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Motivation

e LHC: era of precision QFT

>
>
>

large SM backgrounds
dominant effects: mainly QCD
high precision required for BSM searches

e theory working horse: renormalizable QFTs

>

> higher-loop effects important (e.g. g, —2; my; H production; ...

perturbative expansions = Feynman diagrams

e lots of machinery developed recently

>

v VvV Vv V

high automatization of complicated perturbative calculations
algebraic handling of Feynman diagrams

reduction of Feynman integrals to masters

numerical and/or algebraic determination of masters
renormalization (of QCD) under control at 5 loops
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Motivation

e idea: recycling

apply same techniques to other (than SM and QCD) models

important applications e.g. in CM theory [see talk by Vladimir Juricic|
consider interacting Dirac fermions ¢ in 2+1 dimensions

undergo variety of quantum phase trans (QPTs) towards ordered states

with different symm breaking patterns

v VvV VvV VvV V

e general universal critical behavior < class of relativistic GNY models

> models emerge as low-energy EFTs in CM

> but: strongly coupled systems in D=2+1!

> order parms < bosonic fields ¢ (with corresponding nr of components + symms)
> Yukawa coupling between ¢ and ¢

e captured by universal critical exponents

> near cont phase trans, free energy exhibits scaling form

specific heat / corr length have power-law behavior

characterized by universal critical exponents

e.g. thermal PT: € ~ [t]7" (1 + c|t|” + .. .) at 'distance’ t = (T — T¢) /T

>
>
>
> v, w universal; depend on symm and dimensionality = def univ class
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Motivation

e describe quantum critical points of interacting Dirac semimetals
> N flavors of chiral Dirac fermions |main interest N =2, graphene|
> chiral Ising model [¢ € R, with Z3 symm|
> chiral XY model [U(1) breaking, ¢ € C|
> chiral Heisenberg model [SU(2) breaking, ¢ € R’

e different models argued to describe certain QPTs in graphene (N =2)

> QCP of semimetal-insulator trans in graphene
> but also: N=1, semimetal-insulator trans in system of spinless fer on hex lattice

> emergent SuSy (topological insulators, N=1/2 or 1/4)
> replica limit (N—0) for PT in Weyl semimetals
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Setup

e Gross-Neveu model (for reference only)
_ 1,
Lon = PP+ goppib + 3¢

> ¢ not dynamic; int out = 4-fermion coupling ~ g¢°
> renormalizable in D = 2 + €, asymptotically free
> known to 4 loops [Gracey/Luthe/YS 2016]

e Gross-Neveu-Yukawa model (chiral Ising; ¢ € R)

Lony = 9 + g9t + o(m? — 8 + A¢!

> same univ class as GN for 2<D<4

> renormalizable in D =4 — €

> analyzed at 4 IOOpS [Zerf/Mihaila/Marquard /Herbut /Scherer 2017|
> now known to 5 100pS |Gracey /Maier/Marquard/YS 2025]
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Renormalization

¢ ’(:b() — Zlwa ) ¢0 — Z¢¢R , et

_ . 1 )
Lony,R = Zp b @Y + Zy5,12gd0) + 5¢(Z¢2m2 — Z40.)¢ + Zap g’

> rename squared Yukawa coupling g2 =y
> RG scale (p) dep follows from p-independence of bare params

— 2 —2 — 2 —1 2 2 — —1
Y=yYoh ZyZeZy,, AN=Xop ZyZ, , m=mgu ZsZ,

e evaluate all five RG constants Z,(y, \): absorb divergences in dim reg, MS

>

v VvV VvV VvV V

QQGRAF: generate diags

FORM: Fy rules, Lorentz algebra, spinor traces, project onto 1-scale massive tadpoles
Mathematica: identify topologies, mapping to common family

C'++: IBP reduction, Laporta algorithm, mapping onto master integrals

C'++: solve difference equations for masters, evaluate numerically

Mathematica: plug in numerical masters, identify transcendental content
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Renormalization techniques

e project all Fy integrals onto common family of scalar massive vacuum ints

> exact decomposition of propagators (m € {0, m, M }) [Chetyrkin/Misiak /Miinz 1998]
1 _ 1 2kp—p2+M2—m2

