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Abstract

Exploiting the similarity between Bloch’s theorem for electrons in

crystalline solids and the problem of Landau gauge-fixing in Yang-Mills

theory on a “replicated” lattice allows one to obtain essentially

infinite-volume results from numerical simulations performed on

regular-size lattices

We review our study of the method applied to the gluon propagator

and propose a novel interpretation, which might improve our

understanding of color confinement

In particular, we show how to map numerical simulations performed on

the "replicated" lattice onto the original (smaller), lattice, or "unit cell".

Special emphasis is given to the rôle played by boundary conditions
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Abstract

Exploiting the similarity between Bloch’s theorem for electrons in

crystalline solids and the problem of Landau gauge-fixing in Yang-Mills

theory on a “replicated” lattice allows one to obtain essentially

infinite-volume results from numerical simulations performed on

regular-size lattices

We review our study of the method applied to the gluon propagator

and propose a novel interpretation, which might improve our

understanding of color confinement

In particular, we show how to map numerical simulations performed on

the "replicated" lattice onto the original (smaller), lattice, or "unit cell".

Special emphasis is given to the rôle played by boundary conditions

In short: we discuss a way to “stretch” lattice sizes considerably, by

taking advantage of Bloch’s theorem, from condensed-matter physics
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General Aspects

Lattice gauge theories provide a nonperturbative way to

investigate non-Abelian gauge theories, such as QCD
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General Aspects

Lattice gauge theories provide a nonperturbative way to

investigate non-Abelian gauge theories, such as QCD

Lattice formulation considers a discretized ver-

sion of the theory; physical quantities are ob-

tained in the limit of zero lattice spacing

Statistical mechanics tools, such as numerical (Monte

Carlo) simulation ⇒ New approach to QFT, direct access

to (representative) gauge-field configurations

First principles study of low-energy QCD properties (including

confinement, chiral-symmetry breaking, dynamical mass

generation). In this case, one of the challenges: Infrared limit

requires large lattice volumes
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Origin of Confinement in QCD

Note: contribution F aµν ∼ g0 f
abcAbµA

c
ν means that in addition to

quadratic terms (propagators) and the usual vertex

Lψ̄ψA = g0 ψ̄ γ
µAµ ψ (quark-quark-gluon vertex)

Lagrangian contains terms with 3 and 4 gauge fields

LAAA = g0 f
abcAµa Aνb ∂µA

c
ν ⇒ three-gluon vertex

6th WONPAQCD Valparaiso, December 2025



Origin of Confinement in QCD

Note: contribution F aµν ∼ g0 f
abcAbµA

c
ν means that in addition to

quadratic terms (propagators) and the usual vertex

Lψ̄ψA = g0 ψ̄ γ
µAµ ψ (quark-quark-gluon vertex)

Lagrangian contains terms with 3 and 4 gauge fields

LAAA = g0 f
abcAµa Aνb ∂µA

c
ν ⇒ three-gluon vertex
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properties and the nonperturbative nature of low-energy QCD
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Origin of Confinement in QCD

Note: contribution F aµν ∼ g0 f
abcAbµA

c
ν means that in addition to

quadratic terms (propagators) and the usual vertex

Lψ̄ψA = g0 ψ̄ γ
µAµ ψ (quark-quark-gluon vertex)

Lagrangian contains terms with 3 and 4 gauge fields

LAAA = g0 f
abcAµa Aνb ∂µA

c
ν ⇒ three-gluon vertex

⇒ gluons interact (have color charge), determining the peculiar

properties and the nonperturbative nature of low-energy QCD

(nonlinear effects)

⇒ Running coupling αs(p) instead of α ≈ 1/137

6th WONPAQCD Valparaiso, December 2025



Confinement vs. Aymptotic Freedom

At high energies: deep inelastic scattering of electrons reveals

proton made of partons: pointlike and free. In this limit αs(p) ≪ 1

(asymptotic freedom) and QCD is perturbative

αs(p) =
4π

β0 log (p2/Λ2)

[

1−
2β1
β2
0

log (log (p2/Λ2))

log (p2/Λ2)
+ . . .

]
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Confinement vs. Aymptotic Freedom

At high energies: deep inelastic scattering of electrons reveals

proton made of partons: pointlike and free. In this limit αs(p) ≪ 1

(asymptotic freedom) and QCD is perturbative

αs(p) =
4π

β0 log (p2/Λ2)

[

1−
2β1
β2
0

log (log (p2/Λ2))

log (p2/Λ2)
+ . . .

