
Bloch's Theorem and The Lattice Gluon Propagator

Tereza Mendes

in collaboration with Attilio Cucchieri

*Instituto de Física de São Carlos
Universidade de São Paulo*

Abstract

Exploiting the similarity between [Bloch's theorem](#) for electrons in [crystalline solids](#) and the problem of [Landau gauge-fixing](#) in [Yang-Mills theory](#) on a “[replicated](#)” [lattice](#) allows one to obtain [essentially infinite-volume results](#) from numerical simulations performed on regular-size lattices

We review our study of the method applied to the [gluon propagator](#) and propose a novel [interpretation](#), which might improve our understanding of color confinement

In particular, we show how to [map](#) numerical simulations performed on the “[replicated](#)” [lattice](#) onto the original (smaller), [lattice](#), or “[unit cell](#)”. Special emphasis is given to the rôle played by boundary conditions

Abstract

Exploiting the similarity between **Bloch's theorem** for electrons in **crystalline solids** and the problem of **Landau gauge-fixing** in **Yang-Mills theory** on a “**replicated**” **lattice** allows one to obtain **essentially infinite-volume results** from numerical simulations performed on regular-size lattices

We review our study of the method applied to the **gluon propagator** and propose a novel **interpretation**, which might improve our understanding of color confinement

In particular, we show how to **map** numerical simulations performed on the “**replicated**” **lattice** onto the original (smaller), **lattice**, or “**unit cell**”. Special emphasis is given to the rôle played by boundary conditions

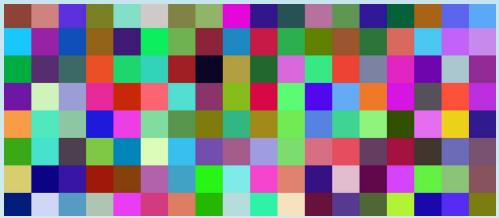
In short: we discuss a way to “**stretch**” **lattice sizes** considerably, by taking advantage of **Bloch's theorem**, from condensed-matter physics

General Aspects

Lattice gauge theories provide a **nonperturbative** way to investigate **non-Abelian** gauge theories, such as QCD

General Aspects

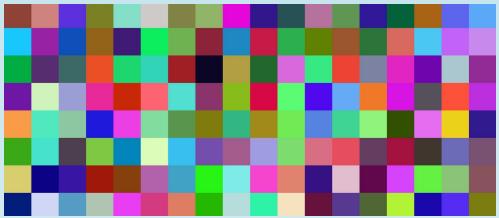
Lattice gauge theories provide a **nonperturbative** way to investigate **non-Abelian** gauge theories, such as QCD



Lattice formulation considers a discretized version of the theory; physical quantities are obtained in the **limit** of zero lattice spacing

General Aspects

Lattice gauge theories provide a **nonperturbative** way to investigate **non-Abelian** gauge theories, such as QCD

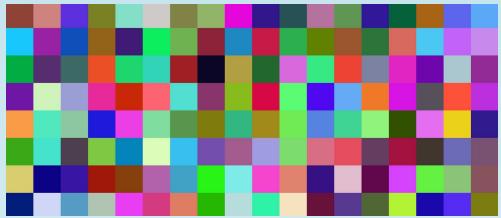


Lattice formulation considers a discretized version of the theory; physical quantities are obtained in the **limit** of zero lattice spacing

Statistical mechanics tools, such as numerical (Monte Carlo) simulation \Rightarrow New approach to QFT, **direct access** to (representative) gauge-field configurations

General Aspects

Lattice gauge theories provide a **nonperturbative** way to investigate **non-Abelian** gauge theories, such as QCD



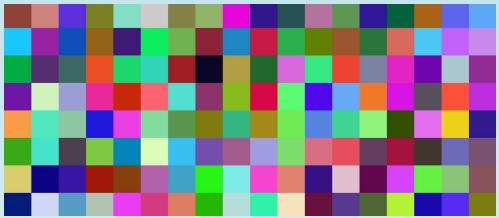
Lattice formulation considers a discretized version of the theory; physical quantities are obtained in the **limit** of zero lattice spacing

Statistical mechanics tools, such as **numerical** (Monte Carlo) **simulation** \Rightarrow New approach to QFT, **direct access** to (representative) gauge-field configurations

First principles study of low-energy QCD properties (including **confinement**, chiral-symmetry breaking, dynamical mass generation).

General Aspects

Lattice gauge theories provide a **nonperturbative** way to investigate **non-Abelian** gauge theories, such as QCD



Lattice formulation considers a discretized version of the theory; physical quantities are obtained in the **limit** of zero lattice spacing

Statistical mechanics tools, such as **numerical** (Monte Carlo) **simulation** \Rightarrow New approach to QFT, **direct access** to (representative) gauge-field configurations

First principles study of low-energy QCD properties (including **confinement**, chiral-symmetry breaking, dynamical mass generation). In this case, one of the challenges: Infrared limit requires **large lattice volumes**

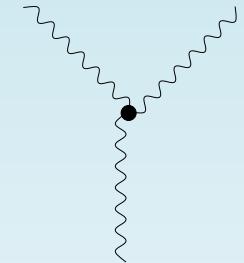
Origin of Confinement in QCD

Note: contribution $F_{\mu\nu}^a \sim g_0 f^{abc} A_\mu^b A_\nu^c$ means that in addition to quadratic terms (propagators) and the usual vertex

$$\mathcal{L}_{\bar{\psi}\psi A} = g_0 \bar{\psi} \gamma^\mu A_\mu \psi \quad (\text{quark-quark-gluon vertex})$$

Lagrangian contains terms with 3 and 4 gauge fields

$$\mathcal{L}_{AAA} = g_0 f^{abc} A_a^\mu A_b^\nu \partial_\mu A_\nu^c \Rightarrow \text{three-gluon vertex}$$



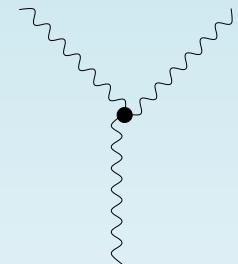
Origin of Confinement in QCD

Note: contribution $F_{\mu\nu}^a \sim g_0 f^{abc} A_\mu^b A_\nu^c$ means that in addition to quadratic terms (propagators) and the usual vertex

$$\mathcal{L}_{\bar{\psi}\psi A} = g_0 \bar{\psi} \gamma^\mu A_\mu \psi \quad (\text{quark-quark-gluon vertex})$$

Lagrangian contains terms with 3 and 4 gauge fields

$$\mathcal{L}_{AAA} = g_0 f^{abc} A_a^\mu A_b^\nu \partial_\mu A_\nu^c \Rightarrow \text{three-gluon vertex}$$



\Rightarrow gluons interact (have color charge), determining the peculiar properties and the nonperturbative nature of low-energy QCD (nonlinear effects)

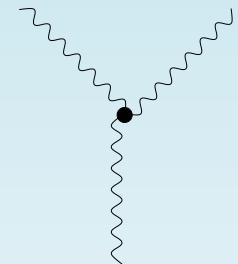
Origin of Confinement in QCD

Note: contribution $F_{\mu\nu}^a \sim g_0 f^{abc} A_\mu^b A_\nu^c$ means that in addition to quadratic terms (propagators) and the usual vertex

$$\mathcal{L}_{\bar{\psi}\psi A} = g_0 \bar{\psi} \gamma^\mu A_\mu \psi \quad (\text{quark-quark-gluon vertex})$$

Lagrangian contains terms with 3 and 4 gauge fields

$$\mathcal{L}_{AAA} = g_0 f^{abc} A_a^\mu A_b^\nu \partial_\mu A_\nu^c \Rightarrow \text{three-gluon vertex}$$



⇒ gluons interact (have color charge), determining the peculiar properties and the nonperturbative nature of low-energy QCD (nonlinear effects)

⇒ Running coupling $\alpha_s(p)$ instead of $\alpha \approx 1/137$

Confinement vs. Asymptotic Freedom

- At **high energies**: deep inelastic scattering of electrons reveals proton made of **partons**: **pointlike** and **free**. In this limit $\alpha_s(p) \ll 1$ (**asymptotic freedom**) and QCD is **perturbative**

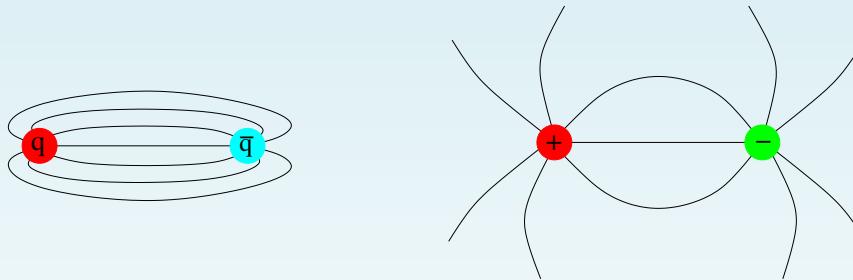
$$\alpha_s(p) = \frac{4\pi}{\beta_0 \log(p^2/\Lambda^2)} \left[1 - \frac{2\beta_1}{\beta_0^2} \frac{\log(\log(p^2/\Lambda^2))}{\log(p^2/\Lambda^2)} + \dots \right]$$

Confinement vs. Asymptotic Freedom

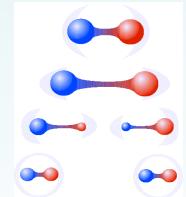
- At **high energies**: deep inelastic scattering of electrons reveals proton made of **partons**: **pointlike** and **free**. In this limit $\alpha_s(p) \ll 1$ (**asymptotic freedom**) and QCD is **perturbative**

$$\alpha_s(p) = \frac{4\pi}{\beta_0 \log(p^2/\Lambda^2)} \left[1 - \frac{2\beta_1}{\beta_0^2} \frac{\log(\log(p^2/\Lambda^2))}{\log(p^2/\Lambda^2)} + \dots \right]$$

- At **low energies**: interaction gets stronger, $\alpha_s \approx 1$ and **confinement** occurs. **Color field** may form **flux tubes**



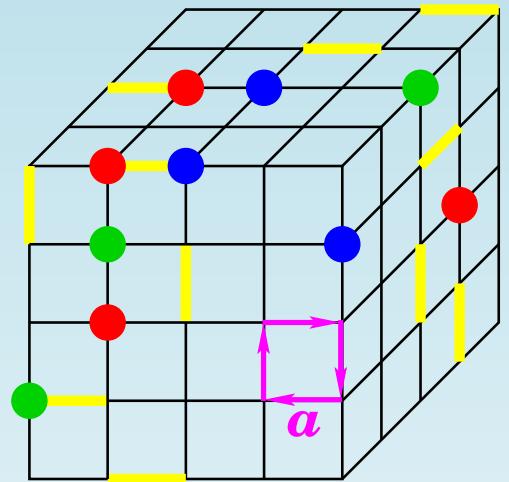
linear increase of inter-quark potential \rightarrow string tension
At large distances \rightarrow string breaks



