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Motivation

• LHC: era of precision QFT
▷ large SM backgrounds
▷ dominant effects: mainly QCD
▷ high precision required for BSM searches

• theory working horse: renormalizable QFTs
▷ perturbative expansions ⇒ Feynman diagrams
▷ higher-loop effects important (e.g. gµ−2; mq; H production; . . . )

• lots of machinery developed recently
▷ high automatization of complicated perturbative calculations
▷ algebraic handling of Feynman diagrams
▷ reduction of Feynman integrals to masters
▷ numerical and/or algebraic determination of masters
▷ renormalization (of QCD) under control at 5 loops
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Motivation

• idea: recycling
▷ apply same techniques to other (than SM and QCD) models
▷ important applications e.g. in CM theory [see talk by Vladimir Juricic]

▷ consider interacting Dirac fermions ψ in 2+1 dimensions
▷ undergo variety of quantum phase trans (QPTs) towards ordered states
▷ with different symm breaking patterns

• general universal critical behavior ⇔ class of relativistic GNY models
▷ models emerge as low-energy EFTs in CM
▷ but: strongly coupled systems in D=2+1!
▷ order parms ⇔ bosonic fields ϕ (with corresponding nr of components + symms)
▷ Yukawa coupling between ψ and ϕ

• captured by universal critical exponents
▷ near cont phase trans, free energy exhibits scaling form
▷ specific heat / corr length have power-law behavior
▷ characterized by universal critical exponents
▷ e.g. thermal PT: ξ ∼ |t|−ν (1 + c|t|ω + . . .) at ’distance’ t = (T − Tc)/Tc
▷ ν, ω universal; depend on symm and dimensionality ⇒ def univ class
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Motivation

• describe quantum critical points of interacting Dirac semimetals
▷ N flavors of chiral Dirac fermions [main interest N=2, graphene]
▷ chiral Ising model [ϕ ∈ R, with Z2 symm]
▷ chiral XY model [U(1) breaking, ϕ ∈ C]
▷ chiral Heisenberg model [SU(2) breaking, ϕ ∈ R3]

• different models argued to describe certain QPTs in graphene (N=2)
▷ QCP of semimetal-insulator trans in graphene
▷ but also: N=1, semimetal-insulator trans in system of spinless fer on hex lattice
▷ emergent SuSy (topological insulators, N=1/2 or 1/4)
▷ replica limit (N→0) for PT in Weyl semimetals
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Setup

• Gross-Neveu model (for reference only)

LGN = ψ̄∂/ψ + gϕψ̄ψ +
1

2
ϕ
2

▷ ϕ not dynamic; int out ⇒ 4-fermion coupling ∼ g2

▷ renormalizable in D = 2 + ϵ, asymptotically free
▷ known to 4 loops [Gracey/Luthe/YS 2016]

• Gross-Neveu-Yukawa model (chiral Ising; ϕ ∈ R)

LGNY = ψ̄∂/ψ + gϕψ̄ψ +
1

2
ϕ(m

2 − ∂
2
µ)ϕ+ λϕ

4

▷ same univ class as GN for 2<D<4
▷ renormalizable in D = 4 − ϵ
▷ analyzed at 4 loops [Zerf/Mihaila/Marquard/Herbut/Scherer 2017]

▷ now known to 5 loops [Gracey/Maier/Marquard/YS 2025]
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Renormalization

• ψ0 =
√
ZψψR , ϕ0 =

√
ZϕϕR , etc.

LGNY,R = Zψψ̄∂/ψ + Zϕψ̄ψµ
ϵ
2gϕψ̄ψ +

1

2
ϕ(Zϕ2m

2 − Zϕ∂
2
µ)ϕ+ Zϕ4µ

ϵ
λϕ

4

▷ rename squared Yukawa coupling g2 ≡ y
▷ RG scale (µ) dep follows from µ-independence of bare params

y = y0µ
−ϵ
Z

2
ψZϕZ

−2
ϕψ̄ψ

, λ = λ0µ
−ϵ
Z

2
ϕZ

−1

ϕ4
, m

2
= m

2
0µ

−ϵ
ZϕZ

−1

ϕ2

• evaluate all five RG constants Zx(y, λ): absorb divergences in dim reg, MS
▷ QGRAF: generate diags
▷ FORM: Fy rules, Lorentz algebra, spinor traces, project onto 1-scale massive tadpoles
▷ Mathematica: identify topologies, mapping to common family
▷ C++: IBP reduction, Laporta algorithm, mapping onto master integrals
▷ C++: solve difference equations for masters, evaluate numerically
▷ Mathematica: plug in numerical masters, identify transcendental content
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Renormalization techniques

