
Correlation functions for nD̄s1(2460) and nD̄s1(2536)

Breno Agatão, Pedro Brandão, A. Mart́ınez Torres, K. P.
Khemchandani, L. M. Abreu, E. Oset

Universidade de São Paulo, IFIC-Valencia, UFBA, UNIFESP

Eur. Phys. J. C 85:1136 (2025)

Pedro Brandão (UFBA/IFIC-Valencia) Correlation functions for nD̄s1 Eur. Phys. J. C 85:1136 (2025) 1 / 17



The Quest for Understanding Exotic Hadrons

Since the discovery of the X (3872) in 2003[1] a wide variety of exotic
hadrons have been observed, many of which cannot be easily
described as simple qq̄ or qqq systems[2].

These states often appear near two-hadron thresholds, suggesting a
molecular or dynamically generated origin[3].

Understanding their nature is crucial for clarifying the nonperturbative
dynamics of QCD and the mechanisms of hadron formation.

[1] S.K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003). [2] F.-K. Guo et al., Rev. Mod. Phys. 90,
015004 (2018). [3] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).
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Probing Hadron Interactions via Correlation Functions

Direct scattering measurements involving unstable hadrons are not
experimentally accessible.

Instead, femtoscopic correlation functions, first developed in
astronomy[7], are now a powerful tool in high-energy nuclear and
particle physics[8].

The correlation function C (p) = A(p)
B(p) measures deviations of the

observed pair distribution from an uncorrelated baseline, reflecting the
influence of final-state interactions at low relative momentum.

Experimental collaborations like ALICE[9], STAR[10], and Belle II[11]
have already measured hadronic correlation functions such as pΛ, pK ,
and pΞ.

[7] R. Hanbury Brown and R.Q. Twiss, Nature 177, 27 (1956). [8] G. Goldhaber et al., Phys. Rev. Lett. 3, 181 (1959). [9]
ALICE Collaboration, Phys. Lett. B 802, 135225 (2020). [10] STAR Collaboration, Nature 614, 244 (2023). [11] Belle
Collaboration, Phys. Rev. D 105, 112011 (2022).
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Why the nD̄s1 Systems?

Over the past decades, several studies have reported the formation of
possible three-body hadronic molecules[12][13][15][16].

ϕ(2170) → ϕ KK̄︸︷︷︸
f0(980)

, K (1460) → K KK̄︸︷︷︸
f0(980)

, N∗(1710) → N ππ︸︷︷︸
σ(600)

.

The Ds1(2460) and Ds1(2536) can be dynamically generated from
KD∗ and K ∗D interactions in coupled-channel unitarized models [17].

The neutron is chosen to avoid Coulomb effects, isolating the
strong-interaction dynamics and by the attractive nK̄ interaction,
which dynamically generates the Λ(1405)[18].

[12] A. Mart́ınez Torres, D. Jido, Y. K. En’yo, Phys. Rev. C 83, 065205 (2011). [13] A. Mart́ınez Torres, K. P. Khemchandani,
L. S. Geng, M. Napsuciale, E. Oset, Phys. Rev. D 86, 114011 (2012). [15] B. B. Malabarba, K.P. Khemchandani, A.
Martinez Torres, Phys.Rev.D 108, 3, 036010 (2023). [16] A. Martinez Torres, B. B. Malabarba, K.P. Khemchandani, EPJ
Web Conf. 301, 03002 (2024). [17] D. Gamermann, E. Oset, D. Strottman, M. J. Vicente Vacas, Phys. Rev. D 76, 074016
(2007). [18] E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998). [19] N. Ikeno, E. Oset, arXiv:2507.16367 [hep-ph] (2025).
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Objectives

Solve the Faddeev equations using the Fixed Center Approximation
(FCA) with exact unitarity.

Compute T -matrices and then, observables as scattering lengths and
effective ranges.

Search for subthreshold states.

Use correlation functions to extract scattering information on the
nD̄s1 systems.
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Faddeev Equations with Fixed Center Approximation
(FCA)

The FCA simplifies the three-body Faddeev equations by assuming
one pair (the cluster) is bound and acts as a fixed center[20].

The third particle (neutron) interacts with each component of the
cluster through multiple scattering.

[20] P. Encarnación, A. Feijoo, E. Oset, Phys. Rev. D 111, 114023 (2025).
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Faddeev Equations with FCA

The coupled equations for the partition functions T̃ij are

T̃11 = t1 + t1G0T̃21, T̃12 = t1G0T̃22,

T̃21 = t2G0T̃11, T̃22 = t2 + t2G0T̃12.

where G0 is the propagator of the neutron inside the cluster given by

G0(
√
s) =

∫
d3q

(2π)3
MN

ωN(q⃗)

1

2ωC (q⃗)

FC (q⃗)√
s − ωN(q⃗)− ωC (q⃗) + iε

,

being FC (q) a form factor and ωN(q⃗) =
√
M2

N + q2, ωC (q⃗) =
√
M2

C + q2 the
energy of the neutron and cluster, respectively.
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Two-Body Subsystems

In isospin basis:∣∣InD̄s1
= 1/2, I3 = −1/2

〉
= |IN = 1/2, I3 = −1/2⟩ ⊗

∣∣ID̄s1
= 0, I3 = 0

〉
.