Nonperturbative QCD \Rightarrow Lattice

Three ingredients

1. Quantization by **path integrals** \Rightarrow sum over configurations with “weights” $e^{i S/\hbar}$
2. **Euclidean formulation** (analytic continuation to **imaginary time**) \Rightarrow weight becomes $e^{-S/\hbar}$
3. **Discrete space-time** \Rightarrow UV cut at **momenta** $p \lesssim 1/a$ \Rightarrow **regularization**

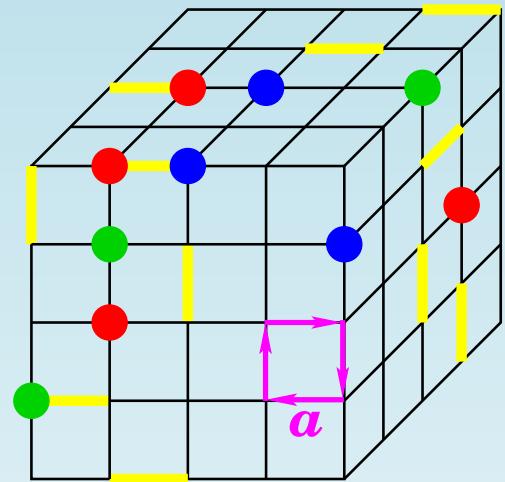


Nonperturbative QCD \Rightarrow Lattice

Three ingredients

1. Quantization by **path integrals** \Rightarrow sum over configurations with “weights” $e^{i S/\hbar}$
2. **Euclidean formulation** (analytic continuation to **imaginary time**) \Rightarrow weight becomes $e^{-S/\hbar}$
3. **Discrete** space-time \Rightarrow UV cut at **momenta** $p \lesssim 1/a$ \Rightarrow **regularization**

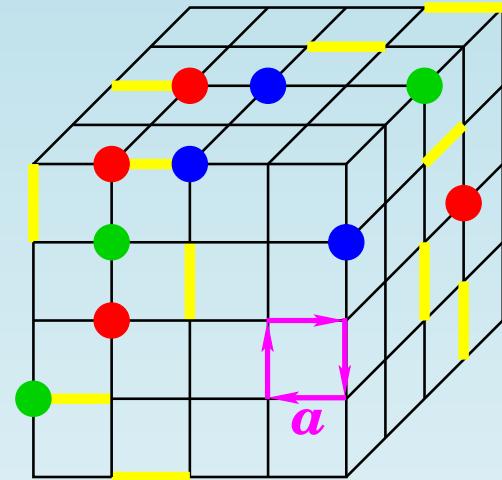
Also: **finite-size** lattices \Rightarrow IR cut for **small momenta** $p \approx 1/L$



Nonperturbative QCD \Rightarrow Lattice

Three ingredients

1. Quantization by **path integrals** \Rightarrow sum over configurations with “weights” $e^{i S/\hbar}$
2. **Euclidean formulation** (analytic continuation to **imaginary time**) \Rightarrow weight becomes $e^{-S/\hbar}$
3. **Discrete** space-time \Rightarrow UV cut at **momenta** $p \lesssim 1/a$ \Rightarrow **regularization**



Also: **finite-size** lattices \Rightarrow IR cut for **small momenta** $p \approx 1/L$

The Wilson action

- is written for the **gauge links** $U_{x,\mu} \equiv e^{i g_0 a A_\mu^b(x) T_b}$
- reduces to the usual action for $a \rightarrow 0$
- is **gauge-invariant**

The Lattice Action

The Wilson action (1974)

$$S = -\frac{\beta}{3} \sum_{\square} \text{ReTr} U_{\square}, \quad U_{x,\mu} \equiv e^{i g_0 a A_{\mu}^b(x) T_b}, \quad \beta = 6/g_0^2$$

- written in terms of oriented plaquettes formed by the link variables $U_{x,\mu}$, which are group elements
- under gauge transformations: $U_{x,\mu} \rightarrow g(x) U_{x,\mu} g^{\dagger}(x + \mu)$, where $g \in SU(3)$ \Rightarrow closed loops are gauge-invariant quantities
- integration volume is finite: no need for gauge-fixing

At small β (i.e. strong coupling) we can perform an expansion analogous to the high-temperature expansion in statistical mechanics. At lowest order, the only surviving terms are represented by diagrams with “double” or “partner” links, i.e. the same link should appear in both orientations, since $\int dU U_{x,\mu} = 0$

Confinement and Area Law

Considering a rectangular loop with sides R and T (the Wilson loop) as our observable, the leading contribution to the observable's expectation value is obtained by "tiling" its inside with plaquettes, yielding the **area law**

$$\langle W(R, T) \rangle \sim \beta^{RT}$$

But this observable is related to the **interquark potential** for a static quark-antiquark pair

$$\langle W(R, T) \rangle = e^{-V(R)T}$$

We thus have $V(R) \sim \sigma R$, demonstrating **confinement** at strong coupling (small β)!

Problem: the physical limit is at large β ...

(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the **partition function**

$$Z = \int \mathcal{D}U e^{-S_g} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-\int d^4x \bar{\psi}(x) K \psi(x)} = \int \mathcal{D}U e^{-S_g} \det K(U)$$

(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the **partition function**

$$Z = \int \mathcal{D}U e^{-S_g} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-\int d^4x \bar{\psi}(x) K \psi(x)} = \int \mathcal{D}U e^{-S_g} \det K(U)$$

Evaluate expectation values

$$\langle \mathcal{O} \rangle = \int \mathcal{D}U \mathcal{O}(U) P(U) = \frac{1}{N} \sum_i \mathcal{O}(U_i)$$

with the weight

$$P(U) = \frac{e^{-S_g(U)} \det K(U)}{Z}$$

(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

$$Z = \int \mathcal{D}U e^{-S_g} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-\int d^4x \bar{\psi}(x) K \psi(x)} = \int \mathcal{D}U e^{-S_g} \det K(U)$$

Evaluate expectation values

$$\langle \mathcal{O} \rangle = \int \mathcal{D}U \mathcal{O}(U) P(U) = \frac{1}{N} \sum_i \mathcal{O}(U_i)$$

with the weight

$$P(U) = \frac{e^{-S_g(U)} \det K(U)}{Z}$$

Very complicated (high-dimensional) integral to compute!

(Numerical) Lattice QCD

Classical Statistical-Mechanics model with the partition function

$$Z = \int \mathcal{D}U e^{-S_g} \int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-\int d^4x \bar{\psi}(x) K \psi(x)} = \int \mathcal{D}U e^{-S_g} \det K(U)$$

Evaluate expectation values

$$\langle \mathcal{O} \rangle = \int \mathcal{D}U \mathcal{O}(U) P(U) = \frac{1}{N} \sum_i \mathcal{O}(U_i)$$

with the weight

$$P(U) = \frac{e^{-S_g(U)} \det K(U)}{Z}$$

Very complicated (high-dimensional) integral to compute!

⇒ Monte Carlo simulation: sample representative configurations,
then compute \mathcal{O} and take average

Limits of Lattice Simulations

Physics is obtained after 3 limits:

- 1) The Thermodynamic Limit ($V = N^d \rightarrow \infty$): need $N \rightarrow \infty$ to keep physical lengths $L = aN$ fixed. Need $N > \xi_{\text{latt}}$, while $\xi_{\text{latt}}(a)$ diverges!

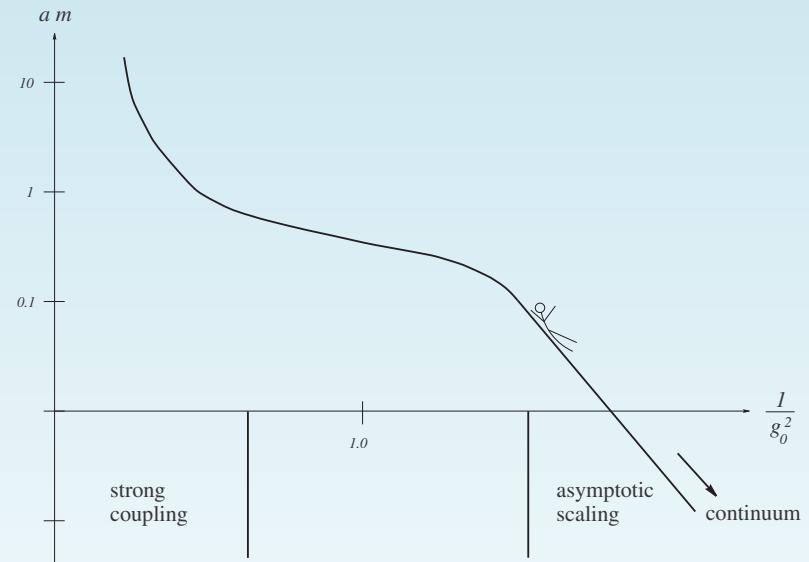
Limits of Lattice Simulations

Physics is obtained after 3 limits:

- 1) **The Thermodynamic Limit** ($V = N^d \rightarrow \infty$): need $N \rightarrow \infty$ to keep physical lengths $L = aN$ fixed. Need $N > \xi_{\text{latt}}$, while $\xi_{\text{latt}}(a)$ diverges!
- 2) **The Continuum Limit** ($a \rightarrow 0$): correlation length \leftrightarrow mass $^{-1}$ from renormalization group:

$$\log(\xi_{\text{latt}}) = \log(1/ma) \sim 1/g_0^2 \sim \beta$$

thus continuum limit given by $g_0 \rightarrow 0$, $\beta \rightarrow \infty$ and $\xi_{\text{latt}} \sim e^\beta$ (asymptotic scaling), i.e. $\xi = 1/m \sim a e^\beta \Rightarrow$ eliminate e^β computing mass ratios (scaling law) or fix a using an experimental input (renormalization)



Limits of Lattice Simulations

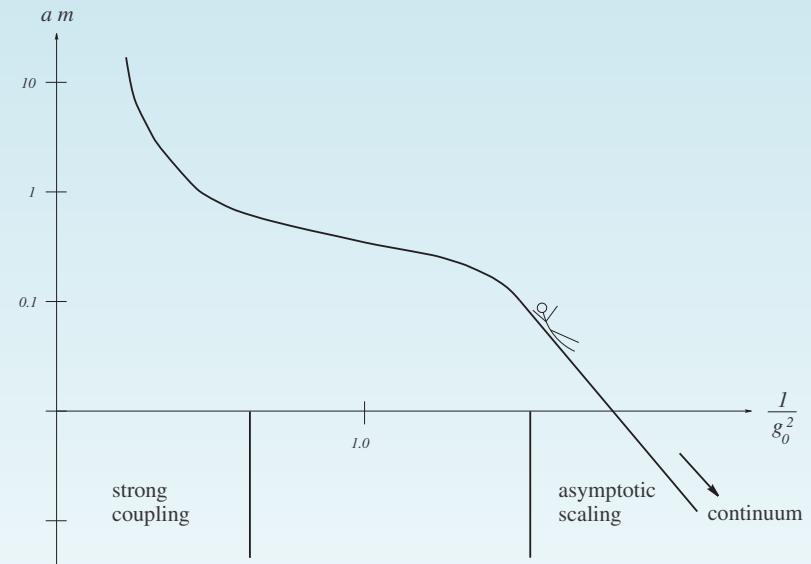
Physics is obtained after 3 limits:

1) **The Thermodynamic Limit** ($V = N^d \rightarrow \infty$): need $N \rightarrow \infty$ to keep physical lengths $L = aN$ fixed. Need $N > \xi_{\text{latt}}$, while $\xi_{\text{latt}}(a)$ diverges!