• project all Fy integrals onto common family of scalar massive vacuum ints
▷ exact decomposition of propagators (m ∈ {0,m,M}) [Chetyrkin/Misiak/Münz 1998]

▷ 1
(k−p)2+m2 = 1

k2+M2 +
2kp−p2+M2−m2

(k2+M2)((k−p)2+m2)

▷ recursively lower degree of UV div
▷ other IR regularization schemes: e.g. (local/global) R∗ [Chetyrkin 1984]

• map all integrals to minimal set: IBP [Chetyrkin/Tkachov 1981; Laporta 2000]

▷ systematically use linear rels 0 =
∫
ddk ∂kµ fµ(k)

▷ key idea: lexicographic ordering among all loop integrals [Laporta 2000]

▷ arrive at rep in terms of irreducible (≡ master) integrals:
∑

i rati(d)Masteri(d)
▷ obtain 1+1+3+13+110 masters at 12345-loop
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Single-scale master integrals to 5 loops
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Integral evaluation

• evaluate this minimal set of single-scale master integrals
▷ numerical solution of difference equations via factorial series [Laporta 2000]

▷ perform IBP reduction with symbolic power x on one line
▷ derive difference equation for generalized master I(x) ≡

∫
1

Dx1D2...DN

▷ generic form:
∑R

j=0 pj(x)I(x + j) = F (x)

• typically, want I(1); solve the difference equation
▷ explicitly (e.g. if 1st order; or if soln nested sum)
▷ numerically (very general setup) [Laporta 2000]

▷ solve via factorial series I(x) = I0(x) +
∑R

j=1 Ij(x),

▷ where Ij(x) = µxj
∑∞

s=0 aj(s)
Γ(x+1)

Γ(x+1+s−Kj)

▷ need boundary condition for fixing, say, aj(0): use decoupling at large x
▷ I(x) =

∫
k1
g(k1)/(k

2
1 + 1)x ⇒ I(x) ∼ (1)xx−d/2g(0)

• deep expansions (ϵ20) at 5 loops (132 masters) at high precision (>250 digits) [with Luthe 2016]
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Sample results (4d)

I28686.1.1 = +(−3) ϵ
0
+ (−

3

2
) ϵ

1
+ (

13

24
) ϵ

2
+ (−

1267

1440
) ϵ

3
+ (−

4193

3456
) ϵ

4
+

+135.95072868792871461956492733702218574897992953584 ϵ
5
+ . . .

I28686.1.3 = +(0) ϵ
0
+ (

3

2
) ϵ

1
+ (−

1

2
) ϵ

2
+ (−

443

360
) ϵ

3
+ (

95

216
) ϵ

4
+

−38.292059175062436961881799538284449799148385376441 ϵ
5
+ . . .

I30862.1.1 = +(−
3

5
) ϵ

0
+ (−

27

10
) ϵ

1
+ (−

4ζ3
5

−
421

60
) ϵ

2
+ (−

12ζ22
25

+
24ζ3
5

+
211

24
) ϵ

3
+ (

72ζ22
25

− 98ζ3 +
32ζ5
5

+
12959

48
) ϵ

4
+

+1143.1838307558764599466030303839590323268318605888 ϵ
5
+ . . .

I30231.1.1 = +(0) ϵ
0
+ (0) ϵ

1
+ (

3ζ3
5

) ϵ
2
+ (

9ζ22
25

+
21ζ3
5

+ 3ζ5) ϵ
3
+ (−36H2ζ3 +

12ζ32
7

+
63ζ22
25

−
21ζ23
5

+ 27ζ3 −
24ζ5
5

) ϵ
4
+

−531.32391547725635267943444561495368318398901378435 ϵ
5
+ . . .

I32596.1.1 = +(0) ϵ
0
+ (0) ϵ

1
+ (0) ϵ

2
+ (0) ϵ

3
+ (−14ζ7) ϵ

4
+ [Wheel: Broadhurst 1985]

+235.07729596783467131454388080950411779239347239580 ϵ
5
+ . . .

I32279.3.1 = +(0) ϵ
0
+ (0) ϵ

1
+ (0) ϵ

2
+ (0) ϵ

3
+ (−

441ζ7
40

) ϵ
4
+ [Zigzag: Broadhurst/Kreimer 1995; Brown/Schnetz 2012]

+181.78223928612340820790788236018642961198741994209 ϵ
5
+ . . .
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Beta functions, anomalous dimensions, critical exponents

• procedure outlined above gives all five RG constants Zx(y, λ), analytically, to 5 loops

• extract beta functions of couplings (x ∈ {y, λ})

βx ≡ ∂ln(µ) x = −ϵx+

5∑
L=1

β
(L)
x (y, λ) + . . .

