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Motivation

For Diffractive process, in the Regge Limit (s > t), t-channel exchange
dominate and then becomes an effective 2+Idimensional: transversal
space and rapidity (Lipatov effective action/CGC/Dipole approximation)

At very small transverse distances: pQCD and BFKL Pomeron (1958)

At very large transverse distances before QCD era, there was the
Reggeon Field Theory description introduced by Gribov

The Pomeron is usually related to gluonic Exchange: state of two gluon
and C=|
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Reggeon Field Theory before QCD

e V.N. Gribov introduce in the 60’s: RFT

e Scattering amplitude at high energies for hadrons is according Regge Theory: the
exchange of ‘“quasi particles” characterized by its Regge trajectories : a; (t)
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Regge trajectories
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a(t)
3 P3,m3 /t;/pi)o'l(”t
, o
2 Tc:‘f -------
- pomeron
1 £ a(t)=1.1+0.25t
0 & >
t= M2 (GeV?)
e the total Cross section, is given by: or = Al-sai(o)_1

* Leading Pole: is Called Pomeron with vacuum quantum numbers
a(t) = ap+a't=1+(ay—1)+a't
U = ag— 1 is the Pomeron intercept and «  is the Pomeron slope



A. Donnachie and Landshoff :
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Phys. Lett. B 727 (2013) 500 arXiv

cross section grows with energy

1309.1292
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Unexpected behavior: Soft Pomeron exchange

op(t) = 1.08 +0.25(GeV~2)r



BFKL or Hard Pomeron pQCD

Balinsky, Fadin, Kuraey, Lipatov (1977)

The BFKL Pomeron which has been studied up to NLO in perturbation theory is a composite states of Reggeized
gluons.

Resumation of the Ladder at leading log approximation (multi Regge Kinemmatics MRK) Lipatov, Bartels
¢ The intercept of the Pomeron is related with the eigenvalues of the BFKL Kernel

wo(¥) = aN, /t[2%1) —¥P¥) - ¥ — )] w(y)= diy LnT(y) Digamma function

as

Y4 In2 ~1+05295 Hard BFKL/QCD
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ap(0) = 1+
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Pomeron we can connect Hard —Soft Pomeron regions of different
: sizes and different sorts of Pomeron using

m Renormalization Group approach
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» Exact/Functional Renormation Group

%= K,® f » One loop improved approximation




How we can study another states with 3,4 gluons !

1973 Lukaszuk and Nicolescu proposal the Odderon as the odd
partner of the Pomeron (C =-1) 3 gluon

1980 |. Bartels; J. Kwiecinski and M. Praszalowicz.

Multi-Reggeons equation BKP

hp

BE(1)

What we can study:

> Solutions

1 3
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* t-dependence of elastic cross section shows difference between pp and pp
(evidence for existence of Odderon)

Phys. Lett.B 778 (2018) 414-418

Did TOTEM experiment discover the Odderon? .
Experimetal data from

Tevatron and DQ

Evgenij Marty nov®, Bazarab Micolescu®

“ Ragohaubav Instit e for Theoretical Physics, Metrolagichna I145, Kier, 03680 Ukraime
P Faculty of European Sindies, Seber-Bolyel Unfversiy Emmanne] de Mariomne Street I, 000890 Chy-Nepeos, Romamie

T. Cs6rgo, R. Pasechnik and A. Ster Eur. Phys.J. C 79 (2019) 1,62

M. Broilo E.G.S. Luna M.J. Menon arXiv:1803.06560

Csorgo et al. EPJC 81 (2021) 2

There are evidence for the non-perturbative Odderon

Intercept and the Slope




N-Pomerons

The BFKL Pomeron spectrum then becomes discrete, even at relatively short
distances. This corresponds to the appearance of bound state Regge poles
(Pomeron states)

For these discrete Pomeron states the eigenfunctions have been studied
e J.Bartels, C. Contreras and G. P.Vacca, Phys. Rev. D 95 (2017 [arXiv:1608.08836 [hep-th]].