2) **The Continuum Limit** ($a \rightarrow 0$): correlation length \leftrightarrow mass $^{-1}$ from renormalization group:

$$\log(\xi_{\text{latt}}) = \log(1/ma) \sim 1/g_0^2 \sim \beta$$

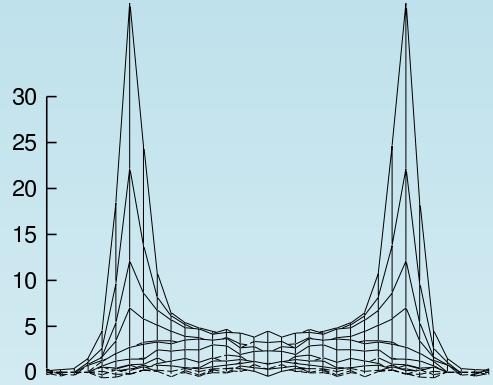
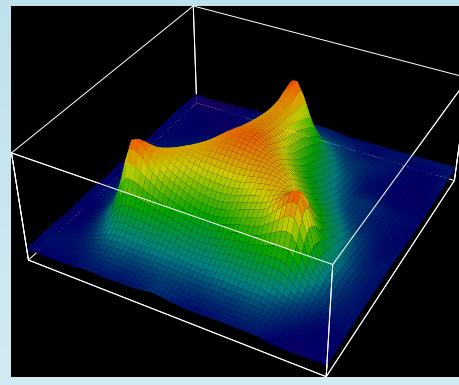
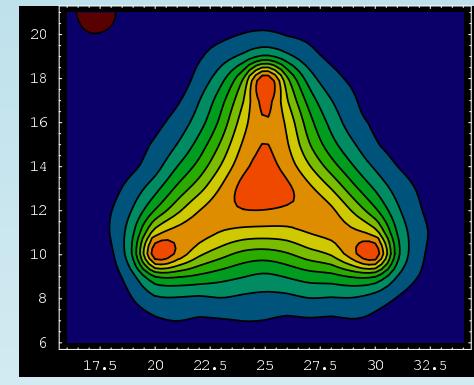
thus continuum limit given by $g_0 \rightarrow 0$, $\beta \rightarrow \infty$ and $\xi_{\text{latt}} \sim e^\beta$ (asymptotic scaling), i.e. $\xi = 1/m \sim a e^\beta \Rightarrow$ eliminate e^β computing mass ratios (scaling law) or fix a using an experimental input (renormalization)



3) **The Chiral Limit** (small m_q): fit results to chiral perturbation theory predictions and extrapolate to physical masses

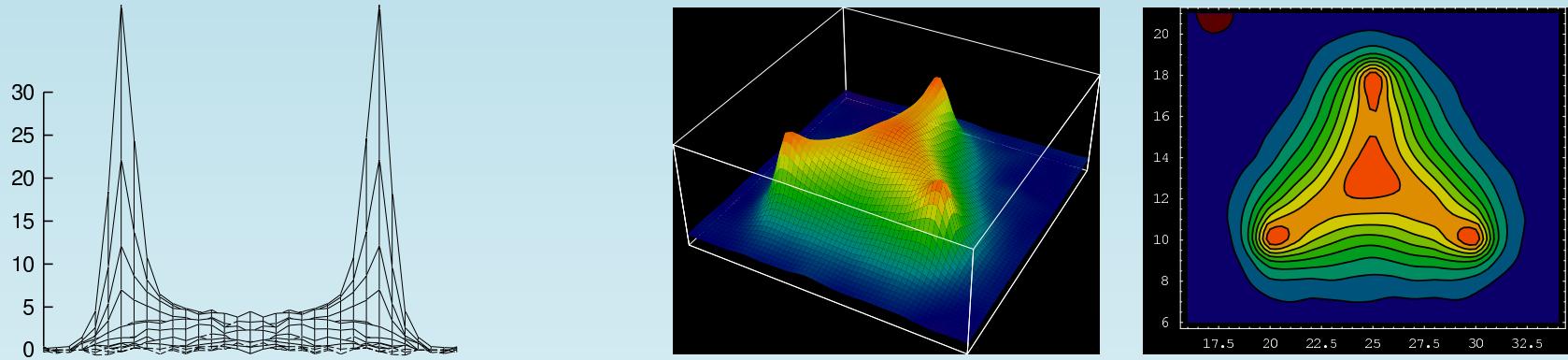
Manifestations of Confinement

May observe formation of **flux tubes**

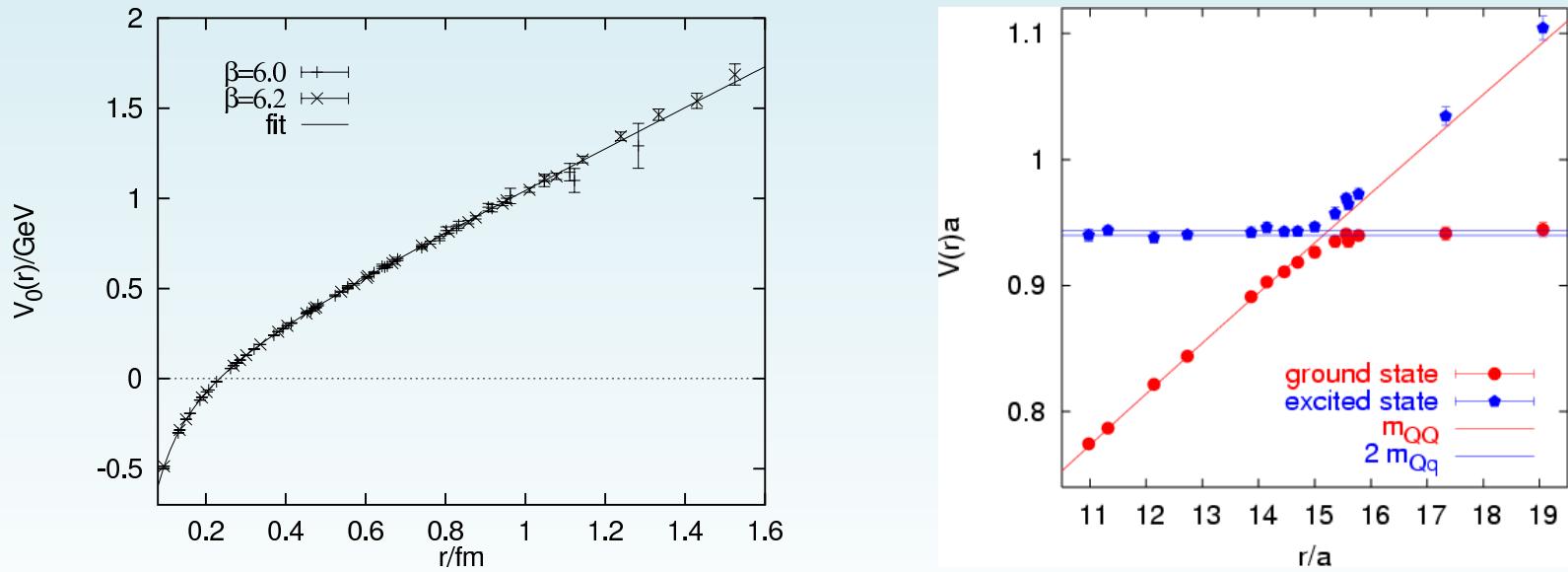


Manifestations of Confinement

May observe formation of **flux tubes**



Linear Growth of potential between quarks, **string breaking**



Understanding Confinement

- How does linearly rising potential (seen in lattice QCD) come about?

Understanding Confinement

- How does linearly rising potential (seen in lattice QCD) come about?
- Models of confinement include: dual superconductivity (electric flux tube connecting magnetic monopoles), condensation of center vortices, but also merons, calorons

Understanding Confinement

- How does linearly rising potential (seen in lattice QCD) come about?
- Models of confinement include: dual superconductivity (electric flux tube connecting magnetic monopoles), condensation of center vortices, but also merons, calorons
- Proposal by Mandelstam (1979) linking linear potential to infrared behavior of gluon propagator as $1/p^4$

$$V(r) \sim \int \frac{d^3 p}{p^4} e^{ip \cdot r} \sim r$$

Understanding Confinement

- How does linearly rising potential (seen in lattice QCD) come about?
- Models of confinement include: dual superconductivity (electric flux tube connecting magnetic monopoles), condensation of center vortices, but also merons, calorons
- Proposal by Mandelstam (1979) linking linear potential to infrared behavior of gluon propagator as $1/p^4$

$$V(r) \sim \int \frac{d^3 p}{p^4} e^{ip \cdot r} \sim r$$

- Gribov-Zwanziger confinement scenario based on suppressed gluon propagator and enhanced ghost propagator in the infrared

GZ Scenario: Confinement by Ghost

Formulated for Landau gauge, predicts gluon propagator

$$D_{\mu\nu}^{ab}(p) = \sum_x e^{-2i\pi k \cdot x} \langle A_\mu^a(x) A_\nu^b(0) \rangle = \delta^{ab} \left(g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) D(p^2)$$

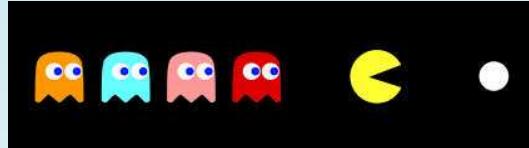
suppressed in the IR limit \Rightarrow gluon confinement

GZ Scenario: Confinement by Ghost

Formulated for Landau gauge, predicts gluon propagator

$$D_{\mu\nu}^{ab}(p) = \sum_x e^{-2i\pi k \cdot x} \langle A_\mu^a(x) A_\nu^b(0) \rangle = \delta^{ab} \left(g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) D(p^2)$$

suppressed in the IR limit \Rightarrow gluon confinement



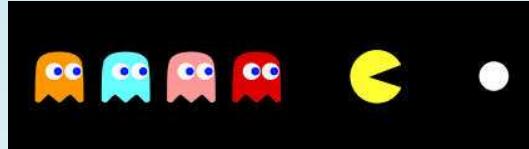
Long range effects are felt in the ghost propagator $G(p)$:

