

Conjecture about the QCD Phase Diagram

José Antonio García Hernández, Edgar López Contreras,

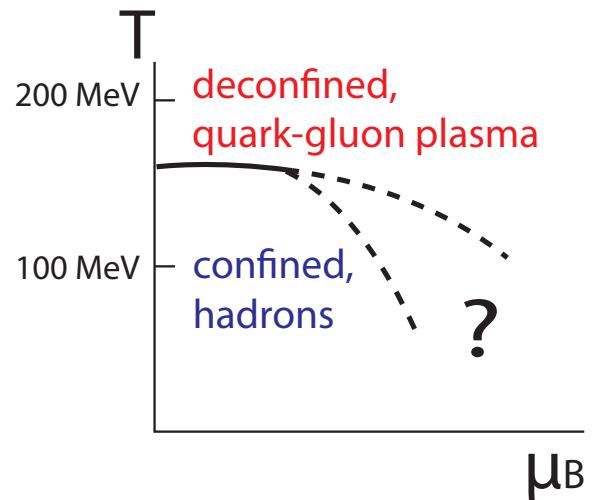
Elías Polanco Euán, Wolfgang Bietenholz

Instituto de Ciencias Nucleares

Universidad Nacional Autónoma de México

- **O(4) model as an effective theory for 2-flavor QCD: universality, dimensional reduction, topological charge \sim baryon number**
- **Inclusion of chemical potential and quark mass in the Monte Carlo algorithm without any sign problem**
- **Phase diagram in the chiral limit, and with light quarks: where is the Critical Endpoint (CEP) ?**

Hypothetical QCD phase diagram:



$\mu_B = 0$:

- $N_f = 2$: $m_u = m_d = 0$: 2nd order phase transition
 $N_f = 3$: $m_u = m_d = 0$, m_s physical: $T_c \simeq 132$ MeV [Ding et al. '19]
2 + 1 + 1 flavors: $T_c \simeq 134$ MeV [Kotov et al. '21]
- $m_u = m_d > 0$ crossover
 m_s physical: pseudo-critical $T_x \simeq 155$ MeV
[Borsanyi et al. '10, Bhattacharya et al. '14 ...]

Monte Carlo simulations on Euclidean space-time lattices

Sign problem at $\mu_B > 0$ still unsolved: $p[U] \propto \exp(-S[U]) \notin \mathbb{R}_+$
Conjectures on the phase diagram based on effective theories.

Here: **O(4) non-linear σ -model**

Assumed to be in universality class of $N_f = 2$ chiral QCD.

[Gasser/Leutwyler, Pisarski/Wilczek '83]

$$S[\vec{e}] = \int d^4x \left[\frac{F_\pi^2}{2} \partial_\mu \vec{e}(x) \cdot \partial_\mu \vec{e}(x) - \vec{h} \cdot \vec{e}(x) \right]$$

$$\vec{e}(x) \in \mathbb{R}^4, \quad |\vec{e}(x)| \equiv 1$$

\vec{h} external “magnetic field”

$\vec{h} = \vec{0}$: global O(4) symmetry, can break spontaneously to O(3)

$\vec{h} \neq \vec{0}$ adds explicit symmetry breaking, like quark masses $m_u = m_d > 0$

Local isomorphy to chiral flavor symmetry:

$$\{ \text{SU}(2)_L \otimes \text{SU}(2)_R = \text{O}(4) \} \quad \longrightarrow \quad \{ \text{SU}(2)_{L=R} = \text{O}(3) \}$$

Same symmetry groups before and after symmetry breaking

Assume $T = 1/\beta$ high enough for **dimensional reduction**:

$$S[\vec{e}] = \int_0^\beta dt_E \int_V d^3x \left[\frac{F_\pi^2}{2} \partial_i \vec{e}(x) \cdot \partial_i \vec{e}(x) - \vec{h} \cdot \vec{e}(x) \right] \simeq \beta H[\vec{e}]$$

3d O(4) model (with periodic b.c.) has topological sectors, $\pi_3(S^3) = \mathbb{Z}$.

- [Skyrme '61,'62, Witten '79, Adkins/Nappi/Witten '83, Zahed/Brown '86, . . .] :
top. charge Q corresponds to baryon number B
 $\vec{e}(x)$ pion field, but in this way the model accounts for baryons.

⇒ Baryon chem. potential $\mu_B \stackrel{\wedge}{=} \text{imaginary vacuum angle } \theta$,

$$H[\vec{e}] = \dots - \mu_B Q[\vec{e}] \in \mathbb{R} , \quad Q[\vec{e}] \text{ top. charge}$$

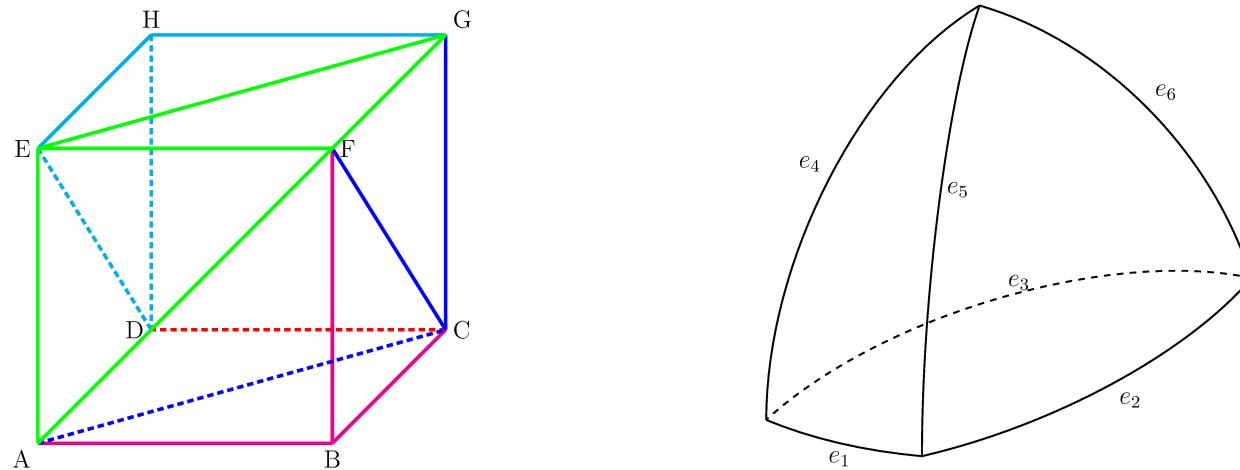
Standard lattice formulation,

$$S_{\text{lat}}[\vec{e}] = -\beta_{\text{lat}} \left(\sum_{\langle x, y \rangle} \vec{e}_x \cdot \vec{e}_y + \vec{h}_{\text{lat}} \cdot \sum_x \vec{e}_x + \mu_{B, \text{lat}} Q[\vec{e}] \right)$$

x : lattice sites; $\langle x, y \rangle$: nearest neighbor sites

Topological charge on the lattice: geometric definition:

Split lattice unit cubes into 6 tetrahedra; the 4 spins at the vertices of one tetrahedron, $(\vec{e}_w, \vec{e}_x, \vec{e}_y, \vec{e}_z)$, span a **spherical tetrahedron** on S^3 (edges $e_1 \dots e_6$: geodesics in S^3).



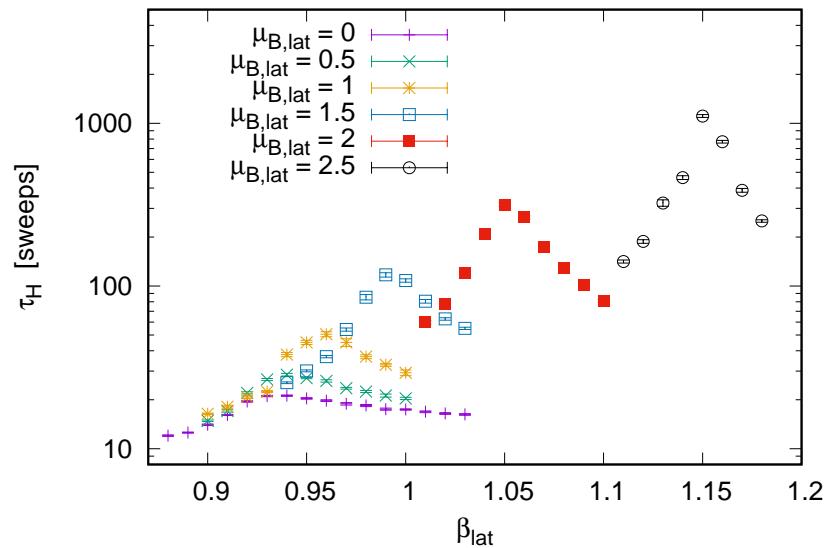
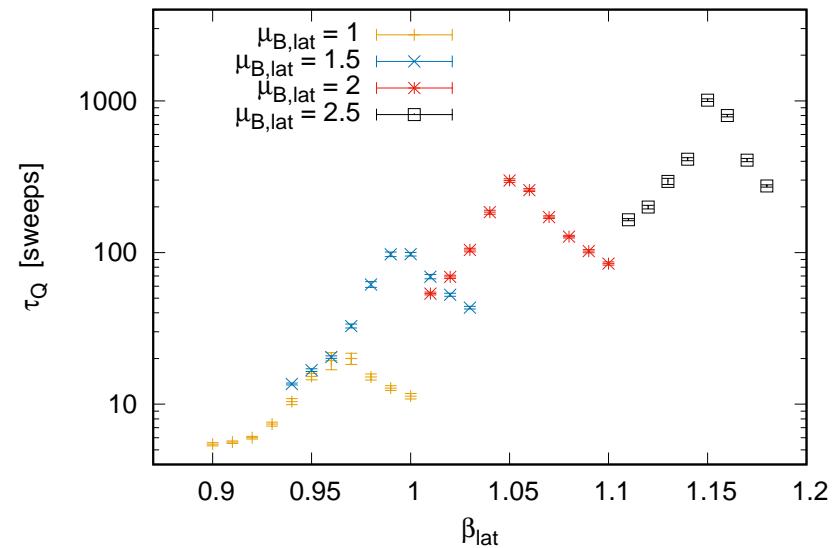
Topological density of a tetrahedron = volume of oriented spherical tetrahedron, $V_{w,x,y,z}[\vec{e}] \in (-\pi^2, \pi^2)$,