What remains is the ’unitarization’ of this set of Pomeron states: this requires, in
particular, the introduction of the triple Pomeron vertex.

Kowalsky and others have used the discrete Pomerons to fit the small-x and low-
Q2 HERA data, which allows to fix the infrared boundary values. All these
approaches only use the contribution of the discrete BFKL Pomeron, and so far no
attempt has been made to introduce the triple Pomeron vertex.

H. Kowalski, L. N. Lipatoy, D.A. Ross and O. Schulz, Eur. Phys.]. C 77 (2017) no.1 1,777
[arXiv:1707.01460 [hep-ph]]-

How we can study this interaction of N-Pomerons /Reggeons with interactions?



The Reggeons Field Theory

Let us define here the theory which we want to investigate. We shall consider a set
of fields and their conjugate ; 1], fori = 1..N, whose evolution and interactions
are defined (Gribov - action)

) 1 1 + o, .

—

! / ?: / / / / / /
V (1, @-‘;T) — E 5(1:")\1“ (@'}}@;kwg — '@'f’j’t'/‘;t@/’;r) Nigk = Nikj
ki

The interaction N=2 discrete fields is described by the cubic potential V.:

(A1, Aoy Az Mg, As. Ag) = (A1ar. A122. Aoar, A22a. Arar = A2, Aoo1 = Aa2)

Vil 91, o, 3] = Ay (1 + 1)ipn + idatps (3 + o) o + iAst] (3 + o)1+
A3 (1 + )2 + iAs (P31 + 391) + ide (YT oi + $19p]),



Renormalization Group approach

We need to study the evolution with the k-scale:

e Reggeon Intercept: Hik

7 az
* Reggeon slope: @ ik T
* Coupling constants Aik

e Scaling behavior for the cross section to high energy

Exact/Functional Renormalization Group

56 5 ¢

. 1 i _1
Using FRG and Wetterich Equation 93 oL, [4] = %Tr {(5 T,[4] +Rk] atRk]

Action Fk(l/Ji,l/JlT; Ai)
Regulator R, (q)
Initial Condition Ty=p (¢, g;) ‘

Interaction V=3 A;.jx (wzrlljjl/)k +cc)

Ri=Zog(k - )0k - ¢)

Ry = Zool (K — )O(K: - @) = 1Zal (K — )Rk - ¢, /

r}c:_«l = Sb;u‘e

‘.

 J



Calculation

8trk [¢] — %TI/‘ |:( 55;Fg[z] + Rk j atRk:l

]_// qu dw

N (P, A i) = 2;9:(R)0; (@)
0¢ T = X 0:9i(k) * 0; () = PB;(k) asociadas al {O;} operator basis.

Beta Funtions: Bi(k) = 0:g;(k)

Fixed Points Conditions 0;I}; =0 y t= ln(%)



Flow equation for the Reggeon theory f3; = %

Beta Funtions: gi(k) = (pym, .41 yA2:22, A1:12, 4122, A221, A2:11)

Dimensionaless variable
Cancino and Contreras,

v Universe 10 (2024) 3, 103

1= VZk PPy, 1 =2k PPy, V=
1\

m M1 . H2

VZiZadk2 ' M T a2 12 T a0k
MKP/2 A kP72 AsekD/2 Ay 5kD/2

1 =

M= — S S VN A Y S —
VTR T A T i Y T 2y ke
1 1 ,
N =—50:Z; &= —— 0:a';
Zi a
r,=a/a r=r(— &)

See Talk from Cancino on the Fixed point Position in this 10 dimensional space
parameter and about the diagonalization process

It is possible to obtain a similar result that verifies this analysis.?

Bartels, Contreras and Vacca to appear in arXiv
M. Braun et al arXiv:2311.13870



One loop improved perturbation theory using IR regulator

One loop calculation with non Reggeon intercept. M. Braun et al arXiv:2311.13870

e Ata low approximation the FRG/Wetterich reduces to one loop results.