GZ Scenario: Confinement by Ghost

Formulated for Landau gauge, predicts gluon propagator

$$D_{\mu\nu}^{ab}(p) = \sum_x e^{-2i\pi k \cdot x} \langle A_\mu^a(x) A_\nu^b(0) \rangle = \delta^{ab} \left(g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) D(p^2)$$

suppressed in the IR limit \Rightarrow gluon confinement



Long range effects are felt in the ghost propagator $G(p)$:

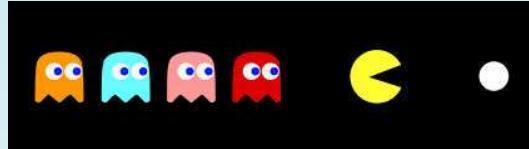
- Infinite volume favors configurations on the first Gribov horizon, where minimum nonzero eigenvalue λ_{min} of Faddeev-Popov operator \mathcal{M} goes to zero

GZ Scenario: Confinement by Ghost

Formulated for Landau gauge, predicts gluon propagator

$$D_{\mu\nu}^{ab}(p) = \sum_x e^{-2i\pi k \cdot x} \langle A_\mu^a(x) A_\nu^b(0) \rangle = \delta^{ab} \left(g_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) D(p^2)$$

suppressed in the IR limit \Rightarrow gluon confinement

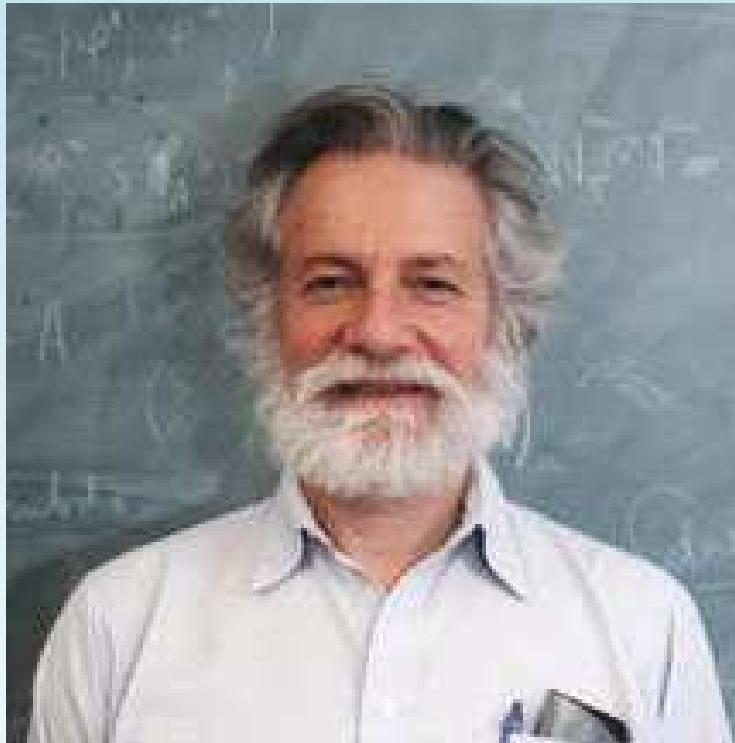


Long range effects are felt in the ghost propagator $G(p)$:

- Infinite volume favors configurations on the first Gribov horizon, where minimum nonzero eigenvalue λ_{min} of Faddeev-Popov operator \mathcal{M} goes to zero
- In turn, $G(p)$ should be IR enhanced, introducing long-range effects, which are related to the color-confinement mechanism

Dan Zwanziger (1935–2024)

Wikipedia Daniel Zwanziger (*20. Mai 1935 in New York City; † 2024) war ein US-amerikanischer theoretischer Physiker. Er befasste sich mit Quantenfeldtheorie, mathematischer Physik und Elementarteilchenphysik



[Zwanziger *Local and renormalizable action from the Gribov horizon*, Nucl. Phys. B, 1989]

[Vandersickel, Zwanziger *The Gribov problem and QCD dynamics*, Phys. Rep., 2012]

Gauge-Related Lattice Features

- Gauge action written in terms of oriented plaquettes formed by the link variables $U_{x,\mu}$, which are group elements

Gauge-Related Lattice Features

- Gauge action written in terms of **oriented plaquettes** formed by the **link variables** $U_{x,\mu}$, which are group elements
- under gauge transformations: $U_{x,\mu} \rightarrow g(x) U_{x,\mu} g^\dagger(x + \mu)$, where $g \in SU(3)$ \Rightarrow closed loops are gauge-invariant quantities

Gauge-Related Lattice Features

- Gauge action written in terms of **oriented plaquettes** formed by the **link variables** $U_{x,\mu}$, which are group elements
- under gauge transformations: $U_{x,\mu} \rightarrow g(x) U_{x,\mu} g^\dagger(x + \mu)$, where $g \in SU(3)$ \Rightarrow closed loops are gauge-invariant quantities
- integration volume is finite: **no need for gauge-fixing**

Gauge-Related Lattice Features

- Gauge action written in terms of **oriented plaquettes** formed by the **link variables** $U_{x,\mu}$, which are group elements
- under gauge transformations: $U_{x,\mu} \rightarrow g(x) U_{x,\mu} g^\dagger(x + \mu)$, where $g \in SU(3)$ \Rightarrow closed loops are gauge-invariant quantities
- integration volume is finite: **no need for gauge-fixing**
- when gauge fixing, procedure is incorporated in the simulation, **no need to consider Faddeev-Popov matrix**

Gauge-Related Lattice Features

- Gauge action written in terms of **oriented plaquettes** formed by the **link variables** $U_{x,\mu}$, which are group elements
- under gauge transformations: $U_{x,\mu} \rightarrow g(x) U_{x,\mu} g^\dagger(x + \mu)$, where $g \in SU(3)$ \Rightarrow closed loops are gauge-invariant quantities
- integration volume is finite: **no need for gauge-fixing**
- when gauge fixing, procedure is incorporated in the simulation, **no need to consider Faddeev-Popov matrix**
- get FP matrix without considering **ghost fields** explicitly

Gauge-Related Lattice Features

- Gauge action written in terms of **oriented plaquettes** formed by the **link variables** $U_{x,\mu}$, which are group elements
- under gauge transformations: $U_{x,\mu} \rightarrow g(x) U_{x,\mu} g^\dagger(x + \mu)$, where $g \in SU(3)$ \Rightarrow closed loops are gauge-invariant quantities
- integration volume is finite: **no need for gauge-fixing**
- when gauge fixing, procedure is incorporated in the simulation, **no need to consider Faddeev-Popov matrix**
- get FP matrix without considering **ghost fields** explicitly
- **Lattice momenta** given by $\hat{p}_\mu = 2 \sin(\pi n_\mu/N)$ with $n_\mu = 0, 1, \dots, N/2$ $\Leftrightarrow p_{min} \sim 2\pi/(a N) = 2\pi/L$, $p_{max} = d/a$ in physical units

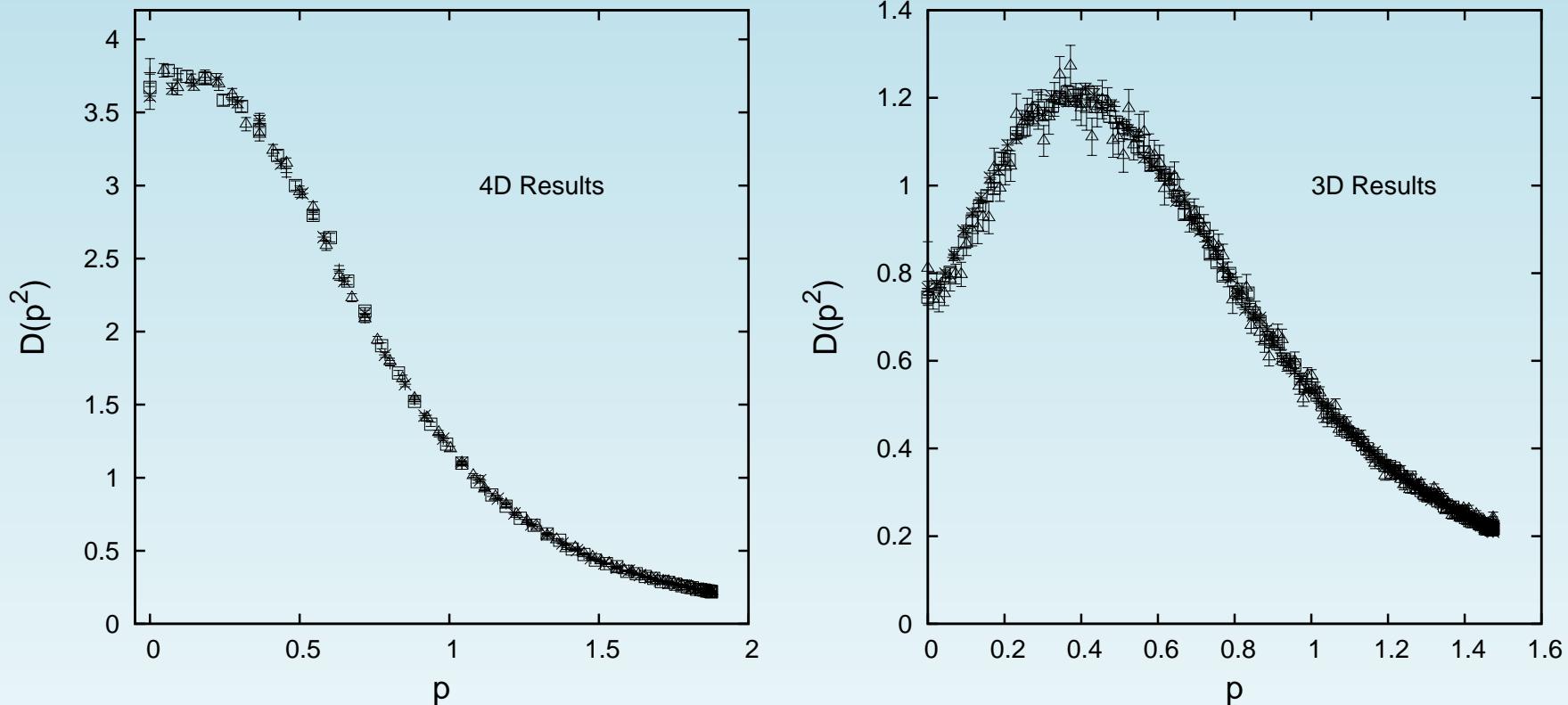
3-Step Code

```
main() {  
    /* set parameters: beta, number of configurations NC,  
       number of thermalization sweeps NT */  
    read_parameters();  
    /* {U} is the link configuration */  
    set_initial_configuration(U);  
    /* cycle over NC configurations */  
    for (int c=0; c < NC; c++) {  
        thermalize(U,beta,NT);  
        gauge_fix(U,g);  
        evaluate_propagators(U[g]);  
    }  
}
```

Algorithms: Heat-Bath and Micro-canonical (thermalization),
overrelaxation and simulated annealing (gauge fixing), conjugate
gradient and Fourier transform (propagators, etc.).