$$Q[\vec{e}] = \frac{1}{2\pi^2} \sum_{\langle w,x,y,z \rangle} V_{w,x,y,z}[\vec{e}] \in \mathbb{Z}$$

Prescription to compute $V_{w,x,y,z}[\vec{e}]$ by Murakami, '12.

Cluster algorithm: another benefit of the $O(4)$ model as an effective theory.

Still, increasing μ_B causes a rapid increase in auto-correlation time τ : this limits the range of reliable simulations to $\mu_{B,\text{lat}} \leq 2.5$.



τ in multi-cluster updates with respect to H and Q ($L = 20$, $h = 0$).

I. Results in the chiral limit, $h = 0$

Physical units by referring to $T_c = 1/\beta_c$ at $\mu_B = 0$:

$$\beta_{c,\text{lat}} = 0.9359(1) \quad [\text{Oevers, '96}] \Leftrightarrow T_c \approx 132 \text{ MeV} \quad [\text{Ding et al. '19}]$$

$$\mu_B = \frac{\beta_{c,\text{lat}}}{\beta_c} \mu_{B,\text{lat}} \approx 124 \text{ MeV} \quad \mu_{B,\text{lat}}$$

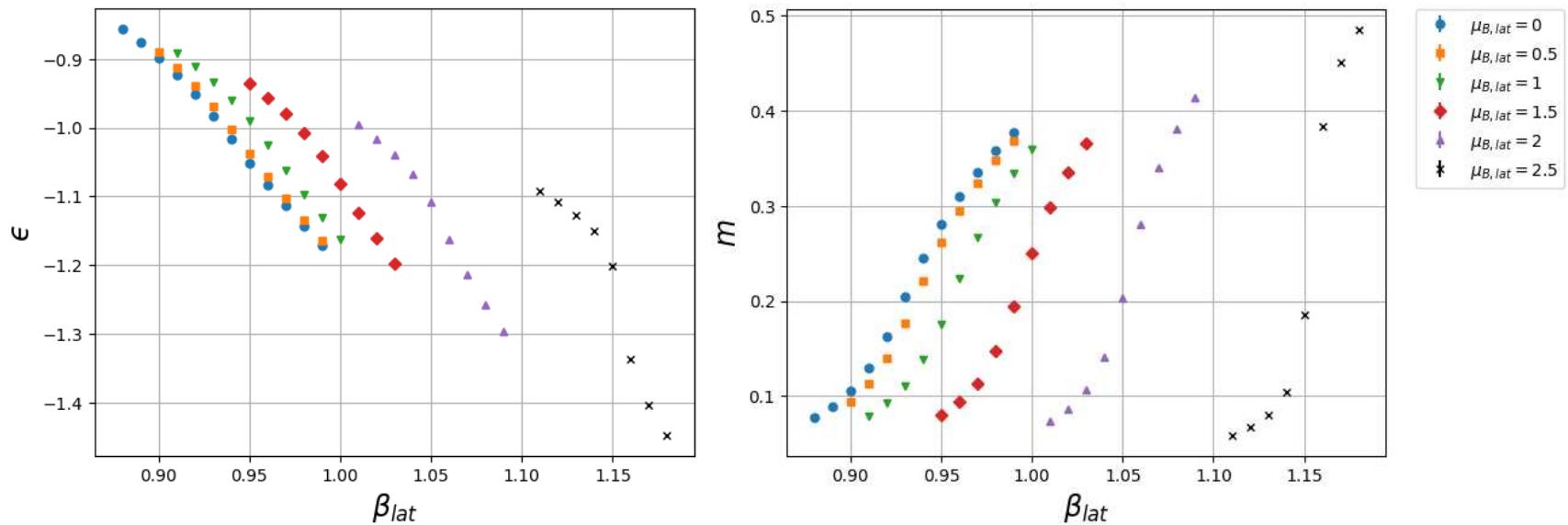
Simulation parameters:

$$\mu_{B,\text{lat}} = 0, 0.1, 0.2, \dots 1.5; 2, 2.5 \Leftrightarrow \mu_B = 0 \dots 309 \text{ MeV}$$

Lattice volumes L^3 , $L = 10, 12, 16, 20$ (problem: huge τ)

For each parameter set: 10^4 measurements, perfectly decorrelated

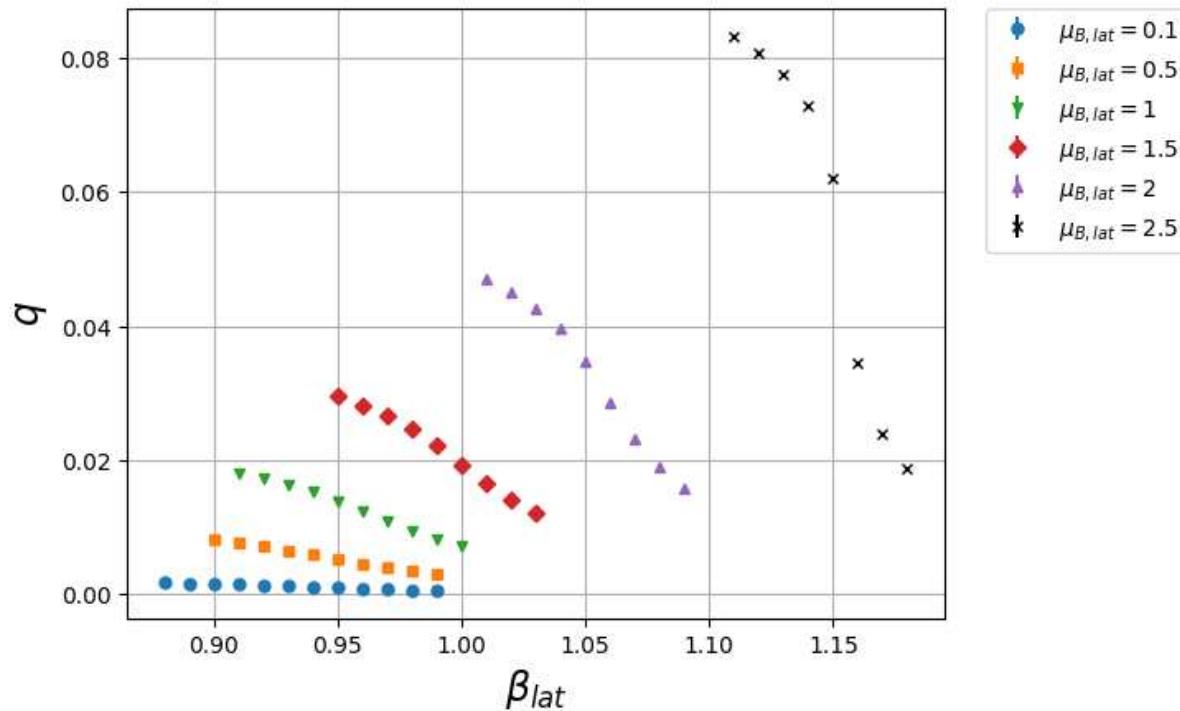
Observables: 1st and 2nd derivatives of $F = -T \ln Z$.



Energy density $\epsilon = \langle H \rangle / V$ (left) and magnetization density (order parameter) $m = \langle |\vec{M}| \rangle / V$, $\vec{M} = \sum_x \vec{e}_x$ (right), $L = 20$.

Increase $\mu_{B, lat}$ at fixed β : larger ϵ , lower m ,
interval of maximal slope moves to larger $\beta \approx \beta_c$.

$\mu_{B, lat} = 2.5$: quasi-jumps, 1st order phase transition near-by ?

