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Introduction

QCD is accepted as the correct theory to describe the strong force. Yet, the basic degrees of
freedom, quarks and gluons, are never seen freely in nature.

This is known as the confinement problem, and its origin is still an open question.

Many ideas have been proposed to explain confinement. Among them, the Abelian dominance
scenario is a very interesting one.

Our objective is to study this scenario in SU(3) gauge theory.

For that, we first have to ask: how do we define confinement?
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How to measure the potential? Wilson loops

The Wilson loop operator

W(C) = Tr P exp

[
i

∮
C
dzµ Aµ(z)

]
describes how a pair of quark-antiquark probes evolves in
time.

C

Quantizing this operator and using the spectral decomposition

⟨W(C)⟩ = F0 exp[−t V (r)]× (1 +O(exp[−t(E2 − V (r))]),

we have access to the energy of the heavy quark pair, the quark-antiquark potential.
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Lattice discretization

To have access to the interquark potential we need to know

⟨W(C)⟩ = 1

Z

∫
DAe−

1
4

∫
d4xTr Fµν(x)Fµν(x)

[
Tr Pei

∮
C dzµ Aµ(z)

]
,

where
Fµν(x) = −i[Dµ(x), Dν(x)], Dµ(x) = ∂µ + iAµ(x).

In the continuum this integral is ill-defined:

There is no bare propagator without gauge fixing.

Faddeev-Popov gauge-fixing procedure does not work in the IR regime.

The running coupling is not small at low energies, i.e. perturbation theory is not applicable.
Non-perturbative techniques are necessary.
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Lattice discretization

Using a lattice regulator the quantization of Yang-Mills theory is made clean and well-defined:

Lattice spacing a.

x x+ µ̂

x+ µ̂+ ν̂x+ ν̂

Uµ(x)

Uν(x+ µ̂)

U†
µ(x+ ν̂)

U†
ν (x)

Uµν(x) =

Uµ(x)× Uν(x+ µ̂)

×U−µ(x+ µ̂+ ν̂)

×U−ν(x+ ν̂)

The gauge field is the link variable Uµ(x) = exp(iaAµ(x)).

x x+ µ̂

Ux,µ

x− µ̂ x

U †
x,µ

Uµ(x) take values in the compact gauge group: the measure
dUµ(x) is well defined.

Gauge invariant observables are traces of product of links:
Wilson loops.

Z =

∫ (∏
x

∏
µ

dUµ(x)

)
exp

{
− β

Nc
Re Tr [I− Uµν(x)]

}
, β =

Nc

2gs
.
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Measuring the quark potential on the lattice

On the lattice: W(C) = Tr
[∏

l∈C Ul

]
.

⟨W(C)⟩ =
∫

dP [U ]W(C),

where

dP [U ] =
1

Z
DU e−Sg [U ],

is the probability distribution of the theory.

Using a Markov-chain Monte Carlo we can
generate configurations that respect the
exact probability distribution P [U ].

Numerical simulations!

U (1) → U (2) → · · · → U (Nconf)

Measurements done by weighted means

⟨W(C)⟩ ≈ 1

Nconf

Nconf∑
i=1

W(C)
∣∣
U(i)

subjected to statistical errors only.
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Measuring the quark potential on the lattice

Taking rectangular time-like paths of size R× T

log⟨W(R, T )⟩ = −V (R)T +B.

The potential is of the form

V (r) = V0 + σ r +
γ

r
.

Confinement is defined as the presence of a lin-
ear rising potential, which means a chromo-electric
field squeezing into flux-tubes [Greensite, J. et al.
Physical Review D, 75, 034501 (2007)].

σ =
1

2

∫
cross

section

d2xEa
k(x)E

a
k(x) string tension
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Static quark-antiquark potential for the SU(2)
gauge theory.
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Confinement scenarios

Explain the origin of σ is to understand confinement.

Among the various ideas proposed, we will analyze t’ Hooft’s Abelian projection.

Special types of configurations, topological ones, may dominate the infrared regime of YM
theory.