]

At low energies: interaction gets stronger, αs ≈ 1 and confinement

occurs. Color field may form flux tubes

q− −q +

linear increase of inter-quark potential → string tension

At large distances → string breaks
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Nonperturbative QCD ⇒ Lattice

Three ingredients

1. Quantization by path integrals ⇒ sum over

configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation

to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta

p ∼
< 1/a ⇒ regularization
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Nonperturbative QCD ⇒ Lattice

Three ingredients

1. Quantization by path integrals ⇒ sum over

configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation

to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta

p ∼
< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L

The Wilson action

is written for the gauge links Ux,µ ≡ eig0aA
b
µ(x)Tb

reduces to the usual action for a→ 0

is gauge-invariant
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The Lattice Action

The Wilson action (1974)

S = −
β

3

∑

✷

ReTrU✷ , Ux,µ ≡ eig0aA
b
µ(x)Tb , β = 6/g0

2

written in terms of oriented plaquettes formed by the link variables

Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ), where

g ∈ SU(3) ⇒ closed loops are gauge-invariant quantities

integration volume is finite: no need for gauge-fixing

At small β (i.e. strong coupling) we can perform an expansion

analogous to the high-temperature expansion in statistical mechanics.

At lowest order, the only surviving terms are represented by diagrams

with “double” or “partner” links, i.e. the same link should appear in both

orientations, since
∫

dU Ux,µ = 0
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Confinement and Area Law

Considering a rectangular loop with sides R and T (the Wilson loop) as

our observable, the leading contribution to the observable’s

expectation value is obtained by “tiling” its inside with plaquettes,

yielding the area law

〈W (R, T )〉 ∼ βRT

But this observable is related to the interquark potential for a static

quark-antiquark pair

〈W (R, T )〉 = e−V (R)T

We thus have V (R) ∼ σR, demonstrating confinement at strong

coupling (small β)!

Problem: the physical limit is at large β...
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(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)
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(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

Evaluate expectation values

〈O〉 =

∫

DU O(U)P (U) =
1

N

∑

i

O(Ui)

with the weight

P (U) =
e−Sg(U) detK(U)

Z
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P (U) =
e−Sg(U) detK(U)
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(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

Z =

∫

DU e−Sg

∫

DψDψ e−
∫
d4x ψ(x)K ψ(x) =

∫

DU e−Sg detK(U)

Evaluate expectation values

〈O〉 =

∫

DU O(U)P (U) =
1

N

∑

i

O(Ui)

with the weight

P (U) =
e−Sg(U) detK(U)

Z

Very complicated (high-dimensional) integral to compute!

⇒ Monte Carlo simulation: sample representative configurations,

then compute O and take average
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Limits of Lattice Simulations

Physics is obtained after 3 limits:

1) The Thermodynamic Limit (V = Nd → ∞): need N → ∞ to keep

physical lengths L = aN fixed. Need N > ξlatt, while ξlatt(a) diverges!
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Limits of Lattice Simulations

Physics is obtained after 3 limits:

1) The Thermodynamic Limit (V = Nd → ∞): need N → ∞ to keep

physical lengths L = aN fixed. Need N > ξlatt, while ξlatt(a) diverges!

2) The Continuum Limit (a→ 0): correlation length ↔ mass−1

from renormalization group:

log(ξlatt) = log(1/ma) ∼ 1/g20 ∼ β

thus continuum limit given by g0 → 0,

β → ∞ and ξlatt ∼ eβ (asymptotic scal-

ing), i.e. ξ = 1/m ∼ a eβ ⇒ elimi-

nate eβ computing mass ratios (scaling

law) or fix a using an experimental in-

put (renormalization)

strong
coupling

asymptotic
scaling

a m

1

g
0

2

10

1

0.1

1.0

continuum
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Limits of Lattice Simulations

Physics is obtained after 3 limits:

1) The Thermodynamic Limit (V = Nd → ∞): need N → ∞ to keep

physical lengths L = aN fixed. Need N > ξlatt, while ξlatt(a) diverges!