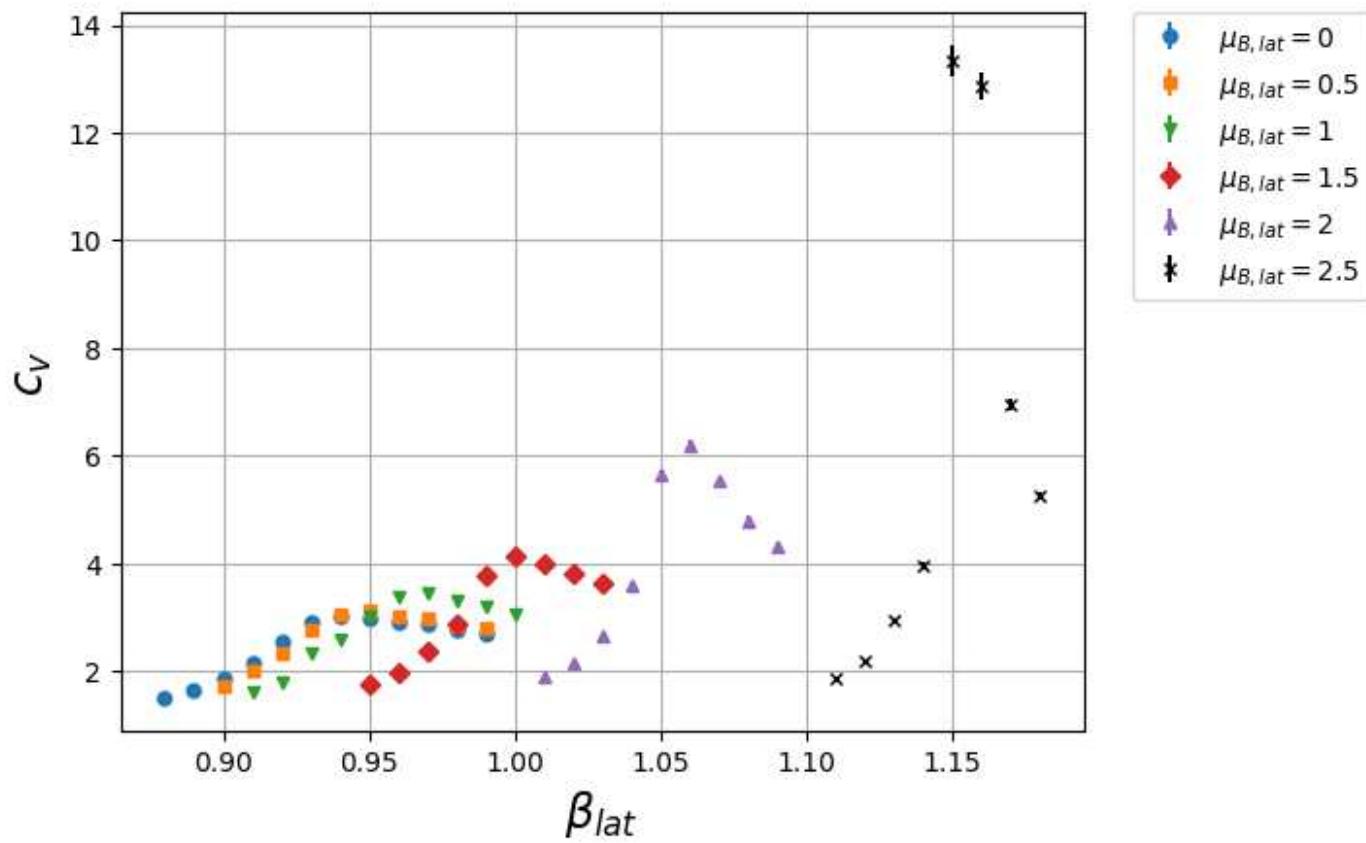


Top. charge density $q = \langle Q \rangle / V$

At $\mu_B = 0$: $q = 0$ due to parity symmetry.

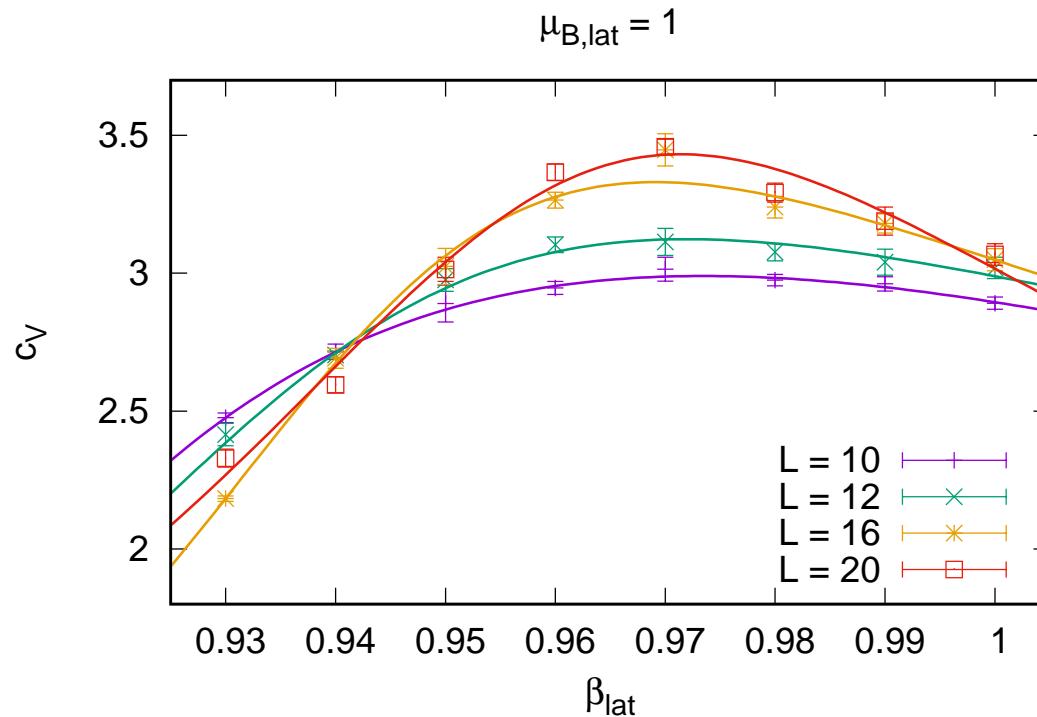
$\mu_B > 0$ enhances $Q > 0$, up to $\langle Q \rangle > 600$.

Again: quasi-jump for $\mu_{B,\text{lat}} = 2.5$, to be clarified by 2nd derivatives of F .



$$\text{Specific heat } c_V = \frac{\beta^2}{V} \left(\langle H^2 \rangle - \langle H \rangle^2 \right) , \quad L = 20$$

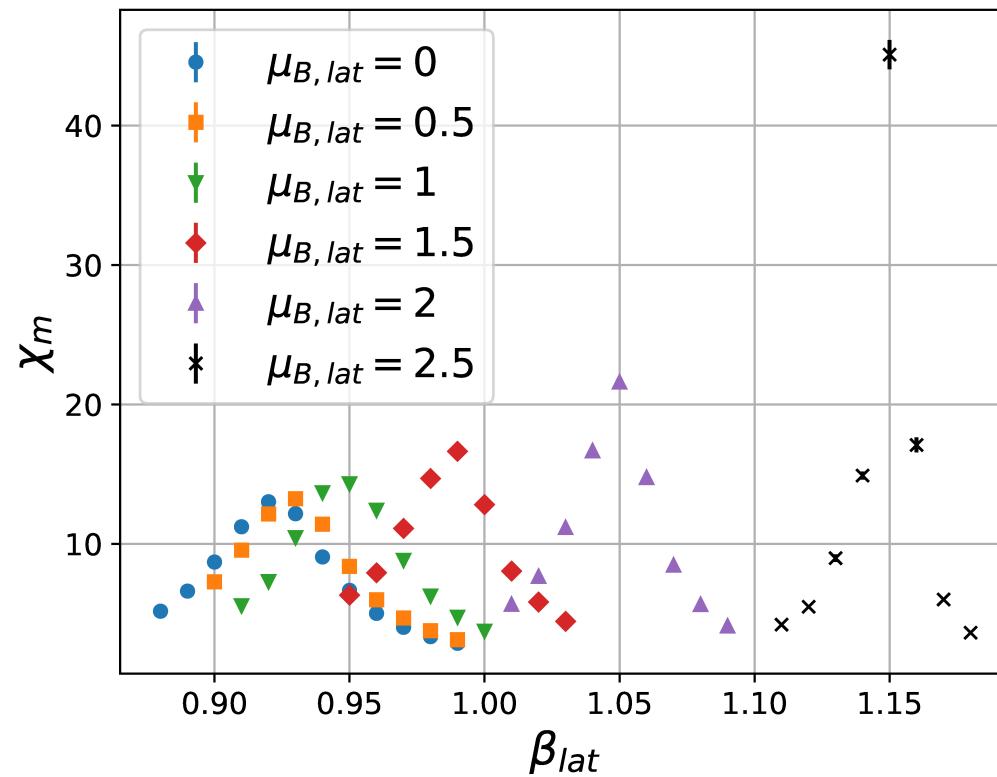
Peak most pronounced at $\mu_{B,\text{lat}} = 2$ and 2.5 , likely still 2nd order.



