

Measuring SU(3) monopole with non-Abelian charge in lattice QCD

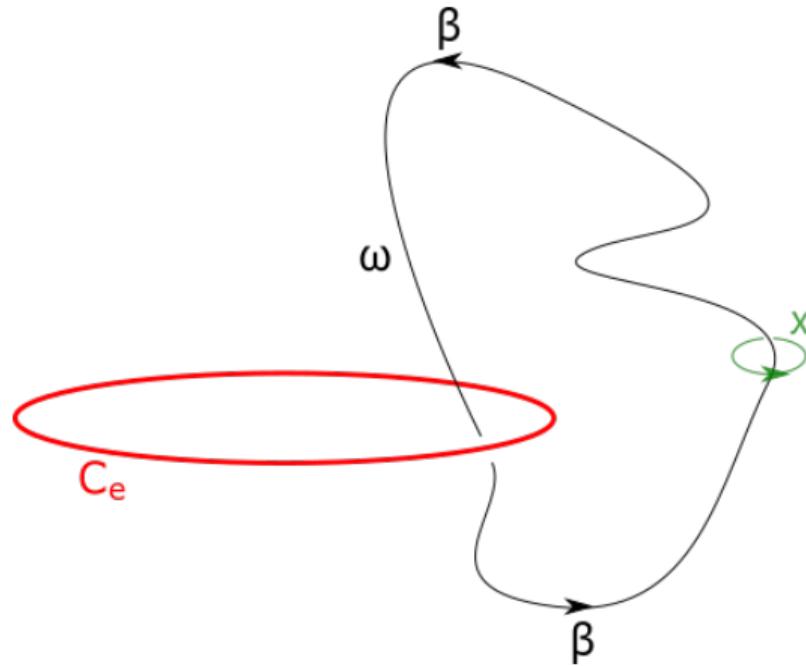
T. C. R. Mendes¹, L. E. Oxman², R. C. S. Tonhon¹, G. M. Simões¹

¹Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil

²Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói - RJ, Brasil.

Center vortex and Wilson loop

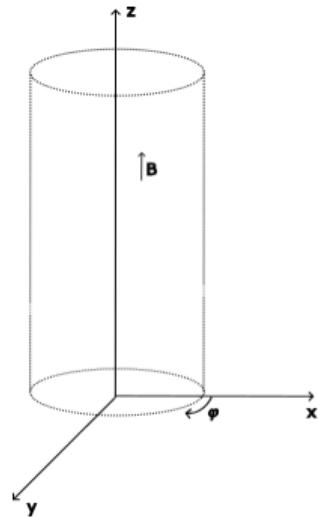
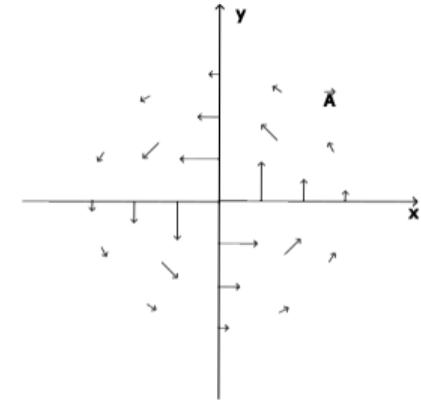
- $\mathcal{W}_{C_e} [A_\mu] = \frac{1}{N} \text{tr} \left(P \left\{ e^{i \int_{C_e} dx_\mu A_\mu(x)} \right\} \right)$
- $\langle \mathcal{W}_{C_e} \rangle = \int [DA] \mathcal{W}_{C_e} [A_\mu] e^{-S_{YM}}$
- Center vortices are worldsheets/worldlines in 4D/3D
- $\mathcal{W}_{C_e} = e^{i \frac{2\pi}{3}}$



Center vortex line linking a Wilson loop.