(k—p)2+m?2 _'kZHWQ_%(kluw%«k—pﬂ+nﬂ)
> recursively lower degree of UV div

> other IR regularization schemes: e.g. (local/global) R* [Chetyrkin 1984]
|
e map all integrals to minimal set: IBP [Chetyrkin/Tkachov 1981; Laporta 2000]
> systematically use linear rels 0= [ d%k Ok, fu(k)
> key idea: lexicographic ordering among all loop integrals |[Laporta 2000]

> arrive at rep in terms of irreducible (= master) integrals: » . rat;(d) Master;(d)
> obtain 14+1+3+13+110 masters at 12345-loop
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Integral evaluation

e evaluate this minimal set of single-scale master integrals

> numerical solution of difference equations via factorial series [Laporta 2000]

> perform IBP reduction with symbolic power « on one line

1
Dy...Dp

> derive difference equation for generalized master I(z) = [ 5z
1

> generic form: Zf:o pij(x)(xz + j) = F(x)

e typically, want I(1); solve the difference equation

> explicitly (e.g. if 1st order; or if soln nested sum)
numerically (very general setup) [Laporta 2000]
solve via factorial series I(x) = Ip(x) + Zle Ii(x),

>
>
> where Ij(x) = Hy Zs:() aj(S)F(m+§+thj)
>
>

need boundary condition for fixing, say, a;(0): use decoupling at large x

I(z) = [;, 9(k)/(k] + 1) = I(z) ~ (1)"z""g(0)

o deep expansions (€2°) at 5 loops (132 masters) at high precision (=250 digits)  [with Luthe 2016
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Sample results (4d)

SAMS IS ICNCDLE>

0 3 13 2 1267 3 4193 4
I - —3 ~2 = -
28686.1.1 +(—=3) e +( 2) +( + ( 110 2156
+135.95072868792871461956492733702218574897992953584 65 + ...
0 3.1 1.9 443 3 95 . 4
Iog686.1.3 = +(0)e +(§)€ +(—§)€ +(—%)€ (ﬁ)e +

—38.292059175062436961881799538284449799148385376441 65 + ...

2 2
3 27 1 4¢3 421 12¢5  24¢y 211, 3 72(3 32¢s 12959 4
I = 2 2 _=3 e 2 98
30862.1.1 t=o)e+(=g)e T (== ) tom Tt T GBt— +—g e
+1143.1838307558764599466030303839590323268318605888 65 + ...
3 2 2
0 1¢ 3 12¢ 6342 21¢ 24¢5 . 4
I30231.11 = +(0)e?+(0)e! ( 3 2 (—+—3 +3C5) €2 + (—36HoC3 + 72 + 2 - 53 +27¢5 — )
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441 ,
I3997931 = +(0) el + (0) el + (0) e2 + (0) e3 + (— C7) et + [Zigzag: Broadhurst/Kreimer 1995; Brown/Schnetz 2012|
5%

+181.78223928612340820790788236018642961198741994209€¢™ + ...
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Beta functions, anomalous dimensions, critical exponents

e procedure outlined above gives all five RG constants Z,(y, A), analytically, to 5 loops

extract beta functions of couplings (x € {y, A\})

5)
Br = aln(u) r = —ex + Z BiL)(y, A)+ ...

L=1

extract anomalous dimensions (x € {1, ¢, qbZ})
5
L
Yo = aln(u) Ly = Z’Yi )(ya )‘) T+
L=1

extract RG fixed points from B, (yx, Ax) = 0

> get F'Ps as series in €, 5 orders
> choose the stable positive non-Gaussian (Wilson-Fisher) FP

substitute FP into anom dims to get critical exponents

> Mo = Ya(Ys, As) for & € {3, ¢, $*}; trade the latter for L
> successfully checked vs all-order large- N results

=2 — Mg+ Ny

[Gracey 91-94; Vasiliev et al. 93]
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Analysis: Graphene case N = 2

e aim: from 4 — e results for {ny, Ny, %}, provide refined estimates for critical exponents, in 3d

> naively setting € = 1 is problematic: questionable convergence (€' ~ €°)

e employ resummation techniques

> canonical Padé approximants Py - ar(d) = (3_, apd®) /(1 + >, bed?)
(need to ensure continuity 4—3)
> add info from our 2016 4-loop 2+¢€ GN [idea: Mihaila/Scherer 18]

> two-sided diagonal |L/L-+1] and |[L+1/L] Padé approximants

> interpolating polynomial Ijz, r4q(d) = >, n2Y (d — 2)™ + D nem ) (d — 2)"
(note: no singularities, unlike Padé)

e evaluate reliability of 3d predictions P(3) and I(3)

> compare with other methods
> repeat the exercise for different N
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Analysis: Graphene case N = 2

TABLE II. Summary of previous exponent estimates for N = 2.