Peak of c_V identified with fits to Johnson's S_U -function for each $\mu_{B,\text{lat}}$.

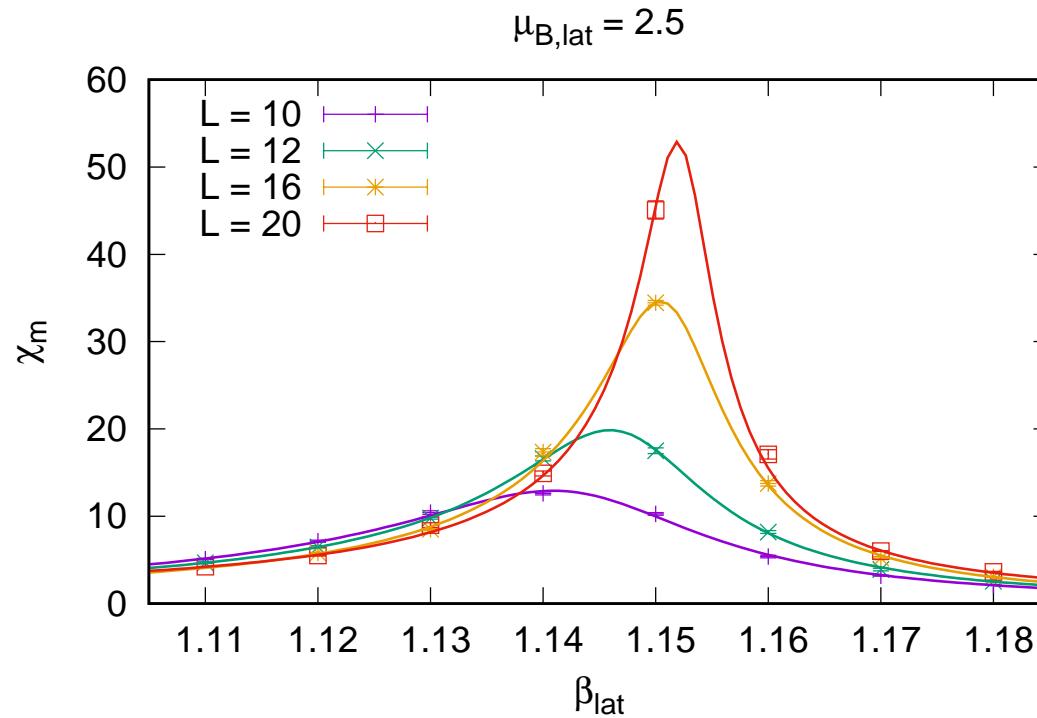
Peak location hardly moves with V , extrapolation to β_c simple.

For 2nd order we expect (peak height) $\propto L^{\alpha/\nu}$; at $\mu_{B,\text{lat}} = 2$: $\alpha/\nu \approx 0.2$.



$$\text{Magnetic susceptibility } \chi_m = \frac{\beta}{V} \left(\langle \vec{M}^2 \rangle - \langle |\vec{M}| \rangle^2 \right), \quad L = 20$$

Peak most pronounced at $\mu_{B,\text{lat}} \geq 1$, supports 2nd order.

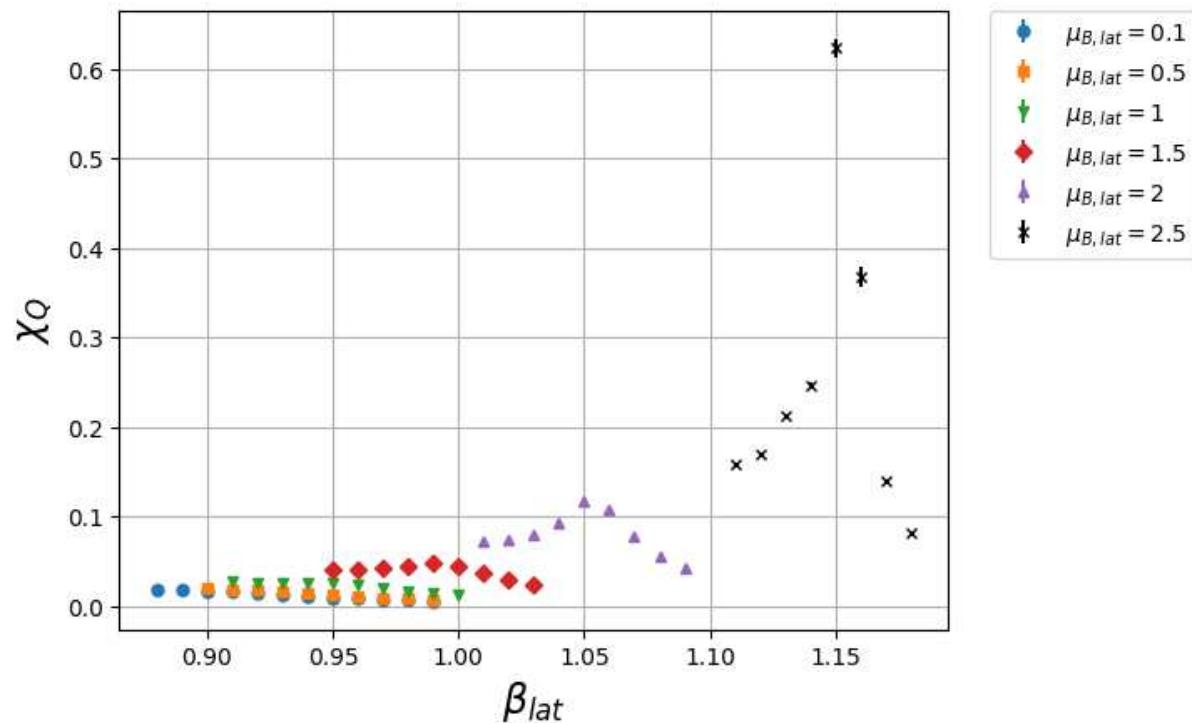


Peak of χ_m moves with V , extrapolation to β_c consistent with other criteria.

2nd order: (peak height) $\propto L^{\gamma/\nu}$, $\frac{\gamma}{\nu}(\mu_B, \text{lat}) \in [1.7 \dots 2.1]$

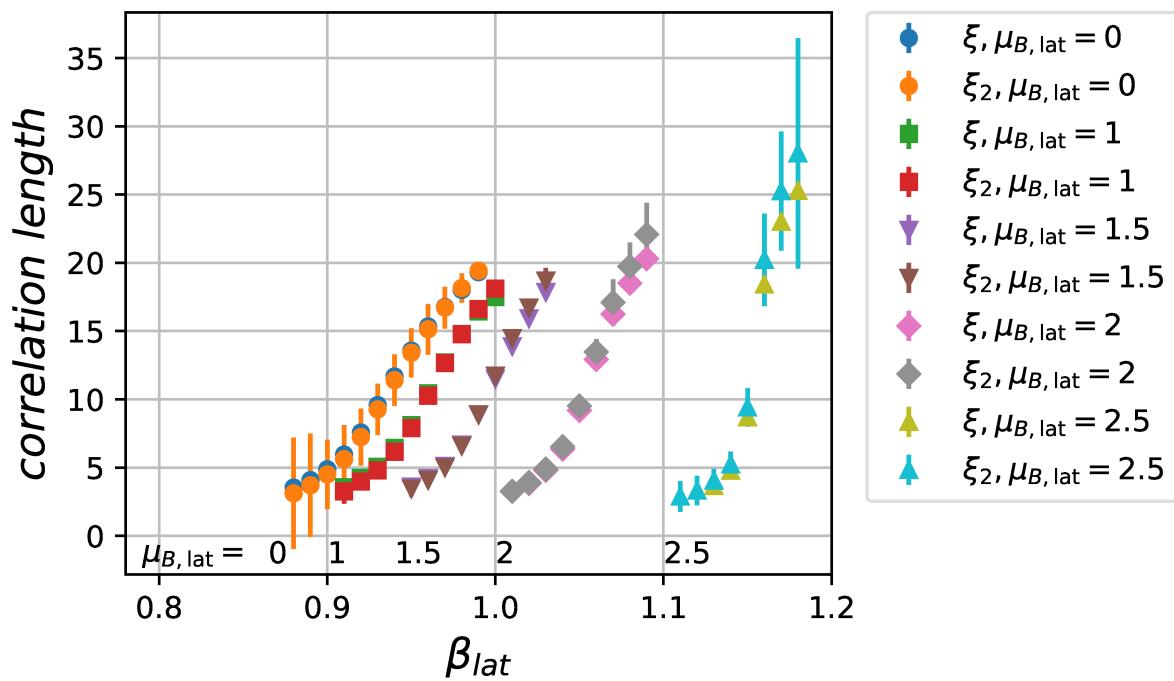
at $\mu_B = 0$ compatible with 1.970 [Engels/Fromme/Seniuch, '03]

Strongly supports 2nd order, along with auto-correlation time τ .