Gluon Propagator at “Infinite” Volume

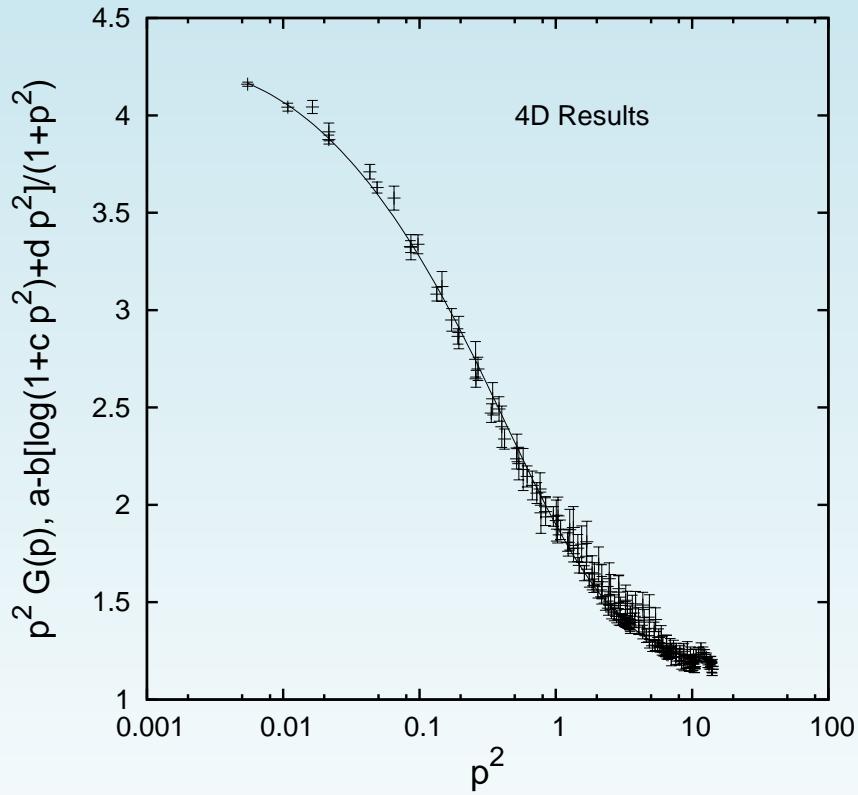
Attilio Cucchieri & T.M. (PRL, 2008)



Gluon propagator $D(k)$ as a function of the lattice momenta k (both in physical units) for the pure- $SU(2)$ case in $d = 4$ (left), considering volumes of up to 128^4 (lattice extent ~ 27 fm) and $d = 3$ (right), considering volumes of up to 320^3 (lattice extent ~ 85 fm)

Ghost Propagator Results

Fit of the ghost dressing function $p^2 G(p^2)$ as a function of p^2 (in GeV) for the 4d case ($\beta = 2.2$ with volume 80^4). We find that $p^2 G(p^2)$ is best fitted by the form $p^2 G(p^2) = a - b[\log(1 + cp^2) + dp^2]/(1 + p^2)$, with



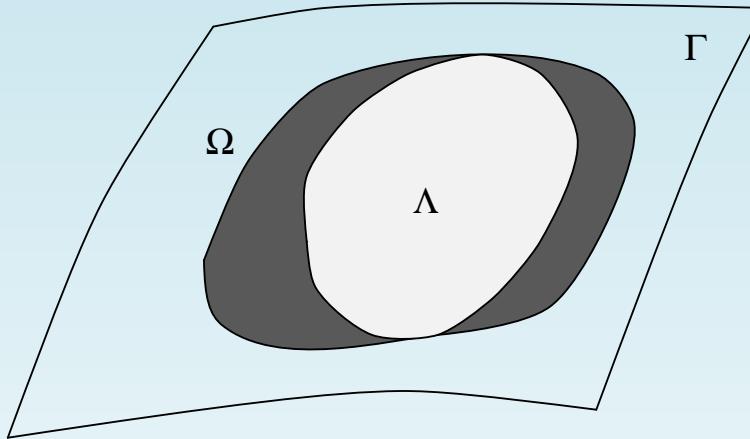
$$\begin{aligned}a &= 4.32(2), \\b &= 0.38(1) \text{ GeV}^2, \\c &= 80(10) \text{ GeV}^{-2}, \\d &= 8.2(3) \text{ GeV}^{-2}.\end{aligned}$$

In IR limit $p^2 G(p^2) \sim a$.

Attilio Cucchieri & T.M. (PRD, 2008)

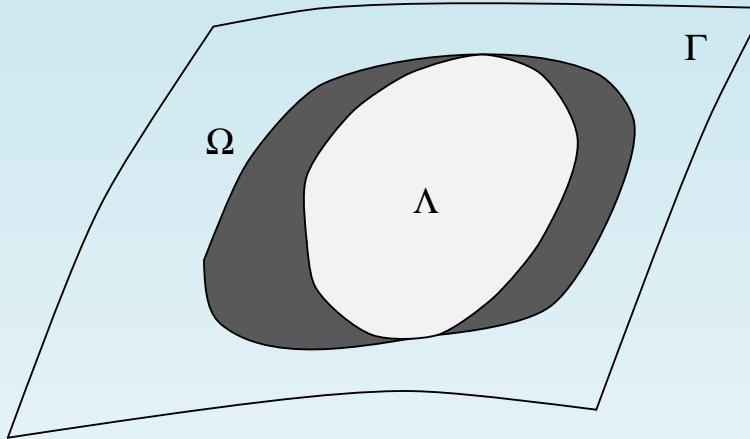
The Infinite-Volume Limit

As the infinite-volume limit is approached, the **sampled configurations** (inside Ω = region for which \mathcal{M} is positive semi-definite) are closer and closer to the **first Gribov horizon** $\partial\Omega$



The Infinite-Volume Limit

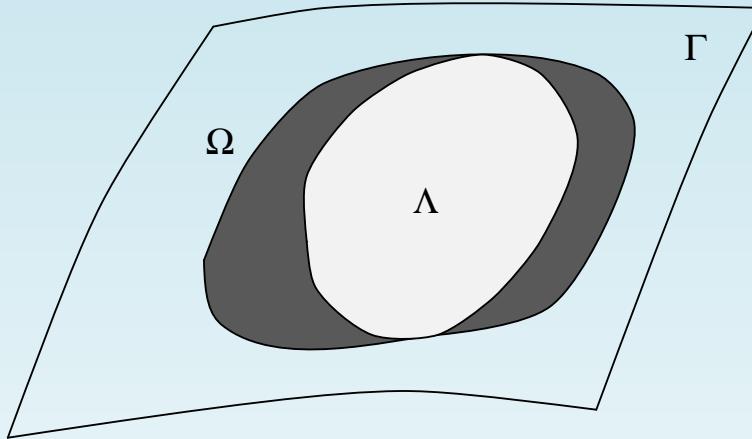
As the infinite-volume limit is approached, the **sampled configurations** (inside Ω = region for which \mathcal{M} is positive semi-definite) are closer and closer to the **first Gribov horizon** $\partial\Omega$



Can we learn more about the geometry of this region?

The Infinite-Volume Limit

As the infinite-volume limit is approached, the **sampled configurations** (inside Ω = region for which \mathcal{M} is positive semi-definite) are closer and closer to the **first Gribov horizon** $\partial\Omega$



Can we learn more about the geometry of this region?

Lattice simulation produces **thermalized gauge configurations**, but we can also “visit” **nearby configs** and extract info from them!

Issues

Simulation on large lattices (IR limit) is **very costly**. How to be more efficient?

Issues

Simulation on large lattices (IR limit) is **very costly**. How to be more efficient? How to disentangle **approach to Gribov horizon** (as lattice volume increases) and **behavior of $G(p^2)$ (or λ_{\min})?**

Issues

Simulation on large lattices (IR limit) is **very costly**. How to be more efficient? How to disentangle **approach to Gribov horizon** (as lattice volume increases) and **behavior of $G(p^2)$ (or λ_{\min})**?

Get **insight** from **features of the lattice simulations themselves**:

- 1) Educated **guess** of infinite-volume-limit behavior
- 2) **Explore Gribov horizon** by visiting neighboring (**unsampled**) configurations, get info about λ_{\min}
- 3) Simulate **on effectively large** lattices by “faking” periodic crystal and invoking Bloch’s theorem

Issues

Simulation on large lattices (IR limit) is **very costly**. How to be more efficient? How to disentangle **approach to Gribov horizon** (as lattice volume increases) and **behavior of $G(p^2)$** (or λ_{\min})?

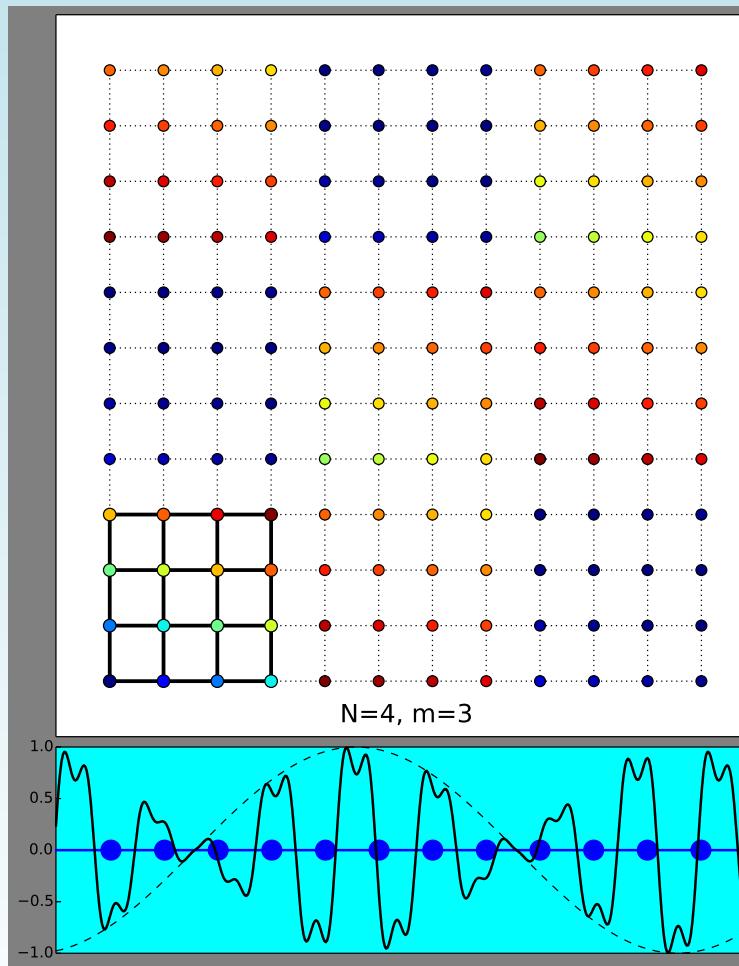
Get **insight** from **features of the lattice simulations themselves**:

- 1) Educated **guess** of infinite-volume-limit behavior
- 2) **Explore Gribov horizon** by visiting neighboring (**unsampled**) configurations, get info about λ_{\min}
- 3) Simulate **on effectively large** lattices by “faking” periodic crystal and invoking Bloch’s theorem

Also: Investigate the analytic structure of the propagators via “perturbative techniques” (e.g. use rational approximants)

Large Lattices via Bloch's Theorem

Perform thermalization on small lattice, then replicate it and use
Bloch's theorem to obtain gauge-fixing for much larger lattice
A. Cucchieri, TM, PRL 2017 & Universe 2025, 11(8), 273, 56 pp.



