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e O(4) model as an effective theory for 2-flavor QCD: universality,
dimensional reduction, topological charge ~ baryon number

e Inclusion of chemical potential and quark mass in the Monte Carlo
algorithm without any sign problem

e Phase diagram in the chiral limit, and with light quarks:
where is the Critical Endpoint (CEP) ?
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o Ny =2: my, =mg = 0: 214 order phase transition
Ny =3: my = mg =0, mg physical: T, ~ 132 MeV [Ding et al. '19]
2+ 141 flavors: T, ~ 134 MeV [Kotov et al. '21]
e m, = my > 0 crossover

ms physical: pseudo-critical Ty ~ 155 MeV
[Borsanyi et al. '10, Bhattacharya et al. '14 .. .]




Monte Carlo simulations on Euclidean space-time lattices

Sign problem at pup > 0 still unsolved: p[U] x exp(—=S[U]) ¢ R
Conjectures on the phase diagram based on effective theories.

Here: O(4) non-linear o-model

Assumed to be in universality class of N = 2 chiral QCD.
[Gasser/Leutwyler, Pisarski/Wilczek '83]

S[e] = / dix [F?gﬁﬂé'(x)-aﬂé'(x)—ﬁ-é'(x)

ez) e R*, |ez) =1

h external “magnetic field”
h = 0: global O(4) symmetry, can break spontaneously to O(3)

h £ 0 adds explicit symmetry breaking, like quark masses m,, = mg > 0



Local isomorphy to chiral flavor symmetry:
{ SU(Q)L X SU(Q)R = 0(4) } — { SU(Q)L:R = 0(3) }

Same symmetry groups before and after symmetry breaking

Assume T'= 1/ high enough for dimensional reduction:

/ dti / &3z —73 9ié(x) - &;é’(:c)—f_i-é’(:v)} ~ BHIE]

3d O(4) model (with periodic b.c.) has topological sectors, m3(S°) = Z.

® [Skyrme '61,'62, Witten '79, Adkins/Nappi/Witten '83, Zahed/Brown '86, .. .] :
top. charge () corresponds to baryon number B
e(x) pion field, but in this way the model accounts for baryons.



= Baryon chem. potential up al imaginary vacuum angle 6,

Hlel=---—upQle]l € R, Q€] top. charge

Standard lattice formulation,

Slat [5] — _5lat< Z gx ’ é)y + Elat ’ Z g:c + MB,latQ[g])

(z,y) T

x: lattice sites; (x,y): nearest neighbor sites

Topological charge on the lattice: geometric definition:



Split lattice unit cubes into 6 tetrahedra; the 4 spins at the vertices
of one tetrahedron, (€, €, €,, €.), span a spherical tetrahedron on S
(edges e ... eg: geodesics in S?).
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Topological density of a tetrahedron = volume of oriented spherical

tetrahedron, Vi ;. .[€] € (=72, 72),



Prescription to compute Vi, ., .|€] by Murakami, "12.
Cluster algorithm: another benefit of the O(4) model as an effective theory.

Still, increasing pup causes a rapid increase in auto-correlation time 7:
this limits the range of reliable simulations to pp 1.t < 2.5.
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7 in multi-cluster updates with respect to H and @ (L = 20, h = 0).



l. Results in the chiral limit, h =0
Physical units by referring to T. = 1/8. at ug =0 :

Betat = 0.9359(1) [Oevers, '96] < T, ~ 132 MeV [Ding et al. '19]

Bc,la
UB = B ¢ U B lat ~ 124 MeV U B lat
C

Simulation parameters:

uBlat =0, 0.1, 0.2, ... 1.5; 2,25 & pup=0...309 MeV

Lattice volumes L°, L =10, 12, 16, 20 (problem: huge 7)

For each parameter set: 10* measurements, perfectly decorrelated

Observables: 15t and 29 derivatives of F = —T'In Z.
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Energy density e = (H)/V (left) and magnetization density

(order parameter) m = (|M|)/V, M =Y. &, (right), L = 20.

Increase g 1at at fixed 3: larger €, lower m,
interval of maximal slope moves to larger 8 ~ (..

1B 1at = 2.5 quasi-jumps, 1%% order phase transition near-by 7
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Top. charge density ¢ = (Q)/V

At up = 0: ¢ = 0 due to parity symmetry.
wp > 0 enhances (@ > 0, up to (@) > 600.

Again: quasi-jump for (g 12t = 2.5, to be clarified by 2nd derivatives of F.
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Specific heat ¢y = 572(<H2> = <H>2) , L =20

Peak most pronounced at pp 1.t = 2 and 2.5, likely still 2nd order.
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Peak of cy identified with fits to Johnson's Sy-function for each pp jat.