2) The Continuum Limit (a→ 0): correlation length ↔ mass−1

from renormalization group:

log(ξlatt) = log(1/ma) ∼ 1/g20 ∼ β

thus continuum limit given by g0 → 0,

β → ∞ and ξlatt ∼ eβ (asymptotic scal-

ing), i.e. ξ = 1/m ∼ a eβ ⇒ elimi-

nate eβ computing mass ratios (scaling

law) or fix a using an experimental in-

put (renormalization)

strong
coupling

asymptotic
scaling

a m

1

g
0

2

10

1

0.1

1.0

continuum

3) The Chiral Limit (small mq): fit results to chiral perturbation theory

predictions and extrapolate to physical masses
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Manifestations of Confinement

May observe formation of flux tubes
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Manifestations of Confinement

May observe formation of flux tubes

Linear Growth of potential between quarks, string breaking
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Understanding Confinement

How does linearly rising potential (seen in lattice QCD)

come about?
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(electric flux tube connecting magnetic monopoles),

condensation of center vortices, but also merons, calorons
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Understanding Confinement

How does linearly rising potential (seen in lattice QCD)

come about?

Models of confinement include: dual superconductivity

(electric flux tube connecting magnetic monopoles),

condensation of center vortices, but also merons, calorons

Proposal by Mandelstam (1979) linking linear potential to

infrared behavior of gluon propagator as 1/p4

V (r) ∼

∫

d3p

p4
eip·r ∼ r
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Understanding Confinement

How does linearly rising potential (seen in lattice QCD)

come about?

Models of confinement include: dual superconductivity

(electric flux tube connecting magnetic monopoles),

condensation of center vortices, but also merons, calorons

Proposal by Mandelstam (1979) linking linear potential to

infrared behavior of gluon propagator as 1/p4

V (r) ∼

∫

d3p

p4
eip·r ∼ r

Gribov-Zwanziger confinement scenario based on

suppressed gluon propagator and enhanced ghost

propagator in the infrared
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GZ Scenario: Confinement by Ghost

Formulated for Landau gauge, predicts gluon propagator

Dab
µν(p) =

∑

x

e−2iπk·x〈Aa
µ(x)A

b
ν(0)〉 = δab

(

gµν −
pµ pν

p2

)

D(p2)

suppressed in the IR limit ⇒ gluon confinement
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Dab
µν(p) =

∑

x

e−2iπk·x〈Aa
µ(x)A

b
ν(0)〉 = δab

(

gµν −
pµ pν

p2

)

D(p2)

suppressed in the IR limit ⇒ gluon confinement

Long range effects are felt in the ghost propagator G(p):

Infinite volume favors configurations on the first Gribov horizon,

where minimum nonzero eigenvalue λmin of Faddeev-Popov

operator M goes to zero

6th WONPAQCD Valparaiso, December 2025



GZ Scenario: Confinement by Ghost

Formulated for Landau gauge, predicts gluon propagator

Dab
µν(p) =

∑

x

e−2iπk·x〈Aa
µ(x)A

b
ν(0)〉 = δab

(

gµν −
pµ pν

p2

)

D(p2)

suppressed in the IR limit ⇒ gluon confinement

Long range effects are felt in the ghost propagator G(p):

Infinite volume favors configurations on the first Gribov horizon,

where minimum nonzero eigenvalue λmin of Faddeev-Popov

operator M goes to zero

In turn, G(p) should be IR enhanced, introducing long-range

effects, which are related to the color-confinement mechanism
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Dan Zwanziger (1935–2024)

Wikipedia Daniel Zwanziger (∗20. Mai 1935 in New York City; † 2024) war ein

US-amerikanischer theoretischer Physiker. Er befasste sich mit Quantenfeldtheorie,

mathematischer Physik und Elementarteilchenphysik

[Zwanziger Local and renormizable action from the Gribov horizon, Nucl. Phys. B, 1989]

[Vandersickel, Zwanziger The Gribov problem and QCD dynamics, Phys. Rep., 2012]
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Gauge-Related Lattice Features

Gauge action written in terms of oriented plaquettes formed

by the link variables Ux,µ, which are group elements
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by the link variables Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(3) ⇒ closed loops are gauge-invariant

quantities

6th WONPAQCD Valparaiso, December 2025



Gauge-Related Lattice Features

Gauge action written in terms of oriented plaquettes formed

by the link variables Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(3) ⇒ closed loops are gauge-invariant

quantities

integration volume is finite: no need for gauge-fixing

6th WONPAQCD Valparaiso, December 2025



Gauge-Related Lattice Features

Gauge action written in terms of oriented plaquettes formed

by the link variables Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
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Gauge-Related Lattice Features