5041,
5 5¢

1 82T

1
Rkj 8tRk = = 0;Tr Log[ 5050

== R
> + Rg]

QHWF%W(

e Perturbation theory can immediately be re-derived from the flow equation. For instance, imposing the
loop expansion on [}, it becomes obvious that, to one-loop order

e The last formula corresponds to the standard effective action of a loop, as it should be. In the perturbative
limit, it is the expansion of the loop for the effective potential, with a modified infrared propagator.

1
E — a'(q?+Rk(q)) + 1o

¢* = ¢* + Ri(q?), and Ri(q) = (k* — ¢*)0(k* — ¢*)

GIE,G; k] =

e The results obtained in the one loop approximation describe relative good the nonperturbative result
from FRG in the IR region

e Obtain information in this approximation can help to obtained the physical fixed point in this N
dimensional functional space of parameters D. Litim arxiv 0103195
D. Litim. J. Pawlosky arXiv: 0111191

(k) = (i, A11, Adoooy A12) Aooo Agoq Ao M. Braun et al arXiv :2311.13870
9itk) = (Hi Aans Aoz, Arnas Az, Az:za, A2:an) Blaizot, Pawlowski, Reinosa: arXiv 1009.6048

¢ To obtain the beta functions, we need to renormalize the 2 point function, the 3 Reggeon vertex, and
for the anomalous dimension the Wave function.



Nijk = Nikj

o = /a/a’, ; rp=4a/ay r=r(;— $2)

To calculate the Pomeron corrections to the n-point Green function, we consider the
following rules:

(a) define the IR regulated free Pomeron propagator of momentum ¢ and energy E as

i
G(E.q¢* k) = : — Al
where £ is integrated along the real axis;

(b) for each loop éf)#ﬁ;

(c) if the triple coupling A\g would be real, each vertex comes with (—i\g). Alternatively,
since we choose an imaginary coupling we put Ag.



One loop improved perturbation theory using IR regulator

e The Reggeon propagator in the RFT is modified, considering the IR Cut-off
i

GE,¢* k) = ' ;
(E. k) E —af(q® + Rp(q)) + mo + ie

where Ry (q) is the IR cutoff regulator: Litim regulator Ry (q) = (k?*—q?)0[k? — q?]

Figure 1: One loop 2-point function Figure 2: One loop 3-point function

Renormalization condition a la Abarbaned and Bronzan Phy Rev D 9 (1974) 2397

For one Pomeron we will extender to 2 Reggeons.



Self energy and wave function renormalization: Z

2 point function at one loop approximation

.F(1.1)(HT 9 k) E— 06-1(1‘2 4+ 1mg.q 0 .r(l.l) (E 2) F(Jilg)k _ (F%%:ill FEBBH )
I (Wog%: k) = ' ’ — il RL(EL g ABk — . (1,
U 1 0 E— 516:2(12 + 10,2 ABik FAB;QI FAB;QQ

(1,1) 2.7\ _ ~»Tp(11) 2. 1. [ Z11 Z12
F?‘eﬂ-;f'i'rsfsf-ep (E q k') — Zk‘ FU (E q k')Zk‘- Zy, = (2'21 222)

Z is a matrix and fixed by the renormalization condition

1 U C_) . 1 D . ~ ,5'11 _5—12 B (—) . .(]_.1
(0 l) = Eirgi?pfgrsf SiEp(O«. Cl llt‘j = ZE- ((U J_) -+ bk) Zk -'Sf-c — (};21 522) = E(_SI‘AB,L‘)‘(O,O)?

Then we obtain after the Z

0 .
ZTirylz = (ﬁ E) +ZT (M -qPA) Z + ...
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Self energy and wave function renormalization Z

Then we obtain after the Z

y 0 .
zZTiryyYz = ((f) E) +ZT (M -q*A)Z + ...