Periodic (Crystal) Potential in QM

For ideal crystalline solid in d dimensions, consider electrostatic potential $U(\vec{r})$ with the periodicity of the Bravais lattice, i.e. $U(\vec{r}) = U(\vec{r} + \vec{R})$ for any vector $\vec{R} = n_\mu \vec{a}_\mu$

1. Choose eigenstates of \mathcal{H} to be also eigenstates of $\mathcal{T}(\vec{R})$
2. Then eigenstates $\psi(\vec{r})$ can be written as Bloch waves

$$\psi_{\vec{k}}(\vec{r}) = \exp(i\vec{k} \cdot \vec{r}) h_{\vec{k}}(\vec{r}) ,$$

where the functions $h_{\vec{k}}(\vec{r})$ have the periodicity of the Bravais lattice, i.e. $h_{\vec{k}}(\vec{r} + \vec{R}) = h_{\vec{k}}(\vec{r})$

Periodic (Crystal) Potential in QM

For ideal crystalline solid in d dimensions, consider electrostatic potential $U(\vec{r})$ with the periodicity of the Bravais lattice, i.e. $U(\vec{r}) = U(\vec{r} + \vec{R})$ for any vector $\vec{R} = n_\mu \vec{a}_\mu$

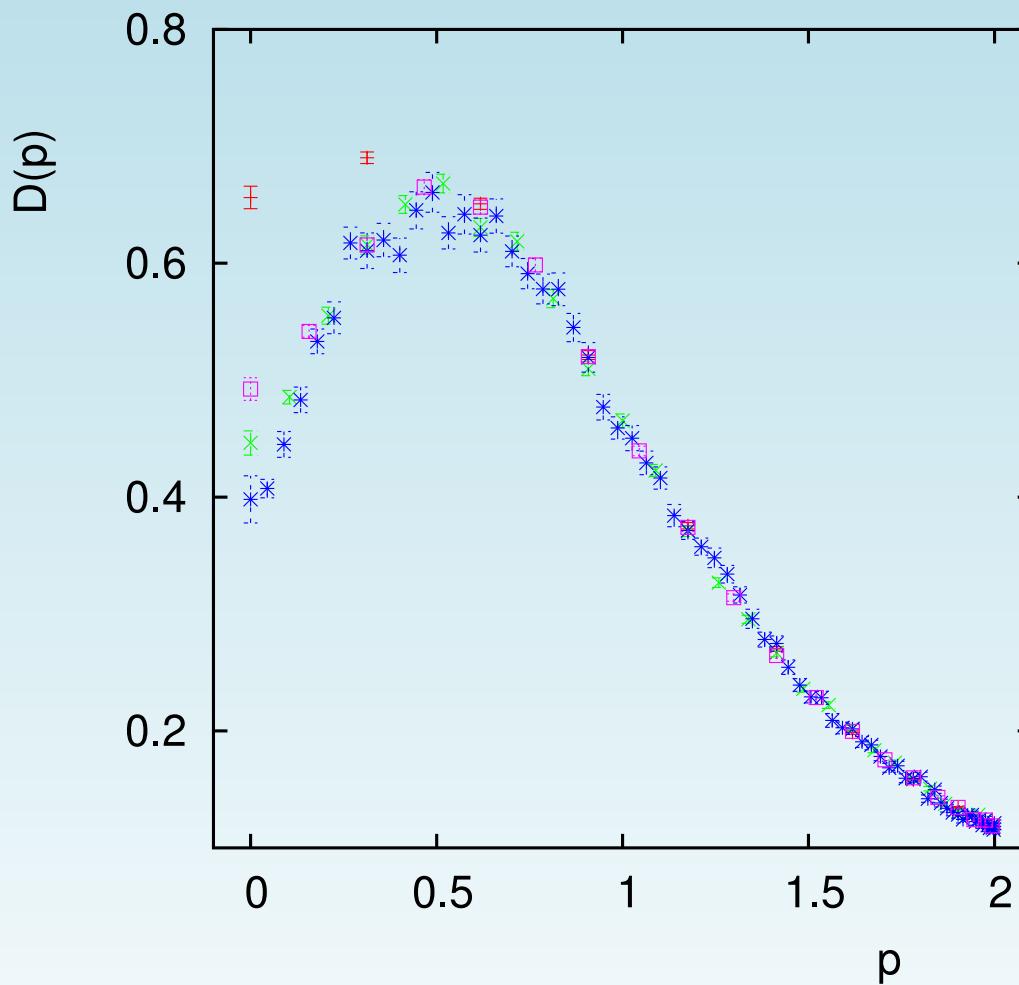
1. Choose eigenstates of \mathcal{H} to be also eigenstates of $\mathcal{T}(\vec{R})$
2. Then eigenstates $\psi(\vec{r})$ can be written as Bloch waves

$$\psi_{\vec{k}}(\vec{r}) = \exp(i\vec{k} \cdot \vec{r}) h_{\vec{k}}(\vec{r}) ,$$

where the functions $h_{\vec{k}}(\vec{r})$ have the periodicity of the Bravais lattice, i.e. $h_{\vec{k}}(\vec{r} + \vec{R}) = h_{\vec{k}}(\vec{r})$

Idea: infinite-volume limit in LQCD as periodic-potential problem, simplified by analogy with Bloch's theorem

Gluon Propagator: Volume Effects



Gluon propagator vs. lattice momentum for $V = 20^3, 40^3, 60^3$ and 140^3

Lattice Landau Gauge

Landau gauge is imposed on the lattice by **minimizing** the functional

$$\mathcal{E}[U; \textcolor{red}{g}] = \Re \operatorname{Tr} \sum_{x,\mu} [\mathbb{1} - U_\mu^{\textcolor{red}{g}}(x)]$$

with respect to $\textcolor{red}{g}(x) \in SU(N_c)$ for a fixed gauge configuration $U_\mu(x)$

Lattice Landau Gauge

Landau gauge is imposed on the lattice by **minimizing** the functional

$$\mathcal{E}[U; \mathbf{g}] = \Re \operatorname{Tr} \sum_{x, \mu} [\mathbb{1} - U_\mu^{\mathbf{g}}(x)]$$

with respect to $\mathbf{g}(x) \in SU(N_c)$ for a fixed gauge configuration $U_\mu(x)$

Taking $\mathbf{g}(x) = e^{i\tau\gamma(x)}$ with $\gamma(x) = \gamma^b(x) T_b \in \mathfrak{su}(N_c)$ fixed and $\tau \rightarrow 0$

$$\mathcal{E}[U; \mathbf{g}] \approx \mathcal{E}[U; \mathbb{1}] + \tau \mathcal{E}'[U; \mathbb{1}](b, x) \gamma^b(x) + (\tau^2/2) \gamma^b(x) \mathcal{E}''[U; \mathbb{1}](b, x; c, y) \gamma^c(y)$$

$\Rightarrow \mathcal{E}''[U; \mathbb{1}] = \mathcal{M}[A]$ is a lattice discretization of **Faddeev-Popov** operator $-D \cdot \partial$

Lattice Landau Gauge

Landau gauge is imposed on the lattice by **minimizing** the functional

$$\mathcal{E}[U; \mathbf{g}] = \Re \operatorname{Tr} \sum_{x, \mu} [\mathbb{1} - U_\mu^{\mathbf{g}}(x)]$$

with respect to $\mathbf{g}(x) \in SU(N_c)$ for a fixed gauge configuration $U_\mu(x)$

Taking $\mathbf{g}(x) = e^{i\tau\gamma(x)}$ with $\gamma(x) = \gamma^b(x) T_b \in \mathfrak{su}(N_c)$ fixed and $\tau \rightarrow 0$

$$\mathcal{E}[U; \mathbf{g}] \approx \mathcal{E}[U; \mathbb{1}] + \tau \mathcal{E}'[U; \mathbb{1}](b, x) \gamma^b(x) + (\tau^2/2) \gamma^b(x) \mathcal{E}''[U; \mathbb{1}](b, x; c, y) \gamma^c(y)$$

$\Rightarrow \mathcal{E}''[U; \mathbb{1}] = \mathcal{M}[A]$ is a lattice discretization of **Faddeev-Popov** operator $-D \cdot \partial$

At any **local minimum** (stationary solution) we have $\mathcal{E}' = 0 \ \forall \gamma^b(x)$

$$\Rightarrow (\nabla \cdot A^b)(x) = 0 \ \forall x, b, \text{ where } A_\mu(\vec{x}) = \frac{1}{2i} [U_\mu(\vec{x}) - U_\mu^\dagger(\vec{x})]_{\text{traceless}}$$

Therefore, the (minimal) Landau gauge condition on the lattice reads

$$(\nabla \cdot A^b)(\vec{x}) = \sum_{\mu=1}^d A_\mu^b(\vec{x}) - A_\mu^b(\vec{x} - \hat{e}_\mu) = 0$$

Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit in **two steps**

- 1) first, considering the $V \rightarrow +\infty$ limit for the **gauge transformation** $g(x)$
- 2) then, taking the same limit for the **gluon field** [i.e. the link variables $\{U_\mu(x)\}$]

How can one do that in practice?

Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit in **two steps**

- 1) first, considering the $V \rightarrow +\infty$ limit for the **gauge transformation** $g(x)$
- 2) then, taking the same limit for the **gluon field** [i.e. the link variables $\{U_\mu(x)\}$]

How can one do that in practice?

Let us **build** the two-step limit directly from the link configuration, by “**cloning**” it to generate a bigger (**extended**) lattice (!!)

Two-step Infinite-Volume Limit

Zwanziger suggests (NPB 1994) taking the infinite-volume limit in **two steps**

- 1) first, considering the $V \rightarrow +\infty$ limit for the **gauge transformation** $g(x)$
- 2) then, taking the same limit for the **gluon field** [i.e. the link variables $\{U_\mu(x)\}$]

How can one do that in practice?

Let us **build** the two-step limit directly from the link configuration, by “**cloning**” it to generate a bigger (**extended**) lattice (!!)