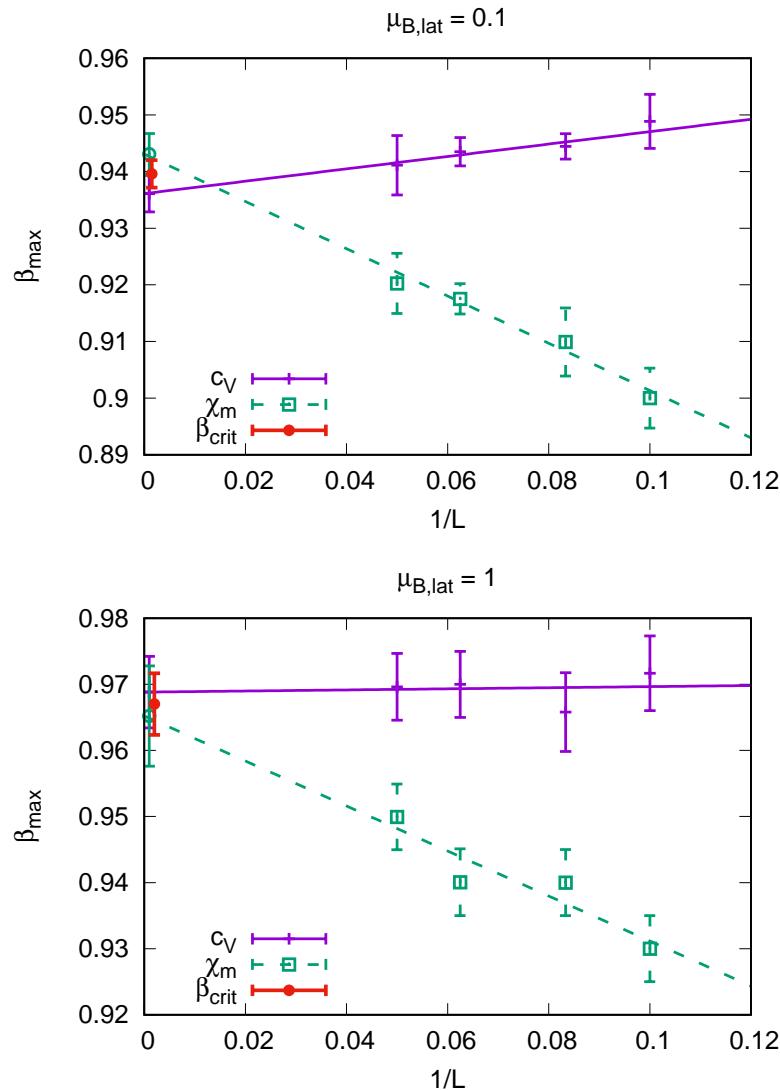
$$\text{Topological susceptibility } \chi_Q = \frac{1}{V} \left(\langle Q^2 \rangle - \langle Q \rangle^2 \right)$$

Peak most pronounced at $\mu_{B,\text{lat}} \geq 1.5$, supports 2nd order, consistent with previous determinations of β_c . One might try to introduce a new critical exponent θ : $\chi_Q(T_c) \propto L^{\theta/\nu}$, e.g. $\frac{\theta}{\nu}|_{\mu_{B,\text{lat}}=0} \simeq 0.2$, $\frac{\theta}{\nu}|_{\mu_{B,\text{lat}}=1} \simeq 0.3$

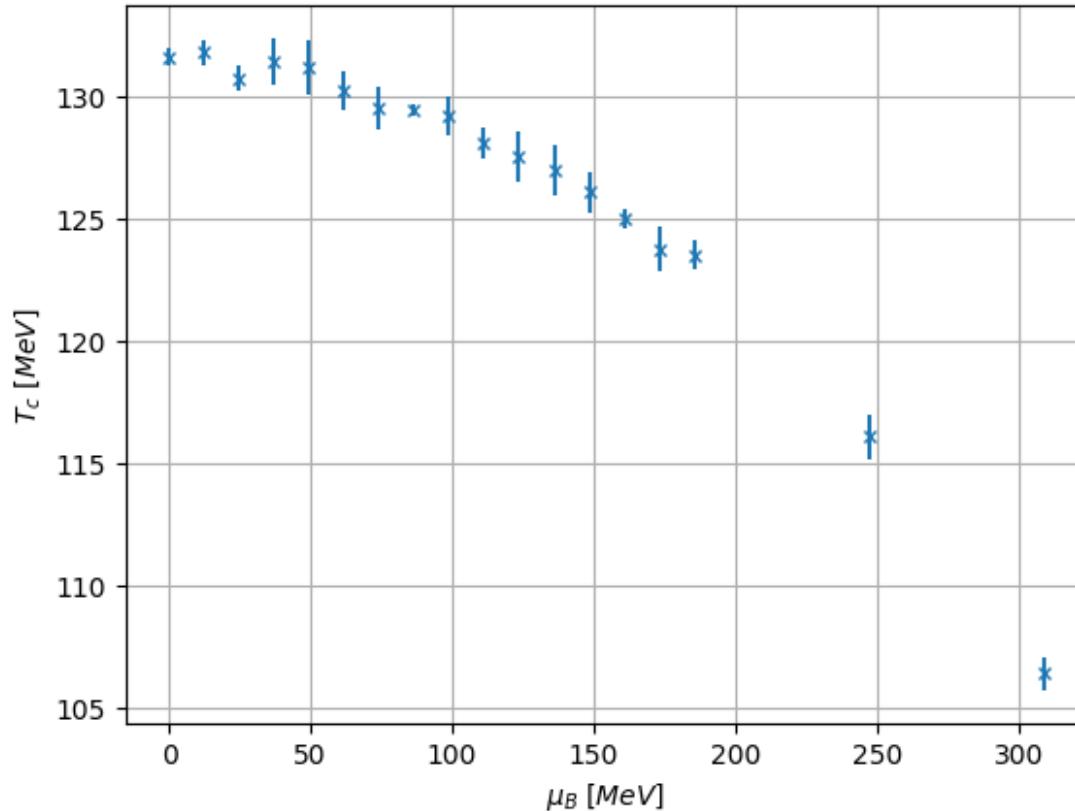


Correlation length ξ

(or “2nd moment correlation length” $\xi_2 \simeq \xi$, easier to measure):
 peaks at $L = 20$ are again consistent
most compelling evidence for 2nd order phase transition



Large-volume extrapolations of β_{max} to β_c
 Consistent for each value of $\mu_{B,\text{lat}}$



Combine all determinations of $\beta_{c,\text{lat}}(\mu_{B,\text{lat}})$ (steepest slopes and peaks, extrapolated $V \rightarrow \infty$), convert to physical units: final phase diagram in the chiral limit. Shape as expected, but no Critical Endpoint — *i.e.* no change to 1st order — in the regime $\mu_B \lesssim 309$ MeV and $T \gtrsim 106$ MeV.

II. Preliminary results at physical pion mass, $h = |\vec{h}| > 0$

Estimate of physical units

$$\beta_{c,\text{lat}} \simeq 0.936, \quad T_x \simeq 155 \text{ MeV}$$

$$h = h_{\text{lat}} \frac{\beta_{c,\text{lat}}^4}{\beta_x^4} = h_{\text{lat}} (145 \text{ MeV})^4$$

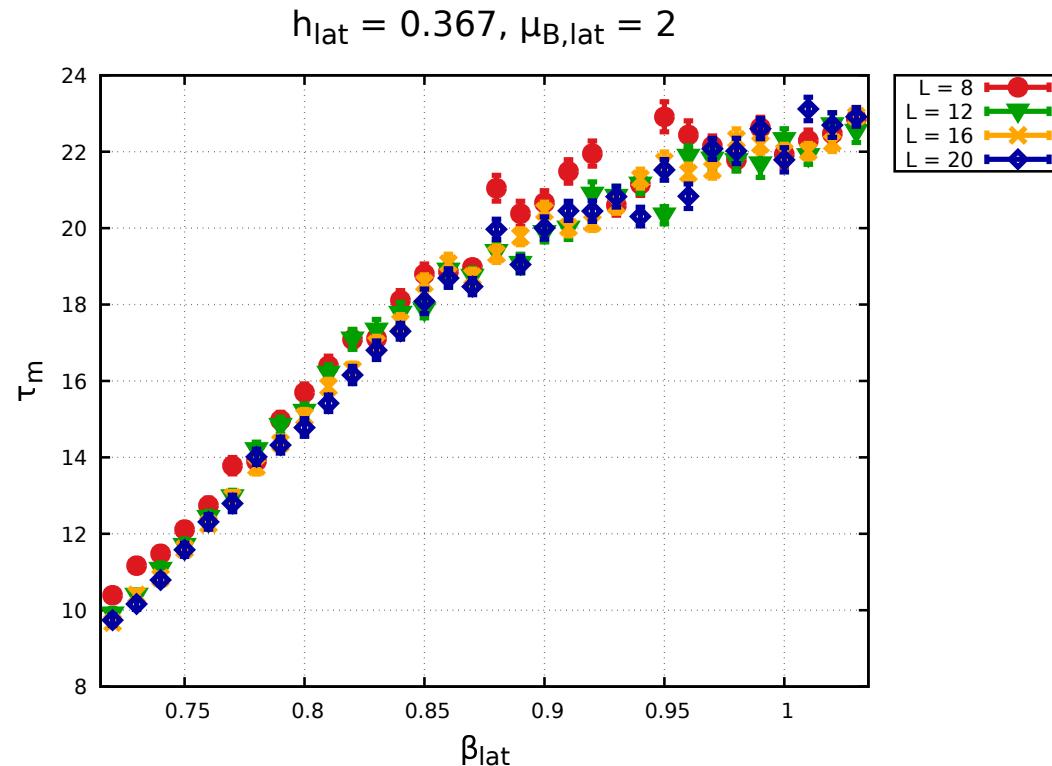
$\beta_{x,\text{lat}} \approx 0.87$ ambiguous, see below.