Diagonalization of the Slope Matrix Z, and intercept Z,,

G 9, |
) af 0 _-411 _-412 _ ; (l,l]
A= 0.1 L = ap, = ———=(—I" 57
(( 0 (}6_2) - ”) (_421 _422) : 8q2 ( AB,k

Diagonalization of the Slope Matrix Z,

! ~

o) g (ZTAZ) Zy  — grgr (00 0 ) L) 2z

0 (12 x 0 O‘I -
0.2

We define the renormalized matrix Z,=2722,

! !

(0.0)) —

7

/ I - i ) r - i _
a7 = o (1 —s11) +a11 and  ay = agg (1 — s92) + a9

a ! ! . + 0 (:) / ! . _|_ d
— 1 = —Qn.4 S — {1, — g = —p.9 S —(99.
ot ! 0;1 211 5 T 52 0:2722 7T 5 7122



a9 = 5 + R,
V1=106, —V0a
e ‘ '

where R, = \/(W)Q + A?fz and 0, = % (1 _ A=Az )

2R

!
((Bl 0?,2 ) — 77 (27 42) 2,

For the coupling constants we now have:

1
Nk = 5 ((Z}”)ij,)\i,;j,k,(zl)j,j(Zl)k,k + (zl)ii,xi,;j,k,(zf)j,j(z?)k,k).



Diagonalization of the intercept (m,,m,): Z,,

0 : ‘
zTirtz = (f E) + 72T (M - P?A)Z +...

mpy1 0 My, Mio 1 (1,1)
JﬂlI — ’ T — ’ , = —1
(( 0 m.o_g) * m) (jfgl J[QQ) mg ?FABJ{ (0,0)

The eigenvalues of the matrix = intercept are:

mi = 'm.o;l(l — 511) +myp o, Mo = 'Imo;g(l — 522) + Moo

d - 0 0 o & d
M1 = —Ip:1 S11 M1 . =M = —71p:2 522 —29.
ot ‘ ot ot ' ot

T

m; —

g 2]
v ayask

__ d 1. 1:1\ _ o 1
By = 71 = | =2 — G — 5 | g — 118y +

N

ot 2 2

. o _ S
By = —mo = [ =2 — =1 — — M9 — 1250
Hma It 2 9 1 9 2 2 2599

1

mq1 M2

o1 1Moo

d

13
—m
It 22



We start to calculeitlc_ad the beta function for the masses, then the
E-derivative of I give the matrix elements s;;

Sij = 5\21!115\‘]':11(?5(11) — 5\@5225\3'.22(?5(22) + 5\?1,125\‘]'512(?5(12),

Np 1 1 1 4—-D 6—D mo-1
*s(11) = — = |—=+ =B(1 2 F1(2,1 ; — :
‘ 9( ) 2 4(?‘1 — ﬁ?.-();l)‘z D 2 ( 2 )2 1( 2 T — ?’7?-0;1
Np 1 1 1 4—-D 6—D mMQ-2
"5(22) = — - |— + =B(1, oF1(2.1, L= :
cs(22) > Ars —ma? D T 2P T A L o ry — Mo
(12) Np 1
CS = — :
2 (7’1 + 19 — ?’720;1 — 'ﬁ?-o;g)z
2 4—D 6 — D mo.1 + M2
=+ B(1, oF1(2,1, D= : . 3.25
[DJr (1. 5 )2 F1 (2,1, 5 7’1+7’2—-ﬁ10;1—ﬁzg;g” (3.25)

Next we take the derivative with respect tot = k%. We find

S;j = 5\.5.115\“,'31105(1(11) + S\.i_ggj\jggg(fsd@?) + 5\.5_12)~\j:1205d(12)

csd(11l) = 4 —— , csd(22) =4 ~ :
( ) D 8(?‘1 — 773-'0;1)'3 ' ( ) 8(?’2 — 772.0;2)3
Np ri+ry

csd(12) = 4

D (7’1 +ro —mop — '?”7?-0;2)3'