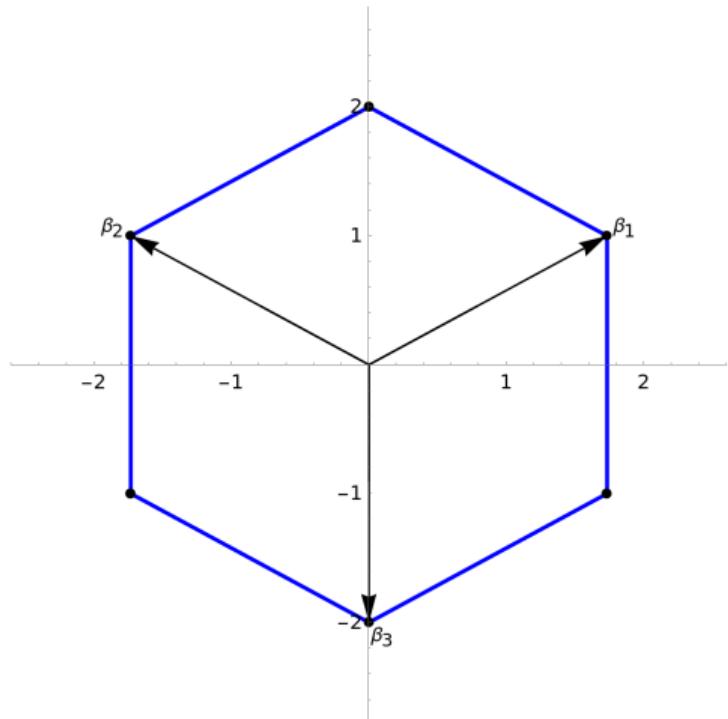
Simplest example

- $A_\mu = \frac{1}{g} \partial_\mu \varphi \beta \cdot T$
- $\vec{B} = \frac{1}{g} \nabla \times (\nabla \varphi) \beta \cdot T = \frac{2}{g} \delta^{(2)}(x, y) \beta \cdot T$
- $\partial_\mu \varphi$ gives the vorticity
- $\beta \cdot T = \beta|_q T_q$ gives the center nature
- Can be created with a singular-valued gauge transformation: $A_\mu = \frac{i}{g} S \partial_\mu S^{-1}$, $S = e^{i\varphi \beta \cdot T}$
- $\varphi \rightarrow \chi$ changes the vortex core location



Straight vortex around the z axis.

About the β 's



- There are three of them: $\beta_1, \beta_2, \beta_3$.
- $\beta_1 = (\sqrt{3}, 1), \beta_2 = (-\sqrt{3}, 1), \beta_3 = (0, -2)$.
- Together with $-\beta_1, -\beta_2, -\beta_3$, they define the fundamental hexagon.
- Notice $\beta_1 + \beta_2 + \beta_3 = 0$, which enables 3-matching configurations.

Figure: Weights of the fundamental representation

About the β 's

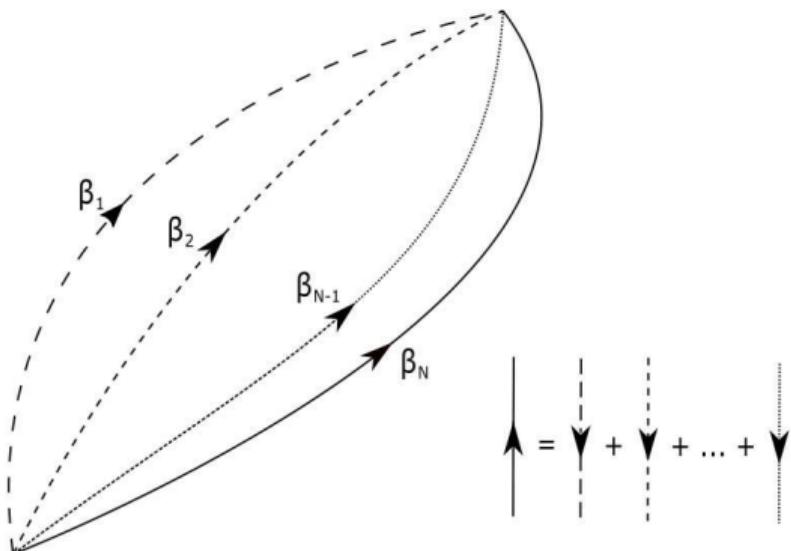


Figure: N-matching configuration.