On the lattice, these configurations can be isolated via a projection scheme

Uµ(x)
law of projection−−−−−−−−−−→ Uµ(x),

where Uµ(x) is a projected link variable that depends on which kind of topological
configuration we want to isolate.

Abelian projection, center vortices, monopoles.

Theses schemes usually go through a gauge fixing procedure (the links transform by gauge:
U ′
µ(x) = g(x)Uµ(x) g

†
µ(x+ µ̂).)
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Success in the SU(2) case

A very interesting example are center vortices in SU(2) Yang-Mills theory.

Center vortices: Lines of quantized flux of
chromo-magnetic field.

B(C)W(C′) = zW(C′)B(C)
[G. ’t Hooft, Nucl. Phys. B 138, 1-25 (1978)].
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Detection on the lattice? Maximal Center gauge
[L. Del Debbio, et al., Phys. Rev. D 58 (1998),
094501]: Maximize

R =
∑
x,µ

|Tr Ug
µ(x)|2.

We can generate three ensembles

Untouched: Uµ(x),

Center-projected: Zµ(x) = sign[Tr Uµ(x)] I,

Center-removed: Rµ(x) = Z†
µ(x)Uµ(x).
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Success in the SU(2) case

We can measure the static-quark potential on the three ensembles.
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String tensions computed on the full and vortex-only
ensemble.

β σ σv

2.2 0.251(4) 0.2335(4)
2.3 0.1521(6) 0.1371(1)
2.4 0.08151(1) 0.073414(1)
2.5 0.03945(2) 0.039786(1)

Vortex-only ensemble capture the string tension.

Vortex-removed configurations shows no
confinement.

Abelian projected and magnetic monopoles configurations also give similar results.
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Applying in the SU(3) case

Does this work in SU(3) theory? Let us start by checking Abelian dominance.

Maximal Abelian gauge

R =
∑

x,µ,q=3,8

Tr Uµ(x)λqU
†
µ(x)λq.

Abelian projection

Uµ(x)→UA
µ (x)=diag(eiϕ

1
µ(x), eiϕ

2
µ(x), eiϕ

3
µ(x)),

where the angles ϕa
µ(x) = arg(Uµ(x)aa)

respect the constraint

ϕ1
µ(x) + ϕ2

µ(x) + ϕ3
µ(x) = 0.

Values of string tension obtained from various
types of topologicial configurations,

[W. W. Tucker and J. D. Stack, Nucl. Phys. B
Proc. Suppl. 106 (2002), 643-645].

β Full U(1)2 Z(3) Mon
5.9 0.068(3) 0.063(3) 0.060(3) 0.050(2)
6.0 0.050(1) 0.045(2) 0.040(2) 0.038(1)

The string tension is not fully repro-
duced by any of the topological d.o.f in
the SU(3) theory.
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What is wrong?

SU(Nc) has a special structure, encoded in
the Cartan subalgebra, [Hq, Hp] = 0.

Normalization convention: Hq = λq/2
√
Nc.

Weights are eigenvalues of the Cartan
matrices

Hq β⃗i = βi|qβ⃗i.

Roots are weights of the adjoint
representation

[Hq, Eβ⃗ij
] = βij |q Eβ⃗ij

.

Raising and lowering in weights space

Eβ⃗ij
|n, β⃗i⟩ = |n, β⃗i + β⃗ij⟩.

β1 =

(√
3
1

)
, β2 =

(
−
√
3

1

)
, β3 =

(
0
−2

)
.

β12 =

(
2
√
3

0

)
, β13 =

(
−2

√
3

0

)
, β23 =

(
−
√
3

3

)
.
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Cartan projection

We can write: Aµ(x) =
∑Nc−1

q=1 Aq
µ Hq +

∑
α⃗ Aα⃗

µ Eα⃗.

SU(3) Cartan projection: keep the two independent fields A1
µ, A2

µ.

AA
µ (x) = Aq

µ(x)Hq.