The t-derivative of the mass matrix

0

1 [
%
Jajahk2 ot

= 5\@115\}110?’1’2(1(11) + 5\@225\}220771(1(22) + 5\@1125\1120?’1”2.(1(12)

Np 1 Np r2
— ., cmd(22) = 2 .-
D 4(r —mon)? 22) =27 4(ry — 1ho;2)”

Np T+ Ty
D (7’1 + 1o — g1 — ﬁlogg)i‘z.

emd(11) = 2

cmd(12) = 2

Next we take the derivative with respect t for the slope

9 o o L
EAW = )\3‘:11)\3'111 Q‘E];l(?ad(ll) + )\1.22)\}22 (}‘6:20(1(1(22) + Ai.lZAj:I'B \ /(}6;1(}'6;26(1(1(12)

Np r1 r9

ad(11) = 2
ca ( ) 8(7’2 —ﬁIOz)g

Np
= . cad(22) =2
8(7’1 _ ﬁ?-0;1)3 , Ca ( ) D

Np 1
(7’1 + o — ﬁl();l — ?’?2..0;2)

cad(12) = 4 .



Finally we take the t-derivative of the tensor I;lllfi ik

D
]{7? (1‘2)

W I upli =

(5\1-;115\,-;115\1;1;{_ Ad(11;11) + Moo hoo Aoy, eld(22;22)
12\ 19 N0k cld(12:12) + Niog N jor Ao eld(21521)
+ P\i.;llj\j;llzj\l:'z.k + 5\@:125\;115\2;14 cld(11;12)

+ [5\1';125\3';225\1:2/1; + 5\@;225\j;125\2;1k] cld(21, 22)) + (7 < k)

Np
ld(ab;ac) = 2——
cld(ab; ac) D

ra +7p 1 + 1 ra + Te
(ra +7p — Mg — Mp)2 7o + Te — Mg — Me  Ta+ 1y — g — Ty (Ta + 7o — e —1Me)2 )



Betas Functions for the Reggeon parameter at the one loop in D = 4 — e€:
a1, Az, Uy, U2; Aijk

ol V -
m — a—f — ?1 + O()\Q) ra — a_{g - ,,0’2 + ()()\2)
Xy Xp;2 vy '0;1
~ 1 1 a , 1 PR d
G = G,flCl T et T o ( @01 S11 T 571
! + 1 a !
= S o, 211
| ot
;1 16, 1 , o, 9,
Q== ua Ty ( %020 T Hon
! _|_ 1 a I
= — B — ¥
59292 Lot 22
d . .
‘3 :7‘:1‘(h_i
T T g e N
NS S i = g =gn (6 -0)
rzfa—tTQ*ETz G2 —C1)-

sij = MntAjaiesd(11) + Ao\ 22esd(22) + Ai 12 1205d(12)



Betas Functions atthe oneloopin D =4 — ¢
i 5

Niip = ——
"} \/ Q-’l Q-"Q }:2

(2T s b (Z0) 13 (20w + (Za)io v (2T (2] Vi

Bijk =

D—4 1- 1-)\-
—( 5 _5‘:1_5‘:2)}‘?,;&&'

) 8 T - b, - e
2{(2 EZI) it ik Ntk (Zl Ezl)jrj—l-)\i.jkf (Zl o"fZl .

i,if

a - - & T - k) T
1 1 1
(Z ot Zl) L Air ke + Aijrke (31 Ezl)ﬁ + Ai ik (Zl 5 _Zl)k%]

L1 KT 9
|:ZII_21; ( ]_—{l 2] ) le’jzlk"k

f—ﬂlﬂ:zkg It AR Gk

k= d (1.2
+Zléi" ( P{ ) )ZEJJZJ.RR} (

.-' 1"3—' -2 Ot AB;i' 5k’
—1 0
(Z1 aZl)