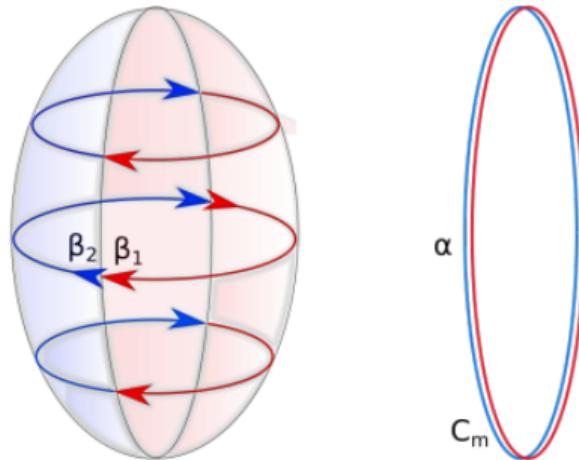
- There are three of them: $\beta_1, \beta_2, \beta_3$.
- $\beta_1 = (\sqrt{3}, 1), \beta_2 = (-\sqrt{3}, 1), \beta_3 = (0, -2)$.
- Together with $-\beta_1, -\beta_2, -\beta_3$, they define the fundamental hexagon.
- Notice $\beta_1 + \beta_2 + \beta_3 = 0$, which enables 3-matching configurations.

Monopoles

- Monopoles are worldlines/instantons in 4D/3D
- Must be attached to a Dirac string or....
- A non-oriented vortex, carrying weights β_1 and β_2 .
- The monopole carries the charge $\alpha = \beta_1 - \beta_2$, which is a root.
- Can also be created with a singular-valued gauge transformation:

$$A_\mu = \frac{i}{g} S \partial_\mu S^{-1}, \quad S = e^{i\varphi \beta_1 \cdot T} e^{i\sqrt{N}\theta T_\alpha}$$

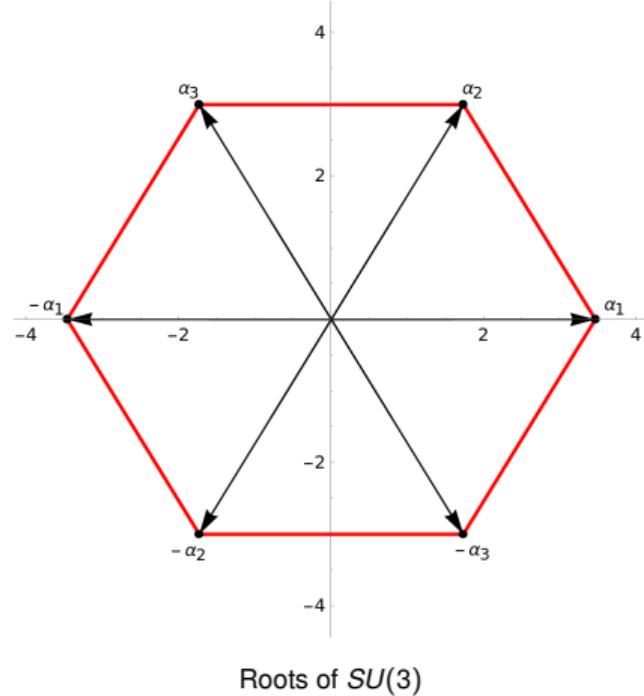
$$S(\theta = 0) = e^{i\varphi \beta_1 \cdot T} \quad \text{and} \quad S(\theta = \pi) = e^{i\varphi \beta_2 \cdot T}$$



Non-oriented vortex with a monopole in the middle. From Oxman (2018)

Monopoles

- Monopoles are worldlines/instantons in 4D/3D
- Must be attached to a Dirac string or....
- A non-oriented vortex, carrying weights β_1 and β_2 .
- The monopole carries the charge $\alpha = \beta_1 - \beta_2$, which is a root.
- Can also be created with a singular-valued gauge transformation:
$$A_\mu = \frac{i}{g} S \partial_\mu S^{-1}, \quad S = e^{i\varphi \beta_1 \cdot T} e^{i\sqrt{N}\theta T_\alpha}$$
- $S(\theta = 0) = e^{i\varphi \beta_1 \cdot T}$ and $S(\theta = \pi) = e^{i\varphi \beta_2 \cdot T}$