Gauge action written in terms of oriented plaquettes formed

by the link variables Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(3) ⇒ closed loops are gauge-invariant

quantities

integration volume is finite: no need for gauge-fixing

when gauge fixing, procedure is incorporated in the

simulation, no need to consider Faddeev-Popov matrix

get FP matrix without considering ghost fields explicitly

Lattice momenta given by p̂µ = 2 sin (π nµ/N) with

nµ = 0, 1, . . . , N/2 ⇔ pmin ∼ 2π/(aN) = 2π/L,

pmax = d/a in physical units
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3-Step Code

main() {

/* set parameters: beta, number of configurations NC,

number of thermalization sweeps NT */

read_parameters();

/* {U} is the link configuration */

set_initial_configuration(U);

/* cycle over NC configurations */

for (int c=0; c < NC; c++) {

thermalize(U,beta,NT);

gauge_fix(U,g);

evaluate_propagators(U[g]);

}

}

Algorithms: Heat-Bath and Micro-canonical (thermalization),

overrelaxation and simulated annealing (gauge fixing), conjugate

gradient and Fourier transform (propagators, etc.).
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Gluon Propagator at “Infinite” Volume

Attilio Cucchieri & T.M. (PRL, 2008)
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3D Results

Gluon propagator D(k) as a function of the lattice momenta k (both

in physical units) for the pure-SU(2) case in d = 4 (left), considering

volumes of up to 1284 (lattice extent ∼ 27 fm) and d = 3 (right),

considering volumes of up to 3203 (lattice extent ∼ 85 fm)

6th WONPAQCD Valparaiso, December 2025



Ghost Propagator Results

Fit of the ghost dressing function p2G(p2) as a function of p2 (in GeV)

for the 4d case (β = 2.2 with volume 804). We find that p2G(p2) is best

fitted by the form p2G(p2) = a− b[log(1 + cp2) + dp2]/(1 + p2), with
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p2  G
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 a

-b
[lo
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1+

c 
p2 )+

d 
p2 ]/(

1+
p2 )
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4D Results

a = 4.32(2),

b = 0.38(1)GeV 2,

c = 80(10)GeV −2,

d = 8.2(3)GeV −2.

In IR limit p2G(p2) ∼ a.

Attilio Cucchieri & T.M. (PRD, 2008)
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The Infinite-Volume Limit

As the infinite-volume limit is approached, the sampled

configurations (inside Ω = region for which M is positive

semi-definite) are closer and closer to the first Gribov horizon ∂Ω

Ω
Λ

Γ
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The Infinite-Volume Limit

As the infinite-volume limit is approached, the sampled

configurations (inside Ω = region for which M is positive

semi-definite) are closer and closer to the first Gribov horizon ∂Ω

Ω
Λ

Γ

Can we learn more about the geometry of this region?
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The Infinite-Volume Limit

As the infinite-volume limit is approached, the sampled

configurations (inside Ω = region for which M is positive

semi-definite) are closer and closer to the first Gribov horizon ∂Ω

Ω
Λ

Γ

Can we learn more about the geometry of this region?

Lattice simulation produces thermalized gauge configurations,

but we can also “visit” nearby configs and extract info from them!
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Issues

Simulation on large lattices (IR limit) is very costly. How to be

more efficient?
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Simulation on large lattices (IR limit) is very costly. How to be

more efficient? How to disentangle approach to Gribov horizon

(as lattice volume increases) and behavior of G(p2) (or λmin)?
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Issues

Simulation on large lattices (IR limit) is very costly. How to be

more efficient? How to disentangle approach to Gribov horizon

(as lattice volume increases) and behavior of G(p2) (or λmin)?

Get insight from features of the lattice simulations themselves:

1) Educated guess of infinite-volume-limit behavior

2) Explore Gribov horizon by visiting neighboring (unsampled)

configurations, get info about λmin

3) Simulate on effectively large lattices by “faking” periodic

crystal and invoking Bloch’s theorem
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Issues

Simulation on large lattices (IR limit) is very costly. How to be

more efficient? How to disentangle approach to Gribov horizon

(as lattice volume increases) and behavior of G(p2) (or λmin)?