Method and source Ny Mg 1/v
Large N [17,31-36] 0.044 0.743 0.952
Monte Carlo [17] 0.754(8) 1.00(4)
Monte Carlo [18] 0.38(1) 0.62(1) 1.20(1)
Functional renormalization group [25] 0.032 0.760 0.982
Functional renormalization group [25] 0.033 0.767 0.978
Functional renormalization group [25] 0.032 0.756 0.982
Functional renormalization group [26] 0.0276 0.7765 0.994(2)
Four-loop d = 2 naive Padé [37] 0.082 0.745 0.931
Three-loop d = 4 naive Padé [38] 0.0740 0.672 1.048
Conformal bootstrap [28] 0.044 0.742 0.880
Monte Carlo [20] 0.65(3) 1.2(1)
Monte Carlo [21] 0.54(6) 1.14(2)
Four-loop d = 4 naive Padé [39] 0.0539 0.7079 0.931
Four-loop d = 4 naive Padé [39] 0.0506 0.6906 0.945
Four-loop two-sided Padé [40] 0.042 0.735 1.004
Four-loop interpolating polynomial [40] 0.043 0.731 0.982
Four-loop Padé-Borel [40] 0.043(12) 0.704(15) 0.993(27)
Monte Carlo [22] 0.05(2) 0.59(2) 1.0(1)
Conformal bootstrap [29] 0.04238(11) 0.7329(27) 0.998(12)
Monte Carlo [24] 0.043(12) 0.72(6) 1.07(12)
Conformal bootstrap [30] 0.7339(26) 0.998(12)
Functional renormalization group [27] 0.032 0.760 0.982

> in chronological order, 1991 — 2025

> highest precision to date: conformal bootstrap

[Poland et al. 23/24|
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Analysis: Graphene case N = 2
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FIG. 2. Two-sided Padé approximants for #, with N =2 in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel).
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FIG. 5. Interpolating polynomials for 7, with N =2 in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel).

> similar patterns for 1y and %, and other N = motivation for 5-loop GN?
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Conclusions

recent advance in methods allows high-loop renormalization of quantum field theories

> highly automated computer-algebra approaches
> improved IBP algorithms (finite fields, ... )
> new insight into functional content of Feynman integrals

difference equations (+ lots of CPU) are powerful enough to achieve 5 loops

> non-trivial algorithmic fine-tuning
> more? memory seems to become an issue

applications to a host of QFTs in various fields

> phenomenology / QCD-+SM

> mathematical physics/ SUSY

> CM theory / effective models / universality classes

> = consistent exponents for graphene from e-exp, large N, FRG and MC

applications in various space-time dimensions
> 2d, 3d, 4d, ..., fractional, ...
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Fractional dimensions

difference eqs carry full information on d

> expand massive tadpoles e.g. around d = %0 — 2€?

motivation: renormalization in critical dimension (where [g]=0)

> e.g. O(N) scalar ¢™ theory: 0,,¢ 0" + g™ Gracey 2017
> critical dim D,, = % = Dyi34567,...00} = 16,4, %, 3, %, —
> near FP (nontriv zero of Beta fct);, RG fcts carry info on phase transitions

study RG fcts in non-integer dimensions

> renormalization 'as usual’, dim. reg. natural (angular ints?!)
> fewer diagrams (e.g. ¢”: LO 2pt diag has 3 loops)
> numbers: ¢ — I'(¢) at LO; ¢(s) — Dirichlet 8 fct at NLO (€HPL(i)) [Hager 2002]

sample results in d = % — 2¢ [with Luthe]
> as usual we normalize by 1/J"°P; here, J ~ T'(1 — )= —3r(d) +...
> 2-loop sunset = —2.4882241714632542542 ¢ — 8.6116306893649818141 €' + . ..
> 3-loop merc. = —0.0305966721641989027 ” + 0.0149523122719722312 ¢ + . . .
> 4-loop non-pl = +0.0006880032418228675 €’ + 0.0023853718027957011 €' + . . .
> etc.
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