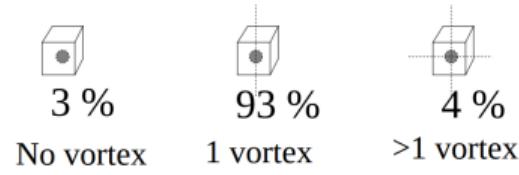
What about in the Lattice?

How are monopoles and vortices detected?

$U(1)$ deGrand-Toussaint

- Link variables $U_\mu(x) = e^{i\theta_\mu(x)}$.
- Try to measure the flux through a unit cube: $m = \frac{1}{2\pi} \sum_{\text{unit cube}} \varepsilon_{ijk} \partial_i f_{jk}$
- If $f_{\mu\nu} = \partial_\mu \theta_\nu - \partial_\nu \theta_\mu$, $m = 0$.
- Monopole flux is exactly canceled by the attached Dirac string.
- DeGrand-Toussaint algorithm: $f_{\mu\nu} = \bar{f}_{\mu\nu} + 2\pi n_{\mu\nu}$
- $\bar{f}_{\mu\nu} \in [-\pi, \pi)$ and $n_{\mu\nu} \in \mathbb{Z}$
- $2\pi n_{\mu\nu}$ is the discrete version of the Dirac string and m for \bar{f} is the monopole charge.

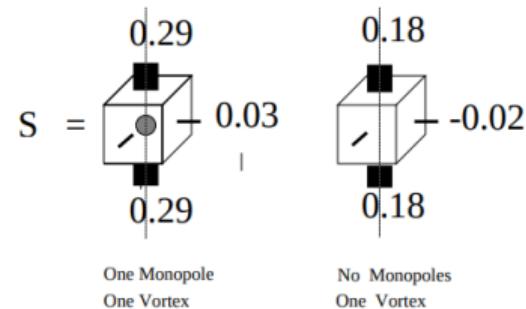
Monopoles in $SU(2)$



- Field has 4 components $U_\mu = u_0 \mathbb{I} + i \vec{u} \cdot \vec{\sigma}$
- Maximal Abelian Gauge: $\text{Tr} \left(U_\mu \sigma_3 U_\mu^\dagger \sigma_3 \right)$
- Abelian projection:

$$U_\mu \rightarrow C_\mu = \begin{pmatrix} e^{i\theta_\mu(x)} & 0 \\ 0 & e^{-i\theta_\mu(x)} \end{pmatrix}$$
- Apply dGT algorithm to $\theta_\mu(x)$

Correlation between monopoles and vortices measured this way.
 From Ambjørn, Giedt, Greensite (1999)



Collimation of monopoles/vortices measured this way. From Ambjørn, Giedt, Greensite (1999)

Usual method for $SU(3)$

- Following the same procedure: $U_\mu \rightarrow C_\mu = \begin{pmatrix} e^{i\theta_\mu^{(1)}(x)} & 0 & 0 \\ 0 & e^{i\theta_\mu^{(2)}(x)} & 0 \\ 0 & 0 & e^{i\theta_\mu^{(3)}(x)} \end{pmatrix}$
- $\theta_\mu^{(1)} + \theta_\mu^{(2)} + \theta_\mu^{(3)} = 0$
- Saganuma and Sakumichi (2018) applied dGT to each $\theta_\mu^{(1)}, \theta_\mu^{(2)}, \theta_\mu^{(3)}$ independently.
- Lead to three charges (m_1, m_2, m_3) with weak correlation $m_3 = -m_1 - m_2$ or $m_3 = -m_1 - m_2 \pm 1$.
- Gives no information about root charges like $\alpha = \beta_1 - \beta_2$.