• extract anomalous dimensions (x ∈ {ψ, ϕ, ϕ2})

γx ≡ ∂ln(µ)Zx =

5∑
L=1

γ
(L)
x (y, λ) + . . .

• extract RG fixed points from βx(y∗, λ∗) = 0

▷ get FPs as series in ϵ, 5 orders
▷ choose the stable positive non-Gaussian (Wilson-Fisher) FP

• substitute FP into anom dims to get critical exponents

▷ ηx ≡ γx(y∗, λ∗) for x ∈ {ψ, ϕ, ϕ2}; trade the latter for 1
ν ≡ 2 − ηϕ + ηϕ2

▷ successfully checked vs all-order large-N results [Gracey 91-94; Vasiliev et al. 93]
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Analysis: Graphene case N = 2

• aim: from 4−ϵ results for {ηψ, ηϕ, 1
ν}, provide refined estimates for critical exponents, in 3d

▷ naively setting ϵ = 1 is problematic: questionable convergence (ϵ1 ∼ ϵ5)

• employ resummation techniques
▷ canonical Padé approximants P[M,L−M ](d) = (

∑
p ap d

p)/(1 +
∑

q bqd
q)

(need to ensure continuity 4→3)
▷ add info from our 2016 4-loop 2+ϵ GN [idea: Mihaila/Scherer 18]

▷ two-sided diagonal [L/L+1] and [L+1/L] Padé approximants
▷ interpolating polynomial I[L,L+1](d) =

∑
m η

(2d)
m (d− 2)m +

∑
n>m c

(4d)
n (d− 2)n

(note: no singularities, unlike Padé)

• evaluate reliability of 3d predictions P (3) and I(3)
▷ compare with other methods
▷ repeat the exercise for different N
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Analysis: Graphene case N = 2

▷ in chronological order, 1991 – 2025

▷ highest precision to date: conformal bootstrap [Poland et al. 23/24]
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Analysis: Graphene case N = 2

▷ similar patterns for ηϕ and 1
ν , and other N ⇒ motivation for 5-loop GN?
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Conclusions

• recent advance in methods allows high-loop renormalization of quantum field theories
▷ highly automated computer-algebra approaches
▷ improved IBP algorithms (finite fields, . . . )
▷ new insight into functional content of Feynman integrals

• difference equations (+ lots of CPU) are powerful enough to achieve 5 loops
▷ non-trivial algorithmic fine-tuning
▷ more? memory seems to become an issue

• applications to a host of QFTs in various fields
▷ phenomenology / QCD+SM
▷ mathematical physics/ SUSY
▷ CM theory / effective models / universality classes
▷ ⇒ consistent exponents for graphene from ϵ-exp, large N, FRG and MC

• applications in various space-time dimensions
▷ 2d, 3d, 4d, . . . , fractional, . . .
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Fractional dimensions

• difference eqs carry full information on d
▷ expand massive tadpoles e.g. around d = 10

3 − 2ϵ?

• motivation: renormalization in critical dimension (where [g]=0)
▷ e.g. O(N) scalar ϕn theory: ∂µϕ ∂µϕ + gϕn [Gracey 2017]

▷ critical dim Dn = 2n
n−2 ⇒ D{3,4,5,6,7,...,∞} = {6, 4, 103 , 3,

14
5 , . . . , 2}

▷ near FP (nontriv zero of Beta fct), RG fcts carry info on phase transitions

• study RG fcts in non-integer dimensions
▷ renormalization ’as usual’, dim. reg. natural (angular ints?!)
▷ fewer diagrams (e.g. ϕ5: LO 2pt diag has 3 loops)
▷ numbers: p

q → Γ(pq) at LO; ζ(s) → Dirichlet β fct at NLO (∈HPL(i)) [Hager 2002]

• sample results in d = 10
3 − 2ϵ [with Luthe]

▷ as usual we normalize by 1/J loop; here, J ∼ Γ(1 − d
2) = −3

2Γ(
1
3) + . . .

▷ 2-loop sunset = −2.4882241714632542542 ϵ0 − 8.6116306893649818141 ϵ1 + . . .

▷ 3-loop merc. = −0.0305966721641989027 ϵ0 + 0.0149523122719722312 ϵ1 + . . .

▷ 4-loop non-pl = +0.0006880032418228675 ϵ0 + 0.0023853718027957011 ϵ1 + . . .
▷ etc.
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