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Introduction

A key lesson from the HERA e~ p DIS collider: “Gluons
and sea quarks dominate the proton wave-function at

high energies
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Introduction 2

Deep Inelastic Scattering (DIS) Kinematics:
s = (P+q)’
r = Q2
2P - q
, Q> = —¢F=(k-FK)
7 0’
¢ y =

Small—xr < Highenergy s

v v
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quark loop diagram  «;

“handbag” diagram  z
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For x < 0.01, the 1/x enhancement overcomes the ~ as
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Quantum corrections:

+ oo0e0

We cannot sum
exactly. But we know
how to sum for
leading-log (LLA) or
next-to-leading log
(NLL).

Wee partons (x << 1) are intrinsically non-perturbative.
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The sum was first calculated by |. Balitsky ‘96 (effective
lagrangian) and Y. Kovchegov 99 (large N QCD):

ON Y 1 i
(wgif:l? ) — %/dsz (w07w1;w2) X _N(wo,wz;Y) + N(w27w1;y)
— N wawla — N wo,wQ, w27w17y)
-+ eee
éﬁm%
KLO (o, T1;T2) = Qs %1 : L |iBz - ag =
51712%2
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Extended Geometric

Scaling region The breakdown of the linear

Y-mnix | regime occurs when
N(r=1/Q4(Y),Y) = const
which gives
s~1 A =

3 _ 1 :
20— ) InagY + O (ﬁ) } ' e = 0.37
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Solution in the extended geometric region

ON( «’1307331, . /d2 (0 —«’131)
5130 — 5152 5132 — fBl)

X [N(iﬂo,-’ﬂz,y) + N(zz,x1;Y) — N(«’BOw’Bl;Y)]
= N(xo,z1;Y) = Ny ("“2Q§(Y)>1_%T
Approximate solution in the saturation region: We simplify
the kernel by taking into account only log contributions

2

r

N Y d
o N@o2SY) Nz ) / 0r N (9, 23; V)
¥ 1/Q2(Y) 702
with solution )

N(zg,z1;Y) = 1 — e H@onY); Q(xg, z;Y) = U (F2);
ds)’

/\/QQ + 2 (=1 4+ QU+ e )
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Introduction 3

N Y) = No(rPQAv)) 001 — rQu(v)) + (1 — e %) 0 (rQ,(v) — 1)
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1
= %/dzﬂb Ko (o, T1; 2) X [N(wo,azg;Y) + N(z2,z1;Y)

Starting from

8N((130, I, Y)
oY

— N(zo,z1;Y) — N(mo,wg;Y)N(w2,w1;Y)]
In the vicinity of the saturation scale where

2 2 2
Loy ~ L9 ~ %2 1/@

we can consider as(1/z;;) — as(1/z3,) so that
2

X
KE:%IK(%»&; Ty) R (1/3301) o

2
3702 L79

And taking only the log contributions, it reduces to

r2

ON(zy, ;Y dzj
((,;Yl ) = (1 = N(zo,z1;Y)) / 33(2)(;2 as(1/zgz) N(zo, 2 Y)

1/Q3(Y)
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From the equations that determine the saturation
momentum it is found

QZ( ) AQCD€2 AddasY QQ( ) AQCD6\/39Y/3

S S

(fixed) (running)
We are not able to find a solution with geometric scaling
(GS) z = In(r*Q2(Y)) . What we found instead is

N(CC(),(Dl;Y) = 1 — e—Q(mO,wl;Y); Q(wmwl;y) — QC(C) + Q,(Y7C)

d*Qe(¢) | dQe(Q) —Q(¢)
- e T e T
2 (O — ] -
= TG00 e g (1 - 158) j1-1 - - ()

8Y o(l — 1,)

¢ = 4;ZCY1n (as(Q2(Y))/as(1/r2))
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To solve this last eq. we apply the homotopy perturbation
method (HPM): - 2[u] + Ap[u] = 0 |hememettisess™

deformed" into the
other.

Integro-differential Non-linear part;

operator arbitrary form
We construct a homotopy u, : 2 x [0,1] — R such that
p=20
H(p,u) = Llup] + pANelup] = 0 @

p=1
where p € [0, 1] is an embedding parameter. The sol. is

’U,1(Y,£01,b) _|_p2u2(Y7£01ab) + )
’U,()(Y, £017b) Uo(Y, &017@)

For uw=limu, =uo+u1 +uz +--- it gives the solution to the
nonlinear equation (J.H. He, 1999)

up(Yalopb) — uO(Y7£017b) (1 -+ p



. 02QP) (Y, r, b) (p)
QP71 = ARACA —Q®) (Y,r,b)
Defining Z2[Q'"] g + e
1/Agep )
JV_g[Q(p)] = / % K (r;ry,72) exp (— Q@ (rl,Y;b — %7‘2) — Q@) (7"2,Y

™ >T

For the zero iteration it gives
QO 1-1) = QP Q) + Q¢ 1 - 1)

1
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And for the corrections it gives
920 1) (Kl—ls) _ (1_6—9(1)(Y,l—ls)) e—Q(O)(Y,l—ls) B g (eQ(O)(Y’l_ls)JVg[Q(O)])
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[ -1 I- I
Not only studying the homotopy approach to nonlinear
QCD, but also studying the scaling variable in this case
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Things to do L7

1.) Connect with BFKL solution for rQs(Y)<1 for a full
picture, and compare with the fixed coupling case

2.) Check once again the geometric scaling behavior
(since the numerical solution shows geometric scaling it
seems)
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(pictures from J. Albacete and Y. Kovchegov)