Algebraic method for $SU(3)$

- Different parametrization

$$U_\mu \rightarrow C_\mu = e^{i\nu_1 T_1 + i\nu_2 T_2} = e^{i\phi^{(1)} \alpha_1^S \cdot T + i\phi^{(2)} \alpha_2^S \cdot T}.$$

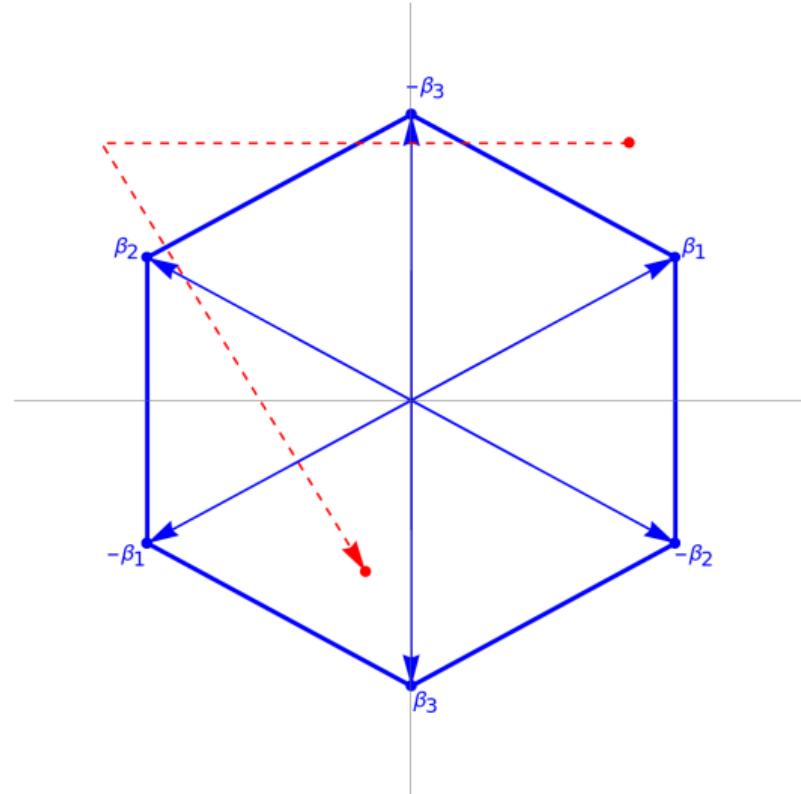
- $U_{\mu\nu} = e^{i\mu^1 T_1 + i\mu^2 T_2}.$

- No constraints over $\phi^{(1)}$ and $\phi^{(2)}$.

- Bonati and D'Elia (2013) applied dGT to this parametrization.

- Lead to two independent charges (m_1, m_2)

- $(1, 0)$ are associated with α_1 , $(0, 1)$ with α_2 and $(1, 1)$ with $\alpha_1 + \alpha_2 = \alpha_3$.



Example of Monopole with charge $(1, 1)$, i.e. α_3

For example

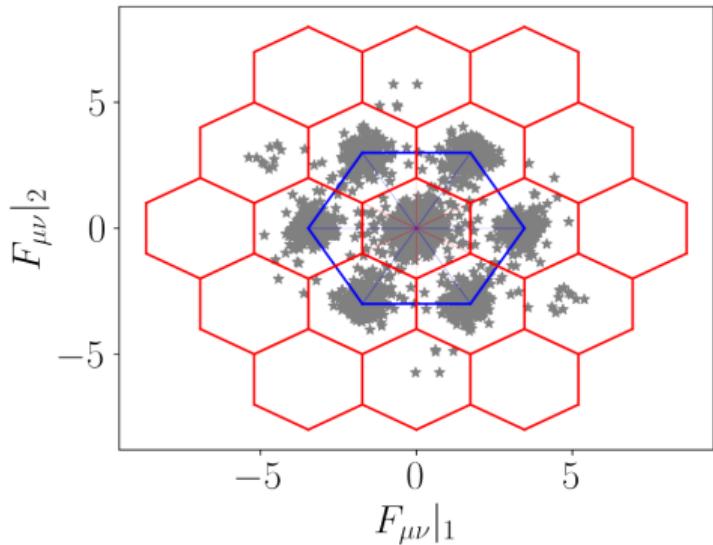


Figure: Values of $(f_{\mu\nu}^1, f_{\mu\nu}^2)$ for all plaquettes of a certain lattice configuration