$\Rightarrow g(x)$ sees “infinite” volume while the one for $U_\mu(x)$ is still finite

The Extended Lattice

Setup:

1. Consider a d -dimensional link configuration $\{U_\mu(\vec{x})\} \in \text{SU}(N_c)$, defined on a lattice Λ_x with volume $V = N^d$ and periodic boundary conditions (PBC)
2. Replicate this configuration m times along each direction, yielding an extended lattice Λ_z with volume $m^d V$ and PBC
3. Indicate the points of Λ_z with $\vec{z} = \vec{x} + \vec{y}N$, where $\vec{x} \in \Lambda_x$ and \vec{y} is a point on the index lattice Λ_y
4. By construction, $\{U_\mu(\vec{z})\}$ in Λ_z is invariant under translations by N (in any direction)

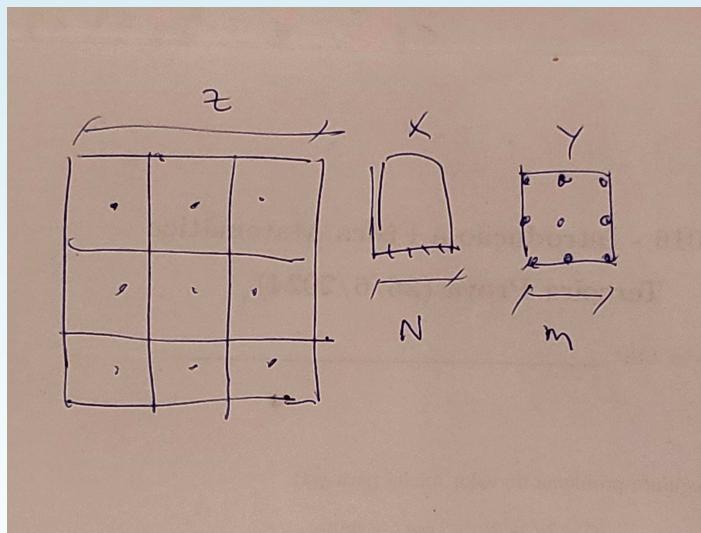
The Extended Gauge Transformation

Impose the minimal-Landau-gauge condition on Λ_z , i.e. consider the minimizing functional

$$\mathcal{E}_U[g] = -\frac{\Re \operatorname{Tr}}{d N_c m^d V} \sum_{\mu=1}^d \sum_{\vec{z} \in \Lambda_z} g(\vec{z}) U_\mu(\vec{z}) g(\vec{z} + \hat{e}_\mu)^\dagger$$

where $g(\vec{z})$ has periodicity mN , i.e. $g(\vec{z} + mN\hat{e}_\mu) = g(\vec{z})$ (PBC in Λ_z)

The two limits: first take $m \rightarrow +\infty$ and then $N \rightarrow +\infty$



Analogy with Bloch's Theorem

1. $\Lambda_y \iff$ finite Bravais lattice with PBC
2. $\{U_\mu(\vec{z})\} \iff$ periodic electrostatic potential $U(\vec{r})$

One can **prove** that:

- $g(\vec{z})$ can be written as $g(\vec{z}) = \exp(i\Theta_\mu z_\mu/N) h(\vec{z})$
- $h(\vec{z})$ has periodicity N , i.e. $h(\vec{z} + N\hat{e}_\mu) = h(\vec{z}) \Rightarrow h(\vec{x})$
- The **matrices** $\Theta_\mu = \tau^a \theta_\mu^a$ (with $a = 1, \dots, N_c^2 - 1$) are elements of a **Cartan sub-algebra** of the $SU(N_c)$ Lie algebra
- The **matrices** Θ_μ have **eigenvalues** $2\pi n_\mu/m$, with $n_\mu \in \mathbb{Z}$

The New Minimizing Functional

Due to the expression for $g(\vec{z})$ and to the **cyclicity of the trace**, the minimizing functional becomes

$$\begin{aligned}\mathcal{E}_U[h, \Theta_\mu] &= -\frac{\Re \operatorname{Tr}}{d N_c V} \sum_{\mu=1}^d e^{-i \Theta_\mu / N} Q_\mu, \\ Q_\mu &= \sum_{\vec{x} \in \Lambda_x} h(\vec{x}) U_\mu(\vec{x}) h(\vec{x} + \hat{e}_\mu)^\dagger,\end{aligned}$$

i.e. the **numerical minimization** is still carried out on the original lattice Λ_x

Numerical Simulations

In the $SU(N_c)$ case:

1. **generate** a thermalized d -dimensional link configuration $U_\mu(x)$ with **periodicity** N , i.e. $V = N^d$ with PBC
2. **minimize** $\mathcal{E}_U[h, \Theta_\mu]$ with respect to $h(x)$ and Θ_μ using **two alternating steps**:
 - a) the matrices Θ_μ are **kept fixed** and one **updates** the matrices $h(\vec{x})$ by sweeping through the lattice
 - b) the matrices Q_μ are **kept fixed** and one **minimizes** $\mathcal{E}_U[h, \Theta_\mu]$ with respect to the **matrices** Θ_μ , belonging to the corresponding Cartan sub-algebra
3. **evaluate the gluon propagator** using the **extended gauge-fixed link variables** $U_\mu^{(g)}(\vec{z}) = g(\vec{z}) U_\mu(\vec{z}) g(\vec{z} + \hat{e}_\mu)^\dagger$

The $SU(2)$ Case

In the $SU(2)$ case (one-dimensional Cartan sub-algebra) we can write

$$\Theta_\mu \equiv (v^\dagger \sigma_3 v) \alpha_\mu$$

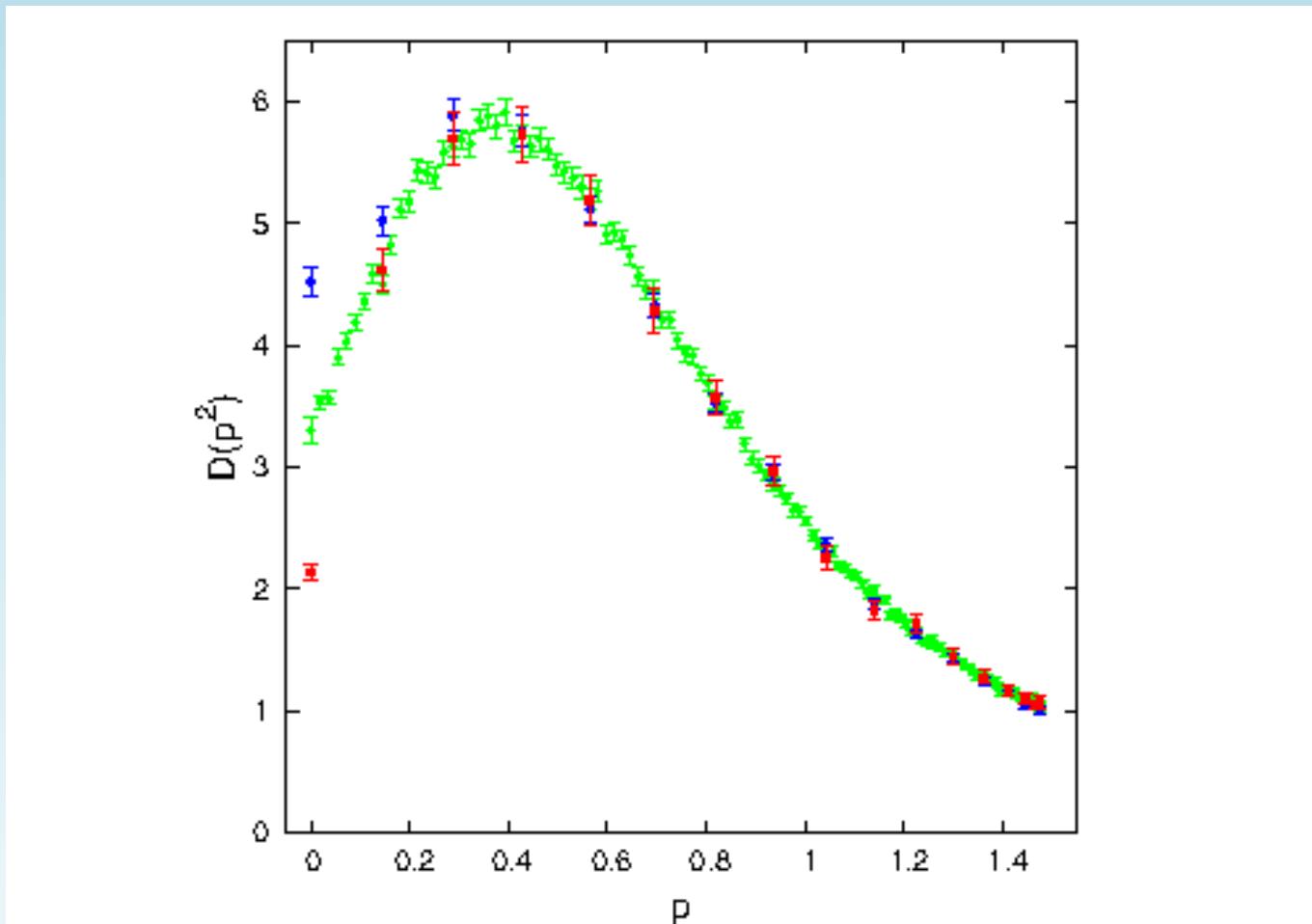
with $v \in \mathbf{SU}(2)$ and **eigenvalues** $\pm \alpha_\mu = \pm 2\pi n_\mu / m$

Then, in the **new minimizing functional**

$$\exp(-i\Theta_\mu/N) = v^\dagger \exp[-2\pi i \sigma_3 n_\mu / (mN)] v$$

Also, the **matrices** Q_μ are proportional to $SU(2)$ matrices

Results: 3D Gluon Propagator



The gluon propagator $D(p^2)$ as a function of the lattice momentum p at $\beta = 3.0$ for the Λ_x lattice volumes $V = 32^3$ (+) and 256^3 (*) and for the Λ_z lattice volume $V = 32^3 \times 8^3 = 256^3$ (□)

Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a consequence of $g(\vec{z}) = \exp(i\Theta_\mu z_\mu/N) h(\vec{x})$, since the solution for the extended-lattice problem is obtained from minimizing a similar functional on the small one

Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a consequence of $g(\vec{z}) = \exp(i\Theta_\mu z_\mu/N) h(\vec{x})$, since the solution for the extended-lattice problem is obtained from minimizing a similar functional on the small one