Get insight from features of the lattice simulations themselves:

1) Educated guess of infinite-volume-limit behavior

2) Explore Gribov horizon by visiting neighboring (unsampled)

configurations, get info about λmin

3) Simulate on effectively large lattices by “faking” periodic

crystal and invoking Bloch’s theorem

Also: Investigate the analytic structure of the propagators via

“perturbative tecniques” (e.g. use rational approximants)
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Large Lattices via Bloch’s Theorem

Perform thermalization on small lattice, then replicate it and use

Bloch’s theorem to obtain gauge-fixing for much larger lattice
A. Cucchieri, TM, PRL 2017 & Universe 2025, 11(8), 273, 56 pp.

N=4, m=3

−1.0

−0.5

0.0

0.5

1.0
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Periodic (Crystal) Potential in QM

For ideal crystalline solid in d dimensions, consider electrostatic

potential U(~r) with the periodicity of the Bravais lattice, i.e.

U(~r) = U(~r + ~R) for any vector ~R = nµ~aµ

1. Choose eigenstates of H to be also eigenstates of T (~R)

2. Then eigenstates ψ(~r) can be written as Bloch waves

ψ~k(~r) = exp (i~k · ~r)h~k(~r) ,

where the functions h~k(~r) have the periodicity of the Bravais

lattice, i.e. h~k(~r +
~R) = h~k(~r)
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Periodic (Crystal) Potential in QM

For ideal crystalline solid in d dimensions, consider electrostatic

potential U(~r) with the periodicity of the Bravais lattice, i.e.

U(~r) = U(~r + ~R) for any vector ~R = nµ~aµ

1. Choose eigenstates of H to be also eigenstates of T (~R)

2. Then eigenstates ψ(~r) can be written as Bloch waves

ψ~k(~r) = exp (i~k · ~r)h~k(~r) ,

where the functions h~k(~r) have the periodicity of the Bravais

lattice, i.e. h~k(~r +
~R) = h~k(~r)

Idea: infinite-volume limit in LQCD as periodic-potential problem,

simplified by analogy with Bloch’s theorem
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Gluon Propagator: Volume Effects

Gluon propagator vs. lattice momentum for V = 203, 403, 603 and 1403
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Lattice Landau Gauge

Landau gauge is imposed on the lattice by minimizing the functional

E [U ; g] = ℜTr
∑

x,µ

[1 − Ugµ(x)]

with respect to g(x) ∈ SU(Nc) for a fixed gauge configuration Uµ(x)
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Lattice Landau Gauge

Landau gauge is imposed on the lattice by minimizing the functional

E [U ; g] = ℜTr
∑

x,µ

[1 − Ugµ(x)]

with respect to g(x) ∈ SU(Nc) for a fixed gauge configuration Uµ(x)

Taking g(x) = eiτγ(x) with γ(x) = γb(x)Tb ∈ su(Nc) fixed and τ → 0

E[U ; g] ≈ E[U ; 1⊥] + τ E ′[U ; 1⊥](b, x) γb(x) + (τ2/2) γb(x) E ′′[U ; 1⊥](b, x; c, y) γc(y)

⇒ E ′′[U ;1] = M[A] is a lattice discretization of Faddeev-Popov operator −D · ∂
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Lattice Landau Gauge

Landau gauge is imposed on the lattice by minimizing the functional

E [U ; g] = ℜTr
∑

x,µ

[1 − Ugµ(x)]

with respect to g(x) ∈ SU(Nc) for a fixed gauge configuration Uµ(x)

Taking g(x) = eiτγ(x) with γ(x) = γb(x)Tb ∈ su(Nc) fixed and τ → 0

E[U ; g] ≈ E[U ; 1⊥] + τ E ′[U ; 1⊥](b, x) γb(x) + (τ2/2) γb(x) E ′′[U ; 1⊥](b, x; c, y) γc(y)

⇒ E ′′[U ;1] = M[A] is a lattice discretization of Faddeev-Popov operator −D · ∂

At any local minimum (stationary solution) we have E ′ = 0 ∀ γb(x)

⇒
(

∇ ·Ab
)

(x) = 0 ∀x, b , where Aµ(~x) =
1

2 i

[

Uµ(~x)− U †
µ(~x)

]

traceless

Therefore, the (minimal) Landau gauge condition on the lattice reads

(

∇ ·Ab
)

(~x) =

d
∑

µ=1

Abµ(~x)−Abµ(~x− êµ) = 0
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Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit

in two steps

1) first, considering the V → +∞ limit for the gauge

transformation g(x)

2) then, taking the same limit for the gluon field [i.e. the link

variables {Uµ(x)}]

How can one do that in practice?
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Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit

in two steps

1) first, considering the V → +∞ limit for the gauge

transformation g(x)

2) then, taking the same limit for the gluon field [i.e. the link

variables {Uµ(x)}]

How can one do that in practice?