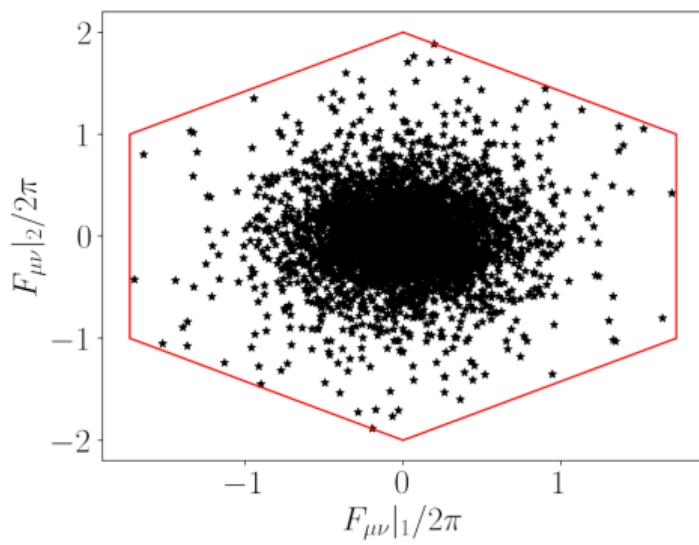
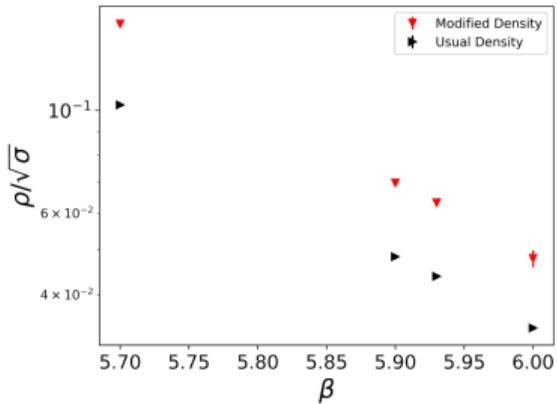


Figure: Values of $(\bar{f}_{\mu\nu}^1, \bar{f}_{\mu\nu}^2)$ for all plaquettes of a certain lattice configuration

Monopole Density



Density of monopoles using both methods for different values of β

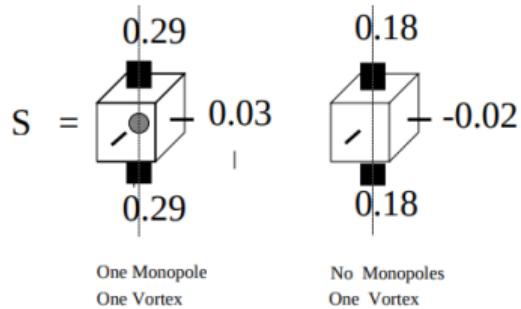
β	a [fm]	V	N^{config}	ρ_{usual}	$\rho_{\text{algebraic}}$
5.70	0.177(1)	8^4	750	0.04069(8)	0.0609(3)
5.90	0.117(1)	12^4	100	0.0126(1)	0.0182(2)
5.93	0.109(2)	16^4	599	0.01064(2)	0.01535(6)
6.00	0.098(1)	16^4	750	0.00745(3)*	0.01053(4)

*Value obtained from Tucker and Stack (2002)