We fix h by the Gell-Mann–Oakes–Renner relation:

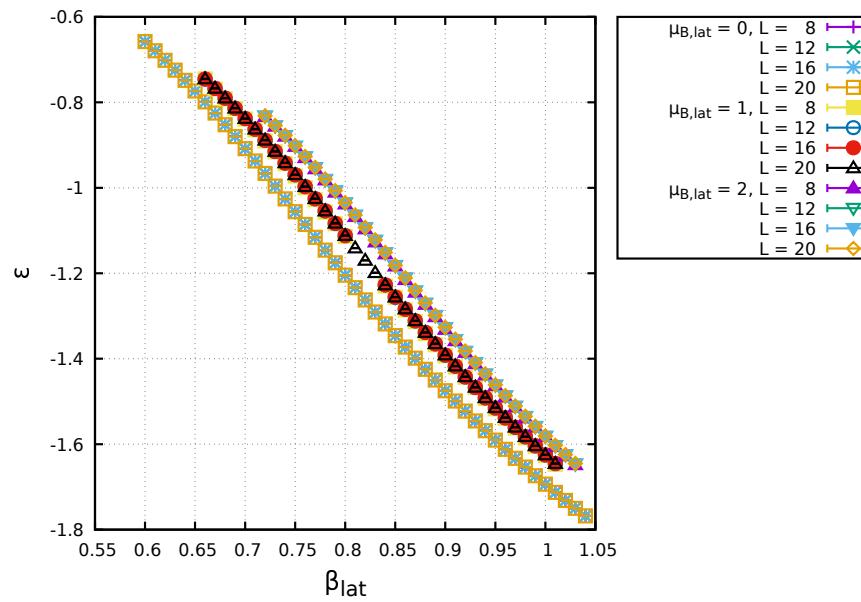
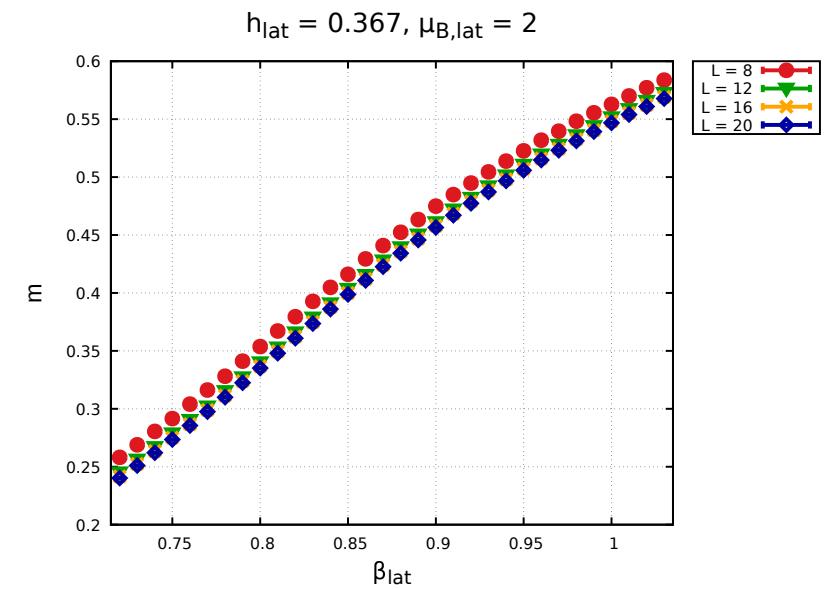
$$h = m_q \Sigma \stackrel{!}{=} F_\pi^2 M_\pi^2 \simeq (92.4 \text{ MeV})^2 (138 \text{ MeV})^2 \Rightarrow h_{\text{lat}} = 0.367$$

with $\Sigma = -\langle \bar{\psi} \psi \rangle \simeq (250 \text{ MeV})^3$, this corresponds to $m_q \simeq 5 \text{ MeV}$

Growth of auto-correlation times τ is strongly alleviated by crossover:
 τ does not diverge at β_x , **no critical slowing down**.