Peak location hardly moves with V', extrapolation to . simple.

For 2" order we expect (peak height) oc L/V; at pp1as = 20 o /v =~ 0.2.
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susceptibility xm

= § (a2 - (M), L

Peak most pronounced at pp 1.t > 1, supports 24 order.
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Peak of x,, moves with V', extrapolation to (3. consistent with other criteria.

214 order: (peak height) o< L7, 2(upat) € [1.7...2.1]
at up = 0 compatible with 1.970 [Engels/Fromme/Seniuch, '03]

Strongly supports 2"¢ order, along with auto-correlation time 7.
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Peak most pronounced at pp 14t > 1.5, supports 214 order, consistent with
previous determinations of 5.. One might try to introduce a new critical
. 0 0 ~ 0 ~
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moment correlation length” &5 ~ £, easier to measure):

peaks at L = 20 are again consistent

most compelling evidence for 2"¢ order phase transition
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Combine all determinations of (. iat(1tp1at) (steepest slopes and peaks,
extrapolated V' — o0), convert to physical units: final phase diagram in the
chiral limit. Shape as expected, but no Critical Endpoint — i.e. no change to 1%
order — in the regime up < 309 MeV and T' 2 106 MeV.
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1. Preliminary results at physical pion mass, i = |h| > 0

Estimate of physical units

Belat =~ 0.936 , Ty~ 155 MeV

4

ho = hlat—;ft = hiae (145 MeV)*

Bx.1at == 0.87 ambiguous, see below.

We fix h by the Gell-Mann—QOakes—Renner relation:

h=mgS=F2M?~ (92.4 MeV)? (138 MeV)? = Ay, = 0.367

with ¥ = —(yp) >~ (250 MeV)?, this corresponds to m, ~ 5 MeV



Growth of auto-correlation times 7 is strongly alleviated by crossover:
T does not diverge at (3., no critical slowing down.

hiat = 0.367, B jat = 2

l_
1

N ==
O OON 00

O N | ’9."*33J

2 b

| i

20F ‘ ‘ i.'_ _QY PP AP

) S “.S"‘ T TR TONs S

- 88“ LSS S S S S

8 1 1 1 1 1 1

0.75 0.8 0.85 0.9 0.95 1

Blat

Magnetic auto-correlation time 7y,



-0.6

=0,L= 8 —+— — —
He jat L=12 —>%— hlat = 0.367, MB,lat = 2

L=16 —K— 0.6 T T L=8 —@—
0.8 | 1t=zg **I L= 12 et
- Mplat =1, L= =

L= 12 o oss | ; _e238%% |-

L=16 —@— (]

L=20 —A— ()

-1k Up,jat = 2, L= 8 r—&—i 05 F .‘

L=12 —5— .‘

L=16 —v— .;‘

L=20 & 0.45 - Ps 24

w -1.2 .%‘;
E o4} .%t
og®
L4 F 0.35 ..;‘
os®
3
03} ()
0;‘
16} L 24
3
0.25 l%‘
-1.8 1 1 1 1 1 1 1 1 1 - 02 i i i i i i
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 0.75 08 0.85 0.9 0.95 1
Biat Blat

Left: Energy density ¢ = (H)/V hardly depends on L. Shift for up 1ot = 0, 1, 2.
Right: Magnetization density m = (|M|)/V at pp1ae = 2. Modest finite-size effects.

No interval of extraordinary slope (as L grows):
214 order phase transition smeared out to a crossover.
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hiat = 0.367, Up jat = 2
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Peak washed out by mass term; located by Gaussian fits
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hiat = 0.367, Up jat = 2
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Performed at each pip 12t to monitor the crossover.



hiat = 0.367, U jat = 2
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Magnetic susceptibility xm at ppilat = 2. Again: peak washed out,

localized by Gaussian fits. Another criterion to search (.
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hiat = 0.367, Ug jat = 2
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Below values obtained from cy; typical for a crossover.
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Phase diagram at finite quark mass: broad crossover region; 7 hardly
decreases up to up = 244 MeV. No indication of a Critical Endpoint.
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Conclusions

We assume the O(4) model to be in the universality class of
2-flavor QCD in the chiral limit.

High-T dimensional reduction to 3d O(4) leads to topological
charge, identified with the baryon number.

Model can be simulated with baryon chemical potential, without
sign problem, and with a powerful cluster algorithm.

We monitor the critical line up to ugp ~ 309 MeV, 1. ~ 106 MeV.
T.(1p) decreases monotonically; no Critical Endpoint found, but hints
for it to be near-by.

At physical pion mass: T varies little with 115, crossover in some
T-interval; up to up ~ 244 MeV again no CEP.
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