Cartan projected link

UA
µ (x) = diag

{
exp

[
i

(
A1

µ

2
√
3
+

A2
µ

6

)]
, exp

[
i

(
− A1

µ

2
√
3
+

A2
µ

6

)]
, exp

[
i

(
−A2

µ

3

)]}
.

Relating this with the usual form

A1
µ(x) =

√
3
(
ϕ1
µν(x)− ϕ2

µν(x)
)
,

A2
µ(x) = 3

(
ϕ1
µν(x) + ϕ2

µν(x)
)
.
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Recovering the string tension

The Wilson loop becomes

WAbel(C) = 1

3

〈
cos

[
1

6

∑
x,µ∈C

(
A2

µ(x) +
√
3A1

µ(x)

)]
+ cos

[
1

6

∑
x,µ∈C

(
A2

µ(x)−
√
3A1

µ(x)

)]
+ cos

[
1

6

∑
x,µ∈C

A2
µ(x)

]〉
.

We can compute the static-quark potential in this new projection and compare the string
tension with those values of reference.

β V
√
σ∗ Measurements

√
σAbel

√
σAbel/

√
σ

5.70 84 0.396(2) 750 0.389(8) 0.98(3)
5.90 124 0.261(1) 100 0.2572(6) 0.987(7)
5.93 164 0.243(2) 590 0.2418(8) 1.00(1)
6.00 164 0.213(1) 300 0.212(4) 1.00(5)

The string tension is fully reproduced by the Cartan projection.
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Recovering the string tension

The string tension is obtained from a
fit of the potential.

Cartan projected data is more stable
than that of the full theory.

Cartan projected potential still shows a
small Coulombic term.

We show the potentials obtained from
β = 6.235 on a V = 264 lattice.

This points to a Cartan dominance of
the infrared behaviour of the
static-quark potential.
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Interpretation

How does Aµ(x) =
∑Nc−1

q=1 Ap
µ Hp +

∑
α⃗ Aα⃗

µ Eα⃗ transform under Ω(x) = exp[iθq(x)Hq]?

A′
µ =

Nc−1∑
q=1

Ap
µ Hp +

∑
α⃗

ei θ⃗·α⃗Aα⃗
µ Eα⃗.

Aq
µ transform as neutral fields. Aα⃗

µ are charged with charge α⃗.

L = −1

2

∑
q

[
Aq

µ ∂
2 Aµ q −Aq

µ∂
µ∂νAq

ν

]
−1

2

∑
p,q

Ap
µ Aµ p

(∑
α⃗

αp αq Aα⃗
µAµ α⃗

)
+non-Cartan terms.

In a gauge that minimizes the charged part, i.e.
∫
d4x

∑
off diagonal(A

a
µ(x))

2, there are no
fluctuations in Aα

µ .

This is the continuum analogue of lattice MAG.

This heuristic argument supports the Cartan projection.
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Measuring the right monopole charges

We can use this modified projection to define an Abelian field strength

fq
µν(x) = ∂µAq

ν(x)− ∂νAq
µ(x).

We can measure the field strength on
the lattice.
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f̄ µ
ν
| 2/

2π

f̄µν|1/2π

Reducing these points to the fundamental cell
allows monopole currents detection.

These have the magnetic charges taking values in
the group roots.

β V ρusual ρcartan ratio
5.70 84 0.04069(8) 0.0609(3) 1.497(8)
5.90 124 0.0126(1) 0.0182(2) 1.44(2)
5.93 164 0.01064(2) 0.01535(6) 1.443(6)
6.00 164 0.00745(3) 0.01053(4) 1.413(8)

For the details see Gustavo’s talk on thursday.
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Conclusion

Usual Abelian projection scheme has a problem.

We need to take into account the Cartan subalgebra structure.

The projection onto the Cartan subalgebra returns two independent fields.

The static-quark potential expressed in this projection reproduces the full SU(3) string
tension.

We can define a scheme of detection of magnetic monopoles with charges taking values on the
group roots.

These results point in the direction a Cartan dominance in SU(3)
color confinement.
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Tank you very much.
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