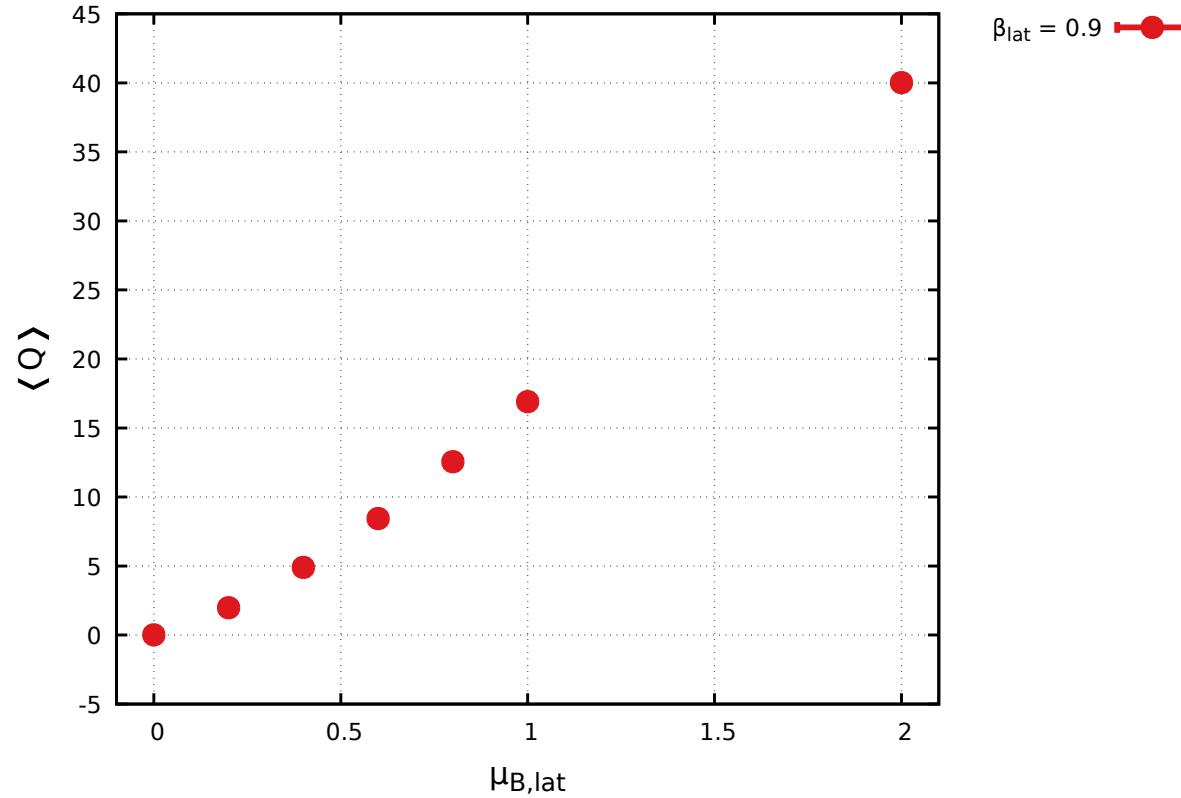
Magnetic auto-correlation time τ_m



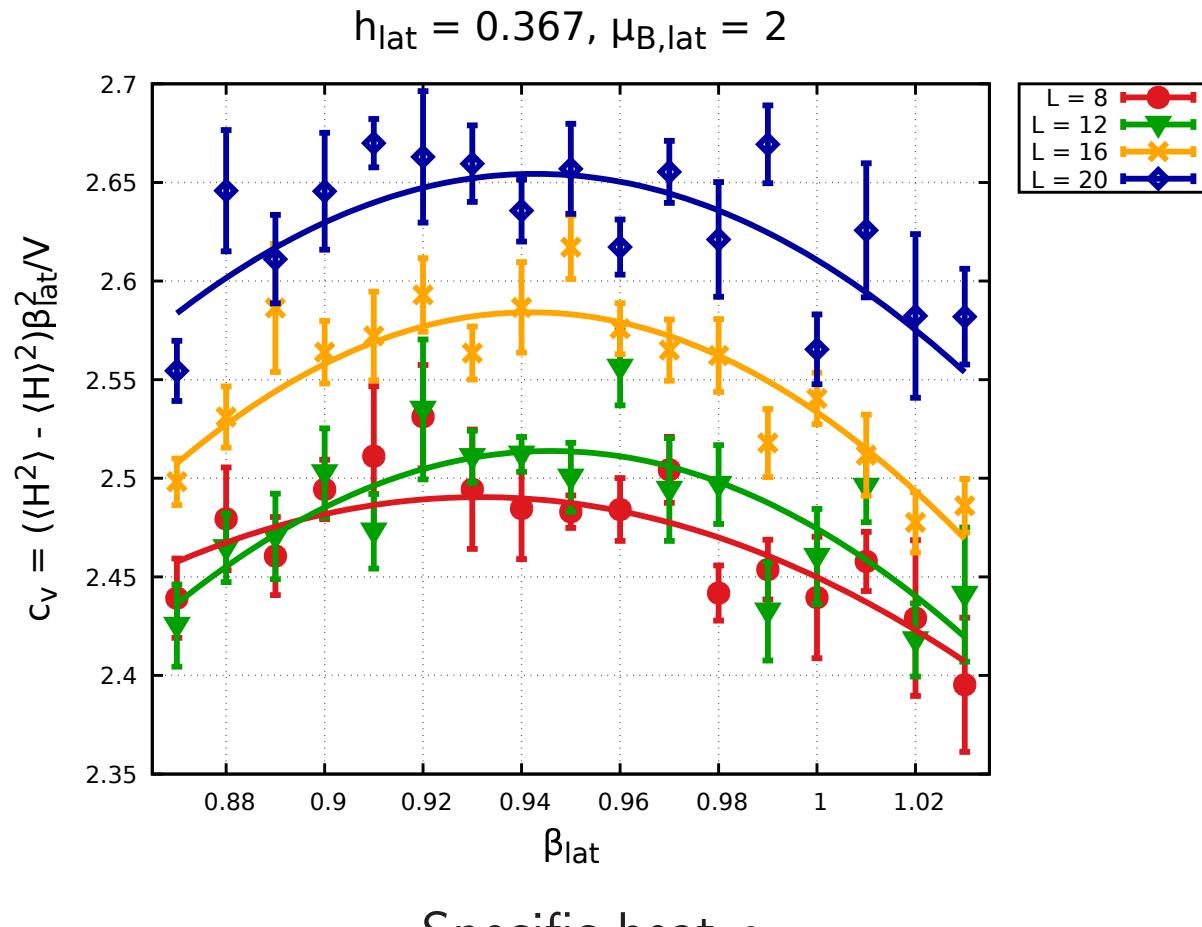
Left: Energy density $\epsilon = \langle H \rangle / V$ hardly depends on L . Shift for $\mu_{B,\text{lat}} = 0, 1, 2$.
 Right: Magnetization density $m = \langle |\vec{M}| \rangle / V$ at $\mu_{B,\text{lat}} = 2$. Modest finite-size effects.

No interval of extraordinary slope (as L grows):
 2nd order phase transition smeared out to a crossover.

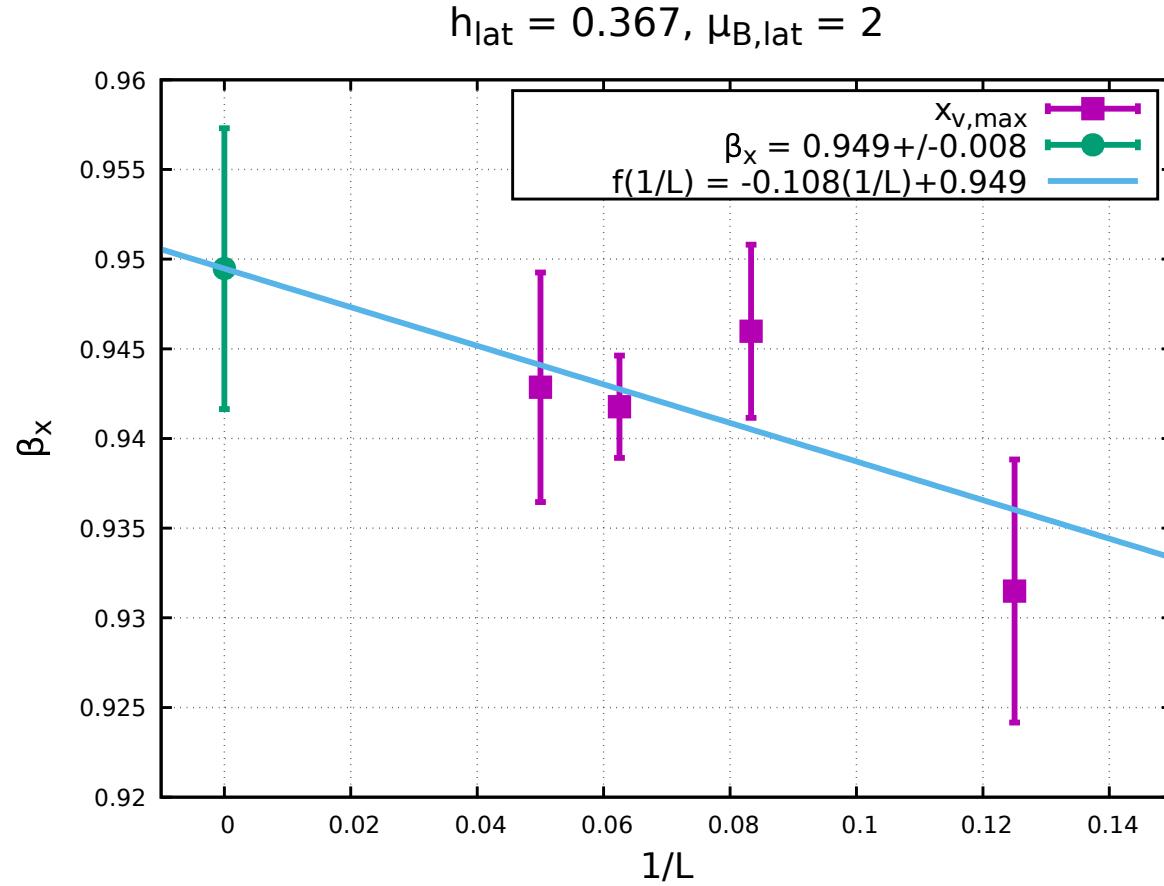
$h_{\text{lat}} = 0.367, L = 20$



$\langle Q \rangle \stackrel{\wedge}{=} \langle \text{baryon number} \rangle$, enhanced by $\mu_{B,\text{lat}}$