Let us build the two-step limit directly from the link configuration,

by “cloning” it to generate a bigger (extended) lattice(!!)
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Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit

in two steps

1) first, considering the V → +∞ limit for the gauge

transformation g(x)

2) then, taking the same limit for the gluon field [i.e. the link

variables {Uµ(x)}]

How can one do that in practice?

Let us build the two-step limit directly from the link configuration,

by “cloning” it to generate a bigger (extended) lattice(!!)

⇒ g(x) sees “infinite” volume while the one for Uµ(x) is still finite
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The Extended Lattice

Setup:

1. Consider a d-dimensional link configuration {Uµ(~x)} ∈

SU(Nc), defined on a lattice Λx with volume V = Nd and

periodic boundary conditions (PBC)

2. Replicate this configuration m times along each direc-

tion, yielding an extended lattice Λz with volumemd V and

PBC

3. Indicate the points of Λz with ~z = ~x + ~yN , where ~x ∈ Λx

and ~y is a point on the index lattice Λy

4. By construction, {Uµ(~z)} in Λz is invariant under transla-

tions by N (in any direction)
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The Extended Gauge Transformation

Impose the minimal-Landau-gauge condition on Λz, i.e. consider the

minimizing functional

EU [g] = −
ℜ Tr

dNcmdV

d
∑

µ=1

∑

~z∈Λz

g(~z)Uµ(~z) g(~z + êµ)
†

where g(~z) has periodicity mN , i.e. g(~z +mNêµ) = g(~z) (PBC in Λz)

The two limits: first take m→ +∞ and then N → +∞

6th WONPAQCD Valparaiso, December 2025



Analogy with Bloch’s Theorem

1. Λy ⇐⇒ finite Bravais lattice with PBC

2. {Uµ(~z)} ⇐⇒ periodic electrostatic potential U(~r)

One can prove that:

g(~z) can be written as g(~z) = exp (iΘµ zµ/N)h(~z)

h(~z) has periodicity N , i.e. h(~z +Nêµ) = h(~z) ⇒ h(~x)

The matrices Θµ = τaθaµ (with a = 1, . . . , N2
c − 1) are

elements of a Cartan sub-algebra of the SU(Nc) Lie algebra

The matrices Θµ have eigenvalues 2πnµ/m, with nµ ∈ Z
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The New Minimizing Functional

Due to the expression for g(~z) and to the cyclicity of the

trace, the minimizing functional becomes

EU [h,Θµ] = −
ℜ Tr

dNc V

d
∑

µ=1

e−iΘµ/N Qµ ,

Qµ =
∑

~x∈Λx

h(~x)Uµ(~x)h(~x+ êµ)
† ,

i.e. the numerical minimization is still carried out on the

original lattice Λx
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Numerical Simulations

In the SU(Nc) case:

1. generate a thermalized d-dimensional link configuration

Uµ(x) with periodicity N , i.e. V = Nd with PBC

2. minimize EU [h,Θµ] with respect to h(x) and Θµ using two

alternating steps:

a) the matrices Θµ are kept fixed and one updates the

matrices h(~x) by sweeping through the lattice

b) the matrices Qµ are kept fixed and one minimizes

EU [h,Θµ] with respect to the matrices Θµ, belonging

to the corresponding Cartan sub-algebra

3. evaluate the gluon propagator using the extended gauge-

fixed link variables U
(g)
µ (~z) = g(~z)Uµ(~z) g(~z + êµ)

†
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The SU(2) Case

In the SU(2) case (one-dimensional Cartan sub-algebra)

we can write

Θµ ≡ (v†σ3v)αµ

with v ∈ SU(2) and eigenvalues ±αµ = ±2πnµ/m

Then, in the new minimizing functional

exp (−iΘµ/N) = v† exp[−2πiσ3nµ/(mN)] v

Also, the matrices Qµ are proportional to SU(2) matrices
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Results: 3D Gluon Propagator