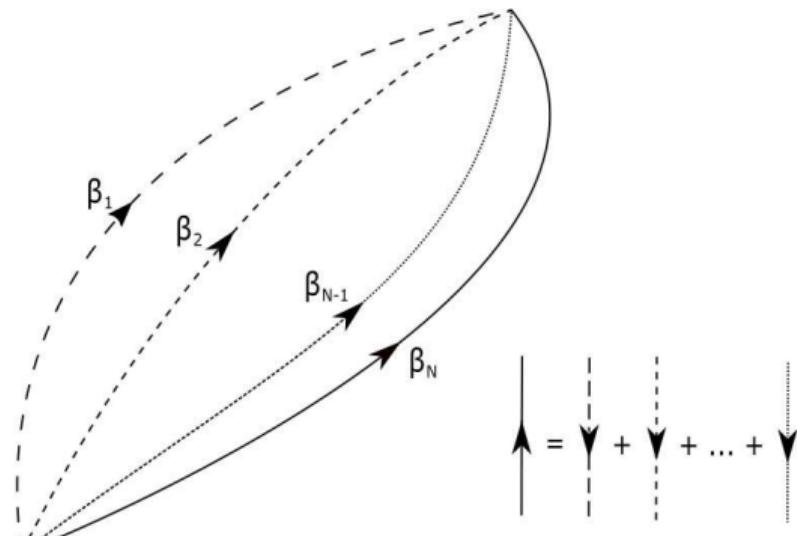
What about...



Monopole/vortex correlation?



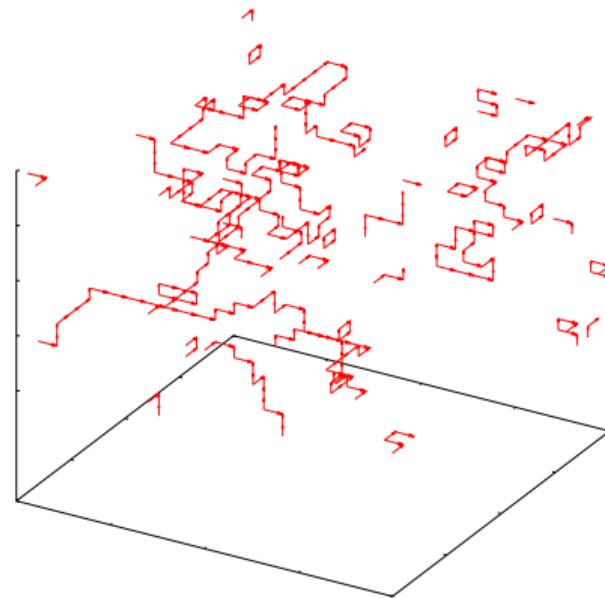
Collimation?



Matchings?

Vortices in the lattice

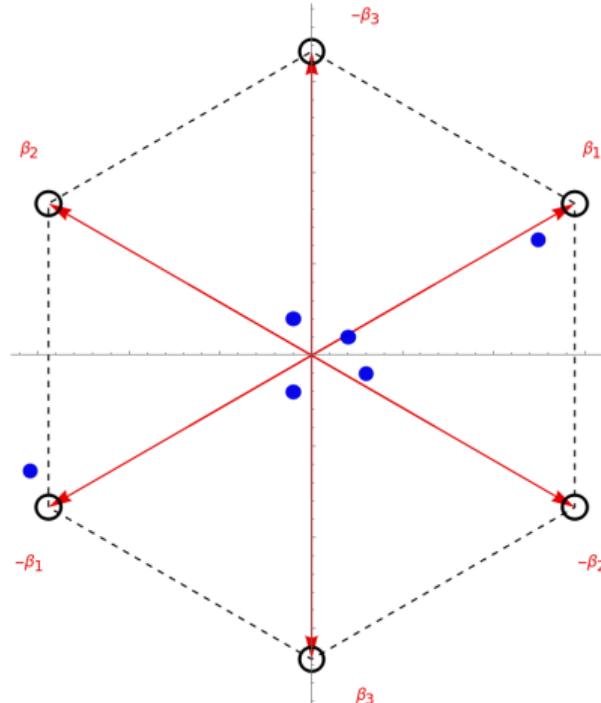
- The standard procedure starts by fixing the gauge
- Maximal Center Gauge: $\sum_{x,\mu} |\text{Tr} U_\mu(x)|^2$
- Next, center projection:
 $U_\mu \rightarrow Z_\mu \in \{1, e^{i\frac{2\pi}{N}}, \dots, e^{2\pi i \frac{N-1}{N}}\}$
- Evaluate the plaquette:
$$Z_{\mu\nu}(x) = Z_\mu(x) Z_\nu(x + \mu) Z_\mu^*(x + \nu) Z_\nu^*(x)$$
- If $Z_{\mu\nu} \neq 1$, there is a vortex piercing the plaquette
(P-vortex)
- How do you distinguish vortices with $\beta_1, \beta_2, \dots, \beta_N$?
They all have $Z_{\mu\nu} = e^{i\frac{2\pi}{N}}$.