Anomalous dimensions:

0 9 D. s1 459 [0 =1
a4 :——Z SV + —
Lot 1((%) TR 2 10
1 1 (9 812 0 —1
+— oy — o (r 4 rg) :
T — 79 /056;10‘:626% 2 (1 0 )



* Flow equation for a;, az; uy,p2; Ajjk

(51,11, 32,22, B1,22: B2,11, B1,12+ 52,12, By s Biings Bry )

_ d <
Bi ik = a)\é,;’k

D —4 1~ 1~ =
= ( ——Cl——ia) i,jk

2
l[(Z 1221)—[ Air ke + Ntk (Z_lizl) + Nk’ (Z 16‘2)
2 ot ). - Lot ) T TR AT ot ')
4 (Z lgtzl);. Ak + Nk (Zl %Zl); + Ni g (Zl l;zl)k%}
+Z 1 (\/%LQ ;F'ﬁlf _,q;) ZE_, 331 ke L}
B, = %'?ﬁl — (_2_ %El ;52) my — ”11511 + \/—Lﬁgt 11

1 d

by = oo = (~2= 38— 28 ) o — asin +
D = — Ny = —4 — — -_ - T — 19 Sa —— A
Mo ot 2 9 1 9 2 2 2599 mﬂg ot 22

, 1, 1 ~ ~
.‘*"3?"1 — 51‘71 = 571 (@1 - QQ)

Inthe D =4—€ - A~+[e : u~¢€



D

k2 (1,2)

_ L pr2
/ ABqijk

(:\z';u}\j;u}q;lk cld(11;11) + Ao N jisa Aoo €ld(22;22)
+5\¢;12;\j;12;\2;2k cld(12;12) + :\i;zlj\j;zl;\1;1k cld(21;21)
+ [5\-1';11;\;;;12;\1;% + 5\-i;125\j;115\2;1k] cld(11;12)

‘|‘[5\-i;12:\j;22:\1;2k + 5\-5;225\j;125\2;1k] cld(21, 22)) + (7 < k)

1 1 1 1 1 1
csd(11) = s —, csd(22) = 5, €sd(12) =8
(11) (8m)2 r? (22) (87)2 r3 (12) (87)2 (r1 + 1r9)?
11 11 11
cmd(11) )2 —, cmd(22) Brra cmd(12) 4(8?;')9 ———
1 1 1 1 1 1 1 1
d(11) = - —, cad(22) = ————, cad(12) =8 -
cadl) = 5@ ) = 3@mpg ) = ey
cld(ab, ac) = 5 ! !

(Sﬂ')i Tg +TpTe + 'J"e:'1



Stability matrix

The movement of the coupling constants gy, ; in the vicinity of the
fixed point is determined by the Stability matrix calculated at the
fixed point.

d;
M. =t
H 6/1] Arp

The eigenvalues of matrix M are {0;} and the corresponding
eigenvectors be vy

* 0t

Critical Exponents 0; of the stabilty matrix gri =9 ; Tt cqe &

Vj

Linealizations of the Flow close to a FP:

8; > 0 define a IR attractor - Critical Surface with relevant behaviour,
Where

0; < 0 is UV attractor



Numerical Solution

Two decoupled Pomerons:

1 - el 1 - 1
Mt =vVe—= , —Xoo =+/e

(8m) V6 ' (8m) r1V/6
~ € N e 1
mq = —7r1 ., oy = ——,

DA D

Anomalous dimensions:

s 1 : 1

L= T 2T TRt

Yii =+ (27 '0Zh) y = (21'0Z1)5y = _1f_2

Vi = (2010:21) 5 = (Z1'0Z1),y, =0

* Two decoupled Pomerons D=2
Bartels, Contreras and Vacca; JHEP 03 (2016) 201

We reproduce the values of the critical exponents
universality class of Percolation

The convergence is under control with the increasing the
local truncation

Fig.2: Some trajectories of the flow equation.