The gluon propagator D(p2) as a function of the lattice momentum p at β = 3.0

for the Λx lattice volumes V = 323 (+) and 2563 (∗) and for the Λz lattice volume

V = 323 × 83 = 2563 (✷)
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Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a

consequence of g(~z) = exp (iΘµzµ/N)h(~x), since the solution for the

extended-lattice problem is obtained from minimizing a similar

functional on the small one
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Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a

consequence of g(~z) = exp (iΘµzµ/N)h(~x), since the solution for the

extended-lattice problem is obtained from minimizing a similar

functional on the small one

For the gauge-transformed link variable Ugµ(z) we have

Uµ(g; ~z) = eiΘνzν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνzν/N

= eiΘνyν
[

eiΘνxν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνxν/N

]

e−iΘνyν

where we used that ~z = ~x+ ~y ~N
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Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a

consequence of g(~z) = exp (iΘµzµ/N)h(~x), since the solution for the

extended-lattice problem is obtained from minimizing a similar

functional on the small one

For the gauge-transformed link variable Ugµ(z) we have

Uµ(g; ~z) = eiΘνzν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνzν/N

= eiΘνyν
[

eiΘνxν/N Uµ(h; ~x) e
−iΘµ/N e−iΘνxν/N

]

e−iΘνyν

where we used that ~z = ~x+ ~y ~N

Note that the central (local) part of the above expression is the same

for all “cells” and that different domains (=cells) are related by a global

“rotation” (determined by ~y), applied to each cell
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Gauge-Configuration Domains

The local part of Ugµ(z) is gauge-fixed (i.e. transverse) but is no longer

periodic, while the original gauge configuration Uµ(z) was periodic, but

not transverse
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Gauge-Configuration Domains

The local part of Ugµ(z) is gauge-fixed (i.e. transverse) but is no longer

periodic, while the original gauge configuration Uµ(z) was periodic, but

not transverse

Gauge-field configurations within cells are rotated, transformed by

global group elements defined by the cell index ~y, in a manner

reminiscent of Escher’s work (Metamorphosis I, II, III), so that the full

configuration on the extended lattice has the required m×N periodicity

A pattern of domains emerges!

6th WONPAQCD Valparaiso, December 2025



Color Magnetization

One can define a (gluon-field) color magnetization

Abµ =
1

Nd

∑

~x

Abµ(~x)

which is related to the gluon propagator at zero momentum as

D(0) =
Nd

d(N2
c − 1)

∑

b,µ

〈|Abµ|
2〉

Quantity A =
∑

b,µ〈|A
b
µ|〉/d(N

2
c − 1) considered by Zwanziger (in

Landau gauge, this should vanish at least as fast as 1/N ).
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Color Magnetization

One can define a (gluon-field) color magnetization

Abµ =
1

Nd

∑

~x

Abµ(~x)

which is related to the gluon propagator at zero momentum as

D(0) =
Nd

d(N2
c − 1)

∑

b,µ

〈|Abµ|
2〉

Quantity A =
∑

b,µ〈|A
b
µ|〉/d(N

2
c − 1) considered by Zwanziger (in

Landau gauge, this should vanish at least as fast as 1/N ).

⇒ Let us look for the average color magnetization in each cell and try

to relate it to the domains mentioned above
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Average Cell Magnetization
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Average color “magnetization” in each cell

M c
µ(~y) =

1

Nd

∑

~x

Acµ(~z)

for the pure-SU(2) case and lattice volume V = (60× 4)3

6th WONPAQCD Valparaiso, December 2025



Average Cell Magnetization
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Average color “magnetization” in each cell

M c
µ(~y) =

1

Nd

∑

~x

Acµ(~z)

for the pure-SU(2) case and lattice volume V = (60× 4)3

A new type of domain wall?
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Conclusions

Numerical results (in the gluon sector) obtained using large

lattice volumes can also be obtained using small lattice

volumes with extended gauge transformations

From the physical point of view:

1. the information encoded in a thermalized configuration

does not depend much on the lattice volume V

2. the properties of the Landau-gauge Green’s functions are

essentially set by the gauge-fixing procedure and the size

of V matters!

Limitation: the allowed momenta seem to be fixed by the

lattice discretization on the original lattice Λx, no way to obtain

“big-volume” momenta?

Interesting properties regarding “magnetization” domains!
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