An example of vortices measured this way.

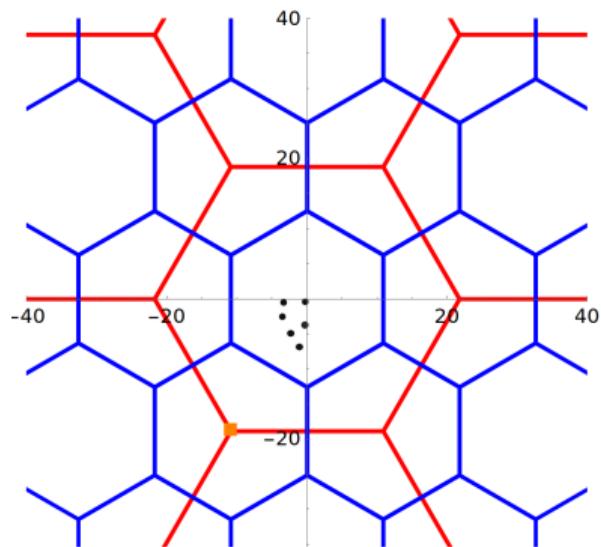
Back to Algebraic method

- Maximal Abelian Gauge fixing
- Abelian projection $U_\mu = C_\mu \in U(1)^{N-1}$
- Evaluate the plaquette:
$$C_{\mu\nu}(x) = C_\mu(x)C_\nu(x + \mu)C_\mu^*(x + \nu)C_\nu^*(x)$$
- From $C_{\mu\nu}$, extract the values of $f_{\mu\nu}$ for a unit cube.
- $f_{\mu\nu}$ is invariant under the residual $U(1)^2$ symmetry of the MAG.

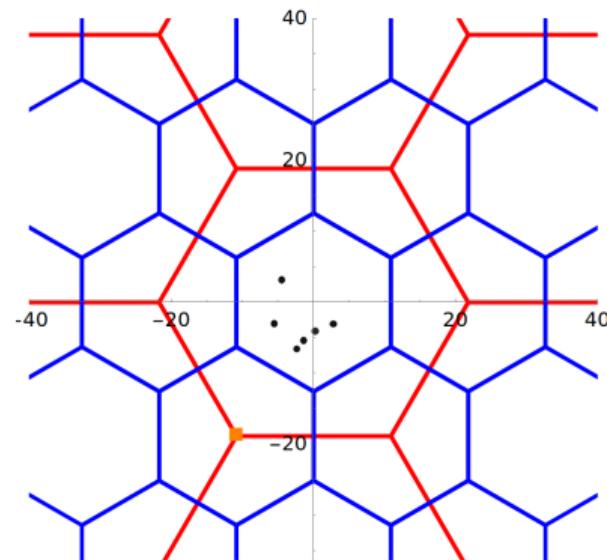


Best case scenario for a collimated flux in a unit cube representing two vortices with charge β_1, β_2 and a monopole with $\beta_2 - \beta_1$.

Flux Distribution



Flux distribution of $1 \times 1 \times 1$ cube around a monopole



Flux distribution of $3 \times 3 \times 3$ cube around a monopole

Next steps

- Bigger lattice, more configurations. (not a panacea, though!)
- Fine-tuning of the method guided by particular and well-understood configurations.
- Alternate definitions of flux without an Abelian projection.
- Understand the role of rotations.

Special thanks

- Collaborators Tereza Mendes, Luis Oxman, and Rafael Tonhon for their invaluable contribution

For funding this research

Special thanks

You, for your attention!