Critical exponents:

€(1.0,1.0,—-0.3333, —0.3333, —0.1667, —0.08333, 0.0)

1980 Cardy y Sugar found that
the RFT in D=2 is in the same
Universality class of “Percolation”

Percolation and Monte Carlo
Simulation:
The critical Exponent v=10.73 with is
related with our
v = - 1/( most negative eigenvalue) ”
(L. Canet, B. Delamotte, N.Wschebor,...)



Pomeron-Odderon Interaction

1

A1 = 0.43284. /¢ |
(87)

r1 = 1.06023.

Bartels, Contreras and Vacca; Phys. Rev. D 95 (2017) 1,014013
arXiv 2001.0599 M. Braum and G. P. Vacca

1

;\2 12 = 0.20801/e my1 = 0.088353¢e . mo = 0.088655¢.
(87) = T

Anomalous dimensions:

vii = (2710 Z1),, = —0.08333¢ . (Z7'0121),, = —0.08850¢
Yij —* (Zfli?tzl)m = (Zl_lé')tZl)gl =0

N 1 . :
(1 = _Ef ; CZ = —Ef:

Critical exponents :

Effective Potencial:

€(1.0,0.7860, 0.6042, 0.1848, —0.0698, —0.0483,0.0478).
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New Solution (8{_)31_11 — 0.2886G8+/¢ , (;)5\2__12 — 0.28868/¢

Fixed Point IR (8{-) 31-22 _ —028868\/; .rp = 1.0 'ﬁ?.-l = 0.08333 ¢ . ??12 — 0.08333 €.
Anomalous dimensions: (1 = —0.083333¢ . (o = —0.083333¢

Vi = (Z710,Z1),, = —0.08333¢ . (Z7'0,Z1),, = —0.08333 €
vig = (271074 1y = (2710, 21) 5, = 0

€(—0.1443,0.0,0.1443,0.0,0.0,0.2887, —0.0833). Stable Fixed Point in IR

Fixed Point IR

1 - 1 -
(q ))\1__11 = 0.303779 \/E , (q ))\2__12 = 0.282231 \/E
T O

1 -
(Q ))\1!22 = —0.283615\/2 . r1 = 0.950123
ST

my = 0.086776€ , mg = 0.079550 €. (1 = —0.0835073 € , (o = —0.0835073 ¢

Anomalous dimensions:
vii = (Z7'0uZ1),, = —0.087419¢ . (Z7'0,71),, = —0.079446¢
Vi > (270 21) = (27100 21) 5 = 0

€(1.0,—0.3649, —0.3113, —0.1505, —0.1427, 0.0840, 0.0661 ),

Unstable Fixed Point in IR



Summary and outlook

Using Numerical analysis of the RFT in the Improved one loop PT
|. We can find different Fixed Points solutions.

\ 2. We find previous solution Pomerons decoupled and Pomeron and Odderon solution

3. We studied the interaction of two Pomeron with triple Pomeron vertex

3. Can interpreted that the Pomeron really mixed between the two BFKL discrete Pomeron around the
IR fixed point

4. The one loop Improved PT allow to have an approximate picture that help in the next step to consider
the nonperturbative approach FRG

5. We need to go to Physical dimension D = 2

In the future:

Extension to high order Pomeron vertex in FRG
N-Pomeron Interaction in diagonal basis in FRG

C.Contreras  Critical properties RFT ~ WONPAQCD 2025
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Analysis of e-expansion for RFT at one loop

Considering the for N=2 RFT Pomerons

S = /deD;z? {(ZL-;,’I_,UT)T (-&'E)T o' Z V% + a:’-mZ#) (Zyp1))

—ia/ M 3 AY ik Y j ("L""ﬁ’ i+ Uj )'L"{’ A] )

Th renormalized form of the action at D = 4 - &, where the M denotes the renormalization
scale, we can obtain the Beta function at the one loop and the solution for the Fixed Point
have the same structure.