The transition amplitude is〈
InD̄s1

= 1/2, I3 = −1/2
∣∣ t ∣∣InD̄s1

= 1/2, I3 = −1/2
〉
,

Then

nD̄s1(2460) → t1 =
3

4
t I=1
nD̄∗ +

1

4
t I=0
nD̄∗ , t2 =

3

4
t I=1
nK̄ +

1

4
t I=0
nK̄ .

nD̄s1(2536) → t1 =
3

4
t I=1
nD̄ +

1

4
t I=0
nD̄ , t2 =

3

4
t I=1
nK̄∗ +

1

4
t I=0
nK̄∗ .
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Unitarized FCA

Are there any others contributions? Yes! Coherent n–cluster

propagation is included through additional propagators G
(i)
C . For

example,

T̃11G
(1)
C T̃11, T̃11G

(1)
C T̃12, T̃12G

(2)
C T̃22
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Unitarized FCA

The neutron–cluster propagator differs from G0(
√
s) due to the form

factor

G
(i)
C (

√
s) =

∫
d3q

(2π)3
MN

ωN(q⃗)

1

2ωC (q⃗)

[F
(i)
C (q⃗)]2√

s − ωN(q⃗)− ωC (q⃗) + iϵ
,

where[22]

F
(1)
C (q⃗) = FC

(
M2

M1 +M2
q⃗

)
,

F
(2)
C (q⃗) = FC

(
M1

M1 +M2
q⃗

)
.

[22] J. Yamagata-Sekihara, J. Nieves, E. Oset, Phys. Rev. D 83, 014003 (2011).
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Unitarized FCA

The total amplitude is

T =
2∑

i, j = 1

Tij

=
T̃11 + 2T̃12 + T̃22 + (T̃ 2

12 − T̃11T̃22)
(
G

(1)
C + G

(2)
C

)
1− T̃11G

(1)
C − T̃22G

(2)
C − (T̃ 2

12 − T̃11T̃22)G
(1)
C G

(2)
C

.

In terms of the two-body amplitudes, we write

T =
t1 + t2 + (2G0 − G

(1)
C − G

(2)
C )t1t2

1− G
(1)
C t1 − G

(2)
C t2 − (G 2

0 − G
(1)
C G

(2)
C )t1t2

.

The unitarity condition reads

8π
√
s

2MN
Im

{
T−1

}
= qcm.

Pedro Brandão (UFBA/IFIC-Valencia) Correlation functions for nD̄s1 Eur. Phys. J. C 85:1136 (2025) 11 / 17



Correlation Function

The correlation function for a source of radius R [24]:

CnD̄s1
(p) = 1 + 4π

∫ ∞

0
dr r2S12(r)

(
|j0(pr) + T ′G ′|2 − j20 (pr)

)
,

where S12(r) =
e−r2/4R2

(4πR2)3/2
, the propagators G1(

√
s, r), G2(

√
s, r),

G1(
√
s, r) =

∫
d3q

(2π)3
MN

ωN(q⃗)

1

2ωC (q⃗)

j0(qr)F
(1)
C (q⃗)√

s − ωN(q⃗)− ωC (q⃗) + iϵ
,

G2(
√
s, r) =

∫
d3q

(2π)3
MN

ωN(q⃗)

1

2ωC (q⃗)

j0(qr)F
(2)
C (q⃗)√

s − ωN(q⃗)− ωC (q⃗) + iϵ
,

and T ′G ′ = (T11 + T21)G1(
√
s, r) + (T12 + T22)G2(

√
s, r).

[24] I. Vidana, A. Feijoo, M. Albaladejo, J. Nieves, E. Oset, Phys. Lett. B 846, 138201 (2023)
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nD̄s1 Amplitudes
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Scattering parameters:

nD̄s1(2460) → a = (0.59− i0.21) fm, r0 = (0.65− i0.16) fm,

nD̄s1(2536) → a = (0.71− i0.18) fm, r0 = (0.16 + i0.32) fm.
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Correlation functions
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Discussion

Implemented an unitary FCA formalism for n–Ds1 systems.

Predicted states:

nD̄s1(2460): M ∼ 3265 MeV.
nD̄s1(2536): M ∼ 3425 MeV.

The behavior of C (p) follows the expected pattern for a state below
threshold.

Future directions:

Encourage correlation measurements in ALICE, STAR, and Belle II.

Pedro Brandão (UFBA/IFIC-Valencia) Correlation functions for nD̄s1 Eur. Phys. J. C 85:1136 (2025) 15 / 17



THANK YOU!
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Scattering Parameters

In quantum mechanics, the scattering amplitude fQM and the
T -matrix are related via[23]

−8π
√
s

2MN
T−1 = (fQM)−1.

The effective range expansion near threshold:

f −1
QM = −1

a
+

1

2
r0k

2 − ik ,

with k = qcm.

Scattering length and effective range extracted from the unitary
T -matrix:

a =
2MN

8π
√
s
T |th, r0 =

1

µ

∂

∂
√
s

(
−8π

√
s

2MN
T−1 + iqcm

)∣∣∣∣
th

.

[23] F. Mandl, G. Shaw, Quantum Field Theory, 2nd edn. (Wiley, Chichester, 2010).
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