separation is finite, then by means of the
central limit theorem, the probability distribution will tend to a Gaussian

 Since the Fourier transformation of a Gaussian is also a Gaussian, the
correlation function will also be a Gaussian

17



Correlation functions

And Its parameterizations

* |n the neighborhood of a CEP, where the correlation length diverges, and the
distributions that characterize physical quantities behave as power-laws

* These kind of distributions have non-finite variance (and even non-finite
mean) and hence have a non-analytic behavior for certain values

* Then the probability distribution will be different from a Gaussian

* These special case distributions are called Lévy distributions

18



Correlation functions

And Its parameterizations

* The Lévy characteristic function is

04/

. f(q) = exp (—y“lq “ + i fy*sign(g) tan (7) + iqé), with 0 < a < 2,

—1<p<1l,y>0and —o0 <9 <

« A special case happens when f =0, y = R/2V* and 6 = X, then

] , . . 1 o
. flq) = exp (igxy + |gR|") ~ 1 +igxg =~ 1R
o Therefore,|Cy(g; @) = 1 + exp (— | gR ‘a)
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Correlation functions

Relationship between the Lévy index and QCD critical exponents

* For QCD, the correlation function of the
order parameter decays as a power-law .

in the vicinity of the critical point
D X r—(a’—2+r])

Levy index of stability

15

* For Lévy-type sources, the correlation
between initial and final positions decays

also as a power-law p o = F%en)

3

05

(9002) G2GS ‘828 "00.d "Juo)D dIV

e Parad =3,n= | gvy

-1 0.5 0 035

[u—

T

e In this model, n = 0.5 £ 0.05 r = (T=T)IT.
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Two-pion correlation functions

With finite resolution at different energies
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Summary

And future work

* [wo-pion correlation functions are a prime tool to study the interaction region
of heavy-ion collisions

« Radii grow as the energy increases, and the Lévy index of stability decreases

* At low collision energies, the core has a large contribution from secondary
pions

* This type of studies including EoS effects could help us determine if it can be
used to signal critical phenomena

o Stay tuned for new results!

22



Thank you!

santiago.bernal@correo.nucleares.unam.mx






Two-pion correlation functions

With ideal resolution at different energies
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Two-pion correlation functions

And core - halo model

 |In the core - halo model

N
7 = core

° Ncore _|_ Nhalo }\primary }\secondary
0.677 = 0.003 0.907 = 0.002 0.651 = 0.004

0.632 + 0.004 0.905 + 0.003 0.647 £+ 0.005
0.625 + 0.004 0.9 £ 0.003 0.608 + 0.003
0.595 + 0.007 0.887 + 0.005 0.602 + 0.003

* This means that between 82 and 77 % of
the pions come from the core

» Between 6y 13 % of the pions are
produced from primary processes, hence
the core has a large fraction of secondary
pions

- Since A_ - Rjny ~ 1, then Rjpy, < 20 fm

26