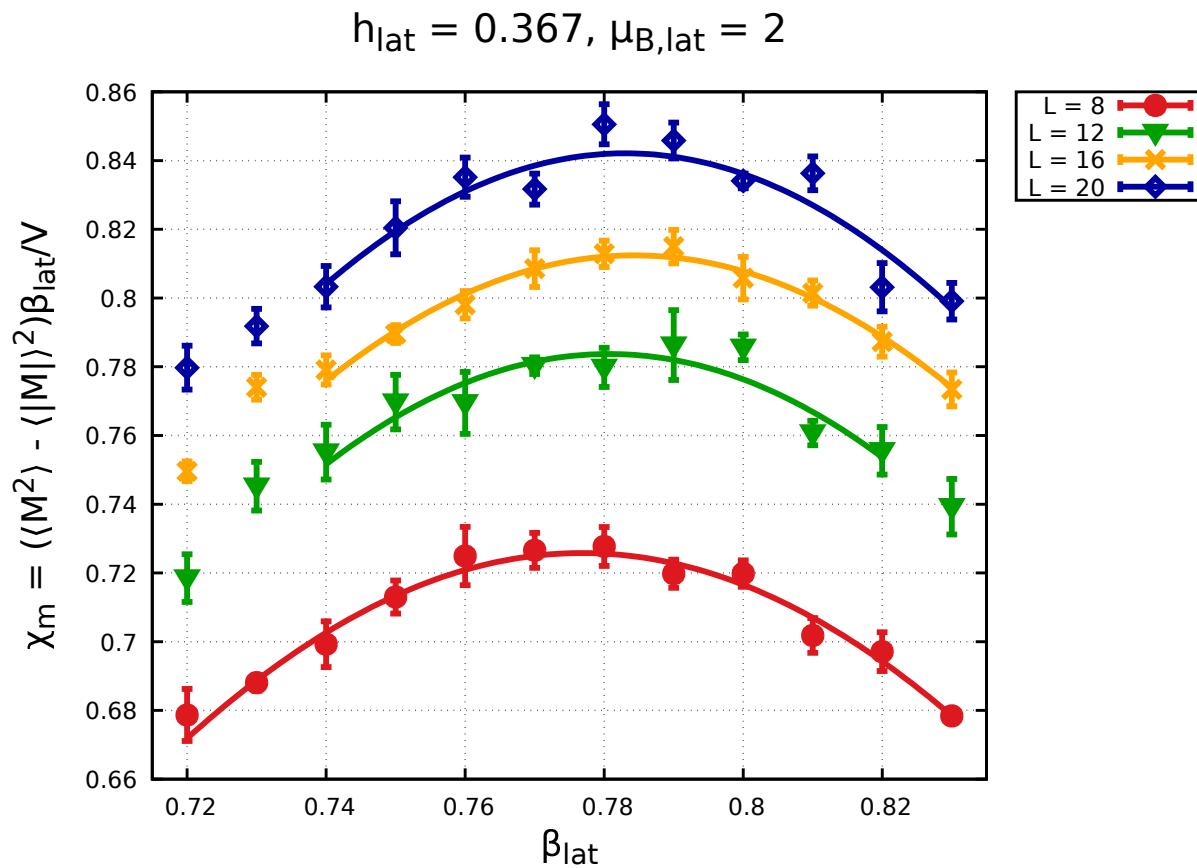


Peak washed out by mass term; located by Gaussian fits

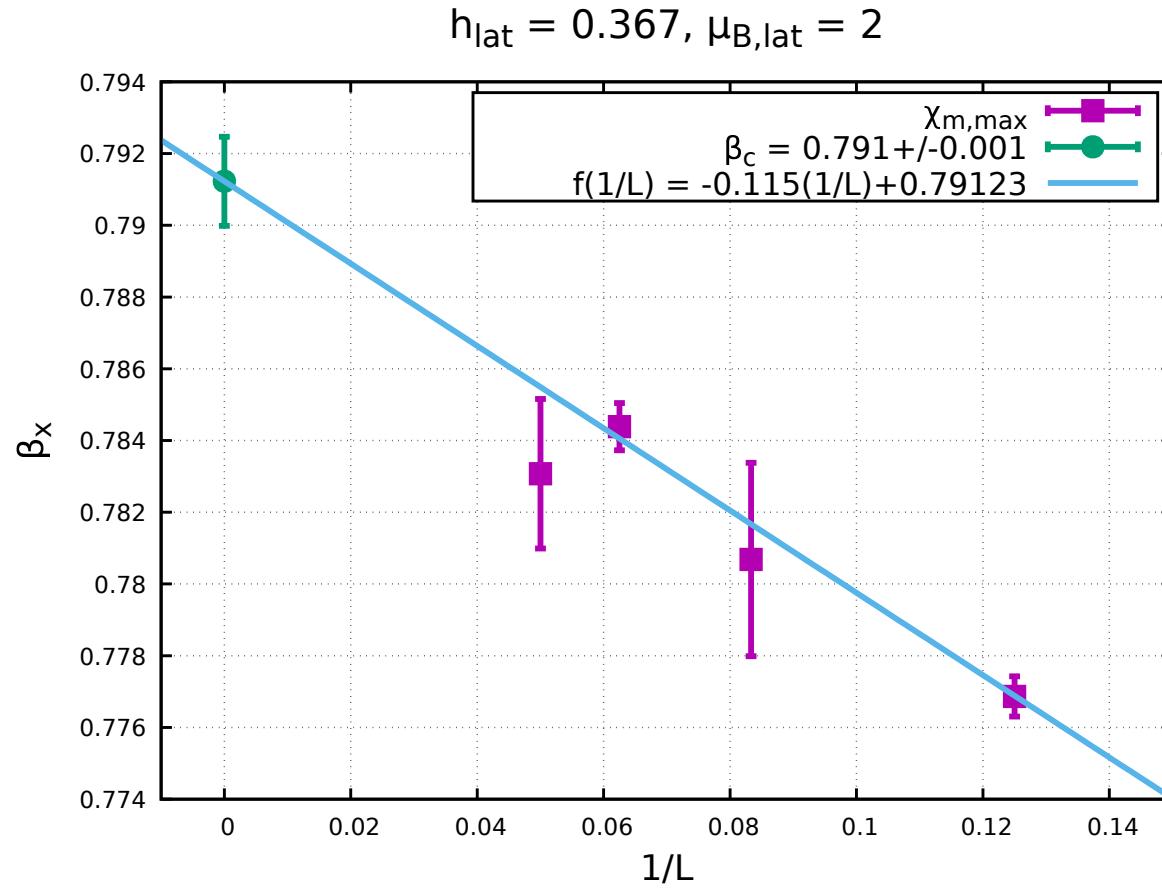


Large- L extrapolation of c_V peak locations $\rightarrow \beta_{x,\text{lat}}$

Performed at each $\mu_{B,\text{lat}}$ to monitor the crossover.

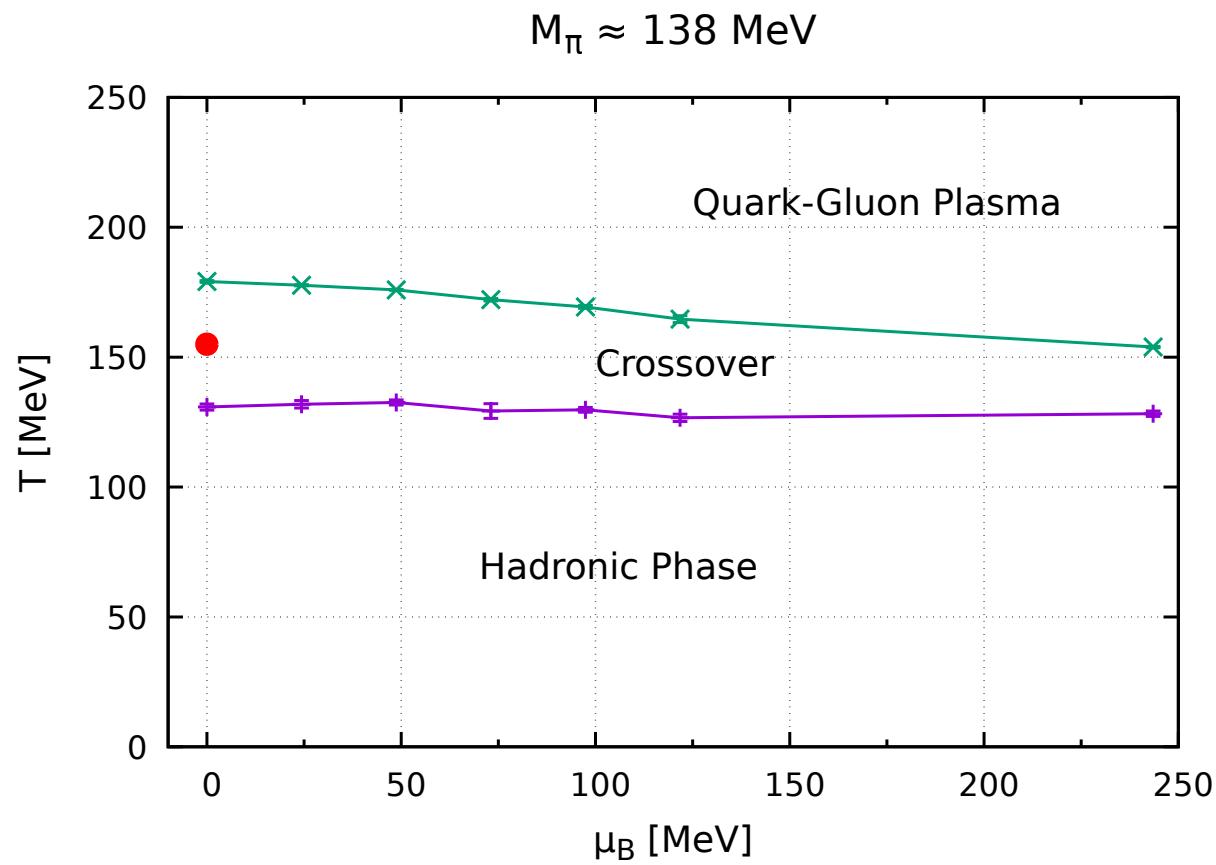


Magnetic susceptibility χ_m at $\mu_{B,\text{lat}} = 2$. Again: peak washed out, localized by Gaussian fits. **Another criterion to search β_x .**



Large- L extrapolation of χ_m peak locations $\rightarrow \beta_{x,\text{lat}}$

Below values obtained from c_V ; typical for a crossover.



Phase diagram at finite quark mass: broad crossover region; T_x hardly decreases up to $\mu_B = 244$ MeV. No indication of a Critical Endpoint.

Conclusions

We assume the $O(4)$ model to be in the universality class of 2-flavor QCD in the chiral limit.

High-T dimensional reduction to 3d $O(4)$ leads to topological charge, identified with the baryon number.

Model can be simulated with baryon chemical potential, without sign problem, and with a powerful cluster algorithm.

We monitor the critical line up to $\mu_B \simeq 309$ MeV, $T_c \simeq 106$ MeV. $T_c(\mu_B)$ decreases monotonically; no Critical Endpoint found, but hints for it to be near-by.

At physical pion mass: T_x varies little with μ_B , crossover in some T -interval; up to $\mu_B \simeq 244$ MeV again no CEP.

Ref.