The bare action:
S = /deD:r {uﬁrg (-zi(’),- + a-“_'BVQ + Q-:fB;LB) VB

A o A al al al al
—'LC"B)\B.i..jk(’v’"g.z"f"’B,j VBt ’%"B.i‘.»’"jg,j ’?’"JTB.A')] :



The one loop integrals for two point function in the leading € expansion es :

(11) 1 ikl Aj okl 2 TETT o
oLy )ig = : | —a q- + alpp + [y
r S

. %2 Summing over k,l we obtain

1.1 I [ s11 512 L [ ay aps 5 1 mip M2
( ):E E—— aq> + ~a

i1
div 591 529 € \ as ag €\ ma1 mao
with
1 1 1 rET]
sij = o (NN )+ a = (N
C).] (4?‘_)2 ( ikl j,.lmf (7’A+7’3)2> . aj' (4?_‘_)2 ( 1.kl j.tu (T’k+7=k)g>
1 (pg + )
mi; = s N ANjgi————5
Y (4m)? ( bkt j’“(r;\ﬂrm)z

To derive the B-function we impose the usual condition

‘g O _ <. ., — A5 0O

- . | 8
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Two decoupled Pomerons:

M = 040826 = Ve ’—16 . agg = 0.4082/e/r,.
o7 ) '

V6 8T
Anomalous dimensions: Critical exponents:
. € 10 0.08333 0 i - ‘ p . .
=t (0 1) . ( 0 0'(_)8333) €(1.0.1.0, —1/3. —1/3, —1/6,0.0.0.0).

e (10 0.08333 0
N = —— — —€E .
' 12101 0 0.08333

Pomeron-Odderon Interaction

1 ) 1 ]
‘%_)\1"11 = (0.4328 ﬁ . Q_)\Z‘lz = 0.2980 \/;
T AT

r1 = 1.0602.

€(1.0,0.6552,0.6042, 0.1848,0.0478, —0.0699, —0.0083).

. e [03333 0 _ ., 0.08333 0
C=7 0 03747 ] 0 0.09367 |’

€ 0.3333 0 _ 0.08333 0

)= *1 0 0.3540 | —€ 0 0.0885 | ° Bartels, Contreras and Vacca; JHEP 05 (?024) 932
Bartels, Contreras and Vacca to appear in arXiv
M. Braun et al arXiv:2311.13870



Another solutions:

1

G L1 = 0.28868 Ve = 0.28868 /e
L
1

G- = 0.28868 Ve = —0.28868 Ve
AL
1

g2 = 0.28868 Ve = 0.28868 /e
-2

Anomalous dimensions: r1 = 1.000.

- ¢ (03333 0 ) 0.08333 0
¢ = 4 0 0.3333 0 0.08333

o e[03333 0 _ . 0.08333 0
g 0 0.3333 ] 0 0.08333 )

Critical exponents:

e(1.0,5/6,—1/3,—1/3,—1/6,—1/12,0.0).



Another solutions:

1 1
7)\1.11 = 0.3038 \E f)\llgg = —0.2836 \ﬁ
8r T
1
f)\gllg = 0.2322 \E ™ = 0.950
8r 7
Anomalous dimensions:
¢ e [ 0.3653 0 0.09133 0
- —— = —€
' 4 0 0.3015 0 0.07538
N 0.3497 0 . 0.08742 0
b 0 03178 ) 0 0.07945

Critical exponents:

€ (1.0, —0.3624, —0.3113, —0.1427, —0.0273, —0.0018, 0.0840).

The degree of stability of each fixed point is determined by the signs of the eigenvalues of the stability matrix
In the phase space, there are directions of instability for each negative eigenvalue on the infrared limit and
stabilities for the case of positive eigenvalues. For the last solutions the eigenvalues are negative, then the
fixed point is IR unstable, and we will not consider those solutions.
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