For the **gauge-transformed** link variable $U_\mu^g(z)$ we have

$$\begin{aligned} U_\mu(g; \vec{z}) &= e^{i\Theta_\nu z_\nu/N} U_\mu(h; \vec{x}) e^{-i\Theta_\mu/N} e^{-i\Theta_\nu z_\nu/N} \\ &= e^{i\Theta_\nu y_\nu} \left[e^{i\Theta_\nu x_\nu/N} U_\mu(h; \vec{x}) e^{-i\Theta_\mu/N} e^{-i\Theta_\nu x_\nu/N} \right] e^{-i\Theta_\nu y_\nu} \end{aligned}$$

where we used that $\vec{z} = \vec{x} + \vec{y} \vec{N}$

Back to the Minimizing Problem

As mentioned earlier, the minimizing problem is simplified as a consequence of $g(\vec{z}) = \exp(i\Theta_\mu z_\mu/N) h(\vec{x})$, since the solution for the extended-lattice problem is obtained from minimizing a similar functional on the small one

For the **gauge-transformed** link variable $U_\mu^g(z)$ we have

$$\begin{aligned} U_\mu(g; \vec{z}) &= e^{i\Theta_\nu z_\nu/N} U_\mu(h; \vec{x}) e^{-i\Theta_\mu/N} e^{-i\Theta_\nu z_\nu/N} \\ &= e^{i\Theta_\nu y_\nu} \left[e^{i\Theta_\nu x_\nu/N} U_\mu(h; \vec{x}) e^{-i\Theta_\mu/N} e^{-i\Theta_\nu x_\nu/N} \right] e^{-i\Theta_\nu y_\nu} \end{aligned}$$

where we used that $\vec{z} = \vec{x} + \vec{y} \vec{N}$

Note that the **central** (local) part of the above expression is the same for all “cells” and that different domains (=cells) are related by a **global “rotation”** (determined by \vec{y}), applied to each cell

Gauge-Configuration Domains

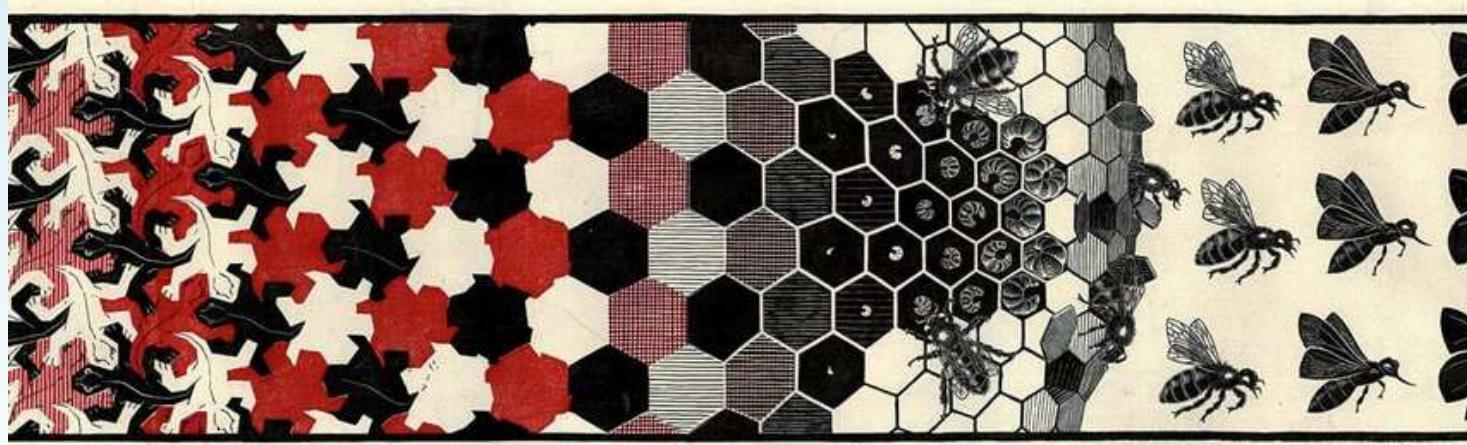
The local part of $U_\mu^g(z)$ is gauge-fixed (i.e. transverse) but is no longer periodic, while the original gauge configuration $U_\mu(z)$ was periodic, but not transverse

Gauge-Configuration Domains

The local part of $U_\mu^g(z)$ is gauge-fixed (i.e. transverse) but is no longer periodic, while the original gauge configuration $U_\mu(z)$ was periodic, but not transverse

Gauge-field configurations within cells are rotated, transformed by global group elements defined by the cell index \vec{y} , in a manner reminiscent of Escher's work (Metamorphosis I, II, III), so that the full configuration on the extended lattice has the required $m \times N$ periodicity

A pattern of **domains** emerges!



Color Magnetization

One can define a (gluon-field) color magnetization

$$A_\mu^b = \frac{1}{N^d} \sum_{\vec{x}} A_\mu^b(\vec{x})$$

which is related to the [gluon propagator](#) at zero momentum as

$$D(0) = \frac{N^d}{d(N_c^2 - 1)} \sum_{b,\mu} \langle |A_\mu^b|^2 \rangle$$

Quantity $\mathcal{A} = \sum_{b,\mu} \langle |A_\mu^b| \rangle / d(N_c^2 - 1)$ considered by Zwanziger (in Landau gauge, this should vanish at least as fast as $1/N$).

Color Magnetization

One can define a (gluon-field) color magnetization

$$A_\mu^b = \frac{1}{N^d} \sum_{\vec{x}} A_\mu^b(\vec{x})$$

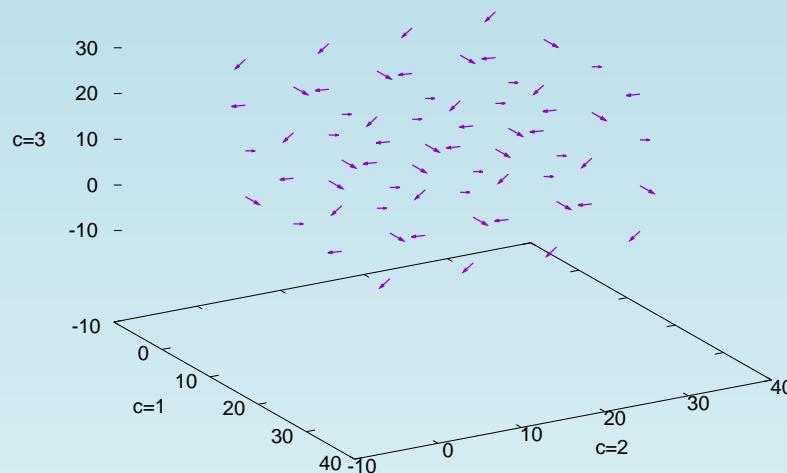
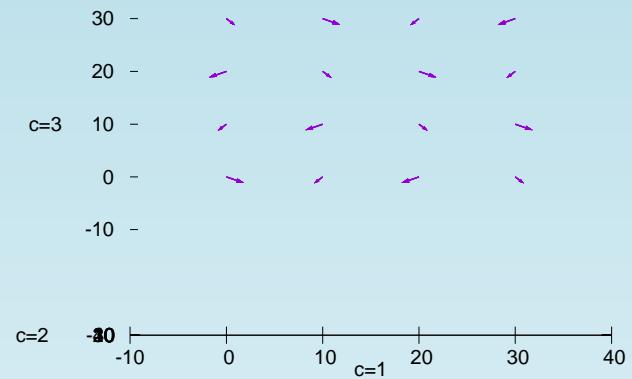
which is related to the [gluon propagator](#) at zero momentum as

$$D(0) = \frac{N^d}{d(N_c^2 - 1)} \sum_{b,\mu} \langle |A_\mu^b|^2 \rangle$$

Quantity $\mathcal{A} = \sum_{b,\mu} \langle |A_\mu^b| \rangle / d(N_c^2 - 1)$ considered by Zwanziger (in Landau gauge, this should vanish at least as fast as $1/N$).

⇒ Let us look for the average color magnetization in each cell and try to relate it to the domains mentioned above

Average Cell Magnetization

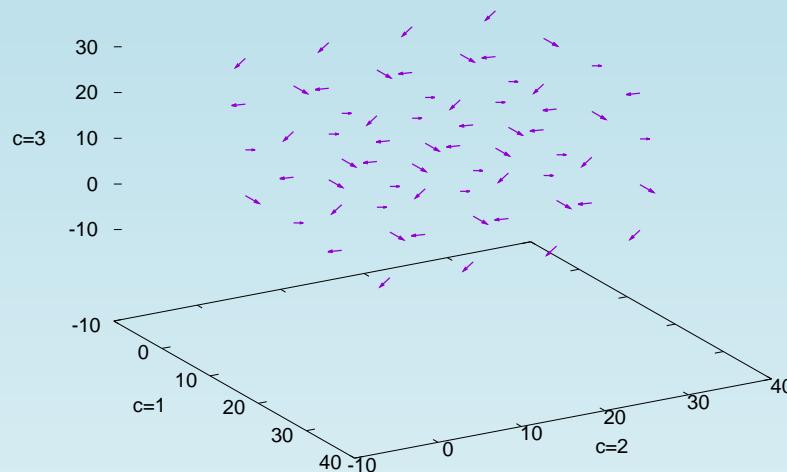
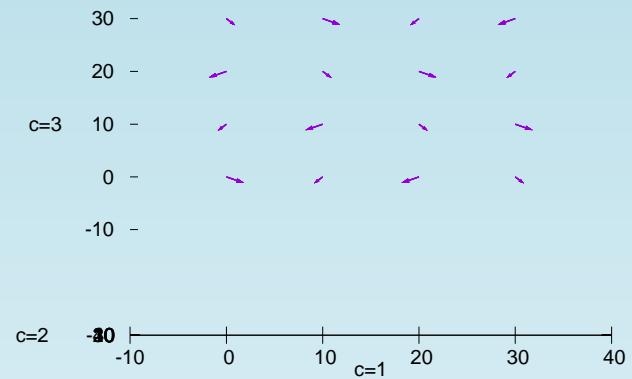


Average color “magnetization” in each cell

$$M_\mu^c(\vec{y}) = \frac{1}{N^d} \sum_{\vec{x}} A_\mu^c(\vec{z})$$

for the **pure- $SU(2)$** case and lattice volume $V = (60 \times 4)^3$

Average Cell Magnetization



Average color “magnetization” in each cell

$$M_\mu^c(\vec{y}) = \frac{1}{N^d} \sum_{\vec{x}} A_\mu^c(\vec{z})$$

for the **pure- $SU(2)$** case and lattice volume $V = (60 \times 4)^3$

A new type of domain wall?

Conclusions

- Numerical results (in the gluon sector) obtained using **large lattice volumes** can also be obtained using **small lattice volumes** with **extended gauge transformations**
- From the **physical** point of view:
 1. the information encoded in a **thermalized configuration** does **not depend** much on the **lattice volume V**
 2. the properties of the **Landau-gauge Green's functions** are essentially **set** by the **gauge-fixing procedure** and the **size of V** matters!
- **Limitation:** the **allowed momenta** seem to be **fixed** by the lattice discretization on the **original lattice Λ_x** , no way to obtain “**big-volume**” momenta?
- Interesting properties regarding “magnetization” domains!