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Our rough understanding

Low 7 — high T: rapid change in degrees of freedom

e Low 7: Hadron resonance gas.

Agrees w. Lattice QCDupto 7,

* Predicts freeze-out yields of HIC.
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Our rough understanding

Low 7 — high T: rapid change in degrees of freedom

* Low T: Hadron resonance gas. » High T: Strongly coupled fluid (-QGP),

Agrees w. Lattice QCDup to T, * Analytic crossover from the HRG,

* Predicts freeze-out yields of HIC. » HIC: anisotropic flow & jet quenching —
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(T — oo: asymptotically free (o (27T) — 0) parton gas)
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The desired understanding
Full QCD phase diagram

* Need to study: QCD at u # 0.

» Expectations(funct.QCD, models):
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Outdated... current CEP predictions: (., T) ~ (600,110)MeV

Oversimplified... likely various different CSC phases
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* Crossover = T'. depends on observable,

* Approximate QCD order parameters:
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Polyakov loops and confinement

Meaning of the Polyakov loops

* QCD medium with a static quark g:
Part. fct.: Zq = Trq e ~PH-pQ)-

 £=217, ¢=27]17 =

—TIn(¢) = AF,, —TIn(¢) = AF,,

« ¢, ¢ measure free energy increase
related to adding a static quark/anti-
quark source to a QCD medium.



Polyakov loops and confinement

Meaning of the Polyakov loops Values of 2(T)
* QCD medium with a static quark g: * YM:if £/=0 & AF_, = oo —confined g,
Part. fct.: Z, = Tr, e ~PH=pQ)- Cwew |

: Adding a quark is
spontaneously | .
broken | forbidden at low T.

c t=2717, £=7,17 = "

02+

—TIn(¢) = AF,, —TIn(¢) = AF,,

0.0 P—r——r—r—————— n

¢ is order parameter!

« ¢, ¢ measure free energy increase
related to adding a static quark/anti-
quark source to a QCD medium.



Polyakov loops and confinement

Values of £(T)
. YM if =0 & AF = o0 —confined g,

Meaning of the Polyakov loops

* QCD medium with a static quark g:
Part. fct.: Zq = Trq e ~PH-pQ)-

c 0=Z712, ¢=7,17 =
—T'In(?) = AF,
« ¢, ¢ measure free energy increase

related to adding a static quark/anti-
quark source to a QCD medium.

— T'n(?) = AF,,
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spontaneously

Adding a quark is
forbidden at low T.

¢ is order parameter!

QCD M < 00 breaks center-sym.:
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Adding a quark is never

forbidden?!

£ not real order parameter!

But, very high AF_ atlow T.

Still, how can it be compatible
with hadronic dof’s?
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* Net quark number Q: charge due to
global U(1) symmetry of QCD,
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Thermodynamics with Polyakov loops

Net quark number gain

* Net quark number Q: charge due to
global U(1) symmetry of QCD,

* Grand-canonical ensemble: average

response AQ, - of medium to g, g:
AQ,=—-0,AF, =T0d,In {i,
AQ;,=-0,AF,=T0,In7,

* The net quark number gain is then:

upon bringing g : AQ, + 1,

upon bringing g : AQ; — 1.
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Thermodynamics with Polyakov loops

Net quark number gain Important distinction:
» Net quark number Q: charge due to * This is not the same as thg griet quark
global U(1) symmetry of QCD, number density, n, = — "
H

* Grand-canonical ensemble: average

response AQ,, of medium to ¢, G: e Order parameters can feed back into n

AQ, = — 9,AF,=Td,In?, Q = QT (T, ). GO)T. o)),
AQ, = - d,AF,=Td,In?, but n,, corresponds to O-density of the

q)

system without an added quark.
* The net quark number gain is then:

upon bringing ¢ : AQ, + 1, » AQ, ;% 1, the net quark number gain, is

upon bringing 7 : AQ, — 1. a “global” observable, not a density.



Thermodynamic potential at low T

Polyakov loop potential

e WhenT < M:Q~YV
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Thermodynamic potential atlow 7

Im [£]

Polyakov loop potential

Vglue (f- T )

» WhenT < M: Q =~ Vo + Vo » With:

* D >~ Relf]
_ ~0.4 B> 02 10

(2, ¢, T) satisfying:

glue

« Center-symmetric: V,

uelCr D) = V(e3¢ e 27) 7
(as given by YM),

I 4 Ve (in YM £% = £)

\
+ Confining atlow T: ¢, ¢ =20 (as seen on lattice),

Vglue (f- T )

» I-power-law behaviour at low 7: V. ~ T,
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Thermodynamic potential at low T

Polyakov loop potential

e WhenT < M:Q ~V, olue T Vuark’ with:

(¢, ¢, T): confining, center-sym., T-power-law at low T,
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see e.g. K. Fukushima, Phys. Lett. B 501, 277 (2004), [hep-ph/0310121]
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Thermodynamic potential at low T

Polyakov loop potential

* When T < M: Q2 =~ Viyo + Vo » With:

(¢, ¢, T): confining, center-sym., T-power-law at low T,
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see e.g. K. Fukushima, Phys. Lett. B 591, 277 (2004), [hep-ph/0310121]
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Thermodynamic potential at low T

Polyakov loop potential

* When T < M: Q2 =~ Viyo + Vo » With:

(¢, ¢, T): confining, center-sym., T-power-law at low T,
I'N; [
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0

see e.g. K. Fukushima, Phys. Lett. B 591, 277 (2004), [hep-ph/0310121]
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Calculating 7, 7 atlow T

Chemical potential ; dependence
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Calculating 7, 7 atlow T

Chemical potential ; dependence
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Calculating 7, 7 atlow T

Chemical potential ; dependence
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Calculating 7, 7 atlow T

Chemical potential ; dependence
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Calculating 7, 7 atlow T

Chemical potential ; dependence
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From Polyakov loop potential

Then the net quark number gains are:

AQ + 1 ~ , |
’ L+ e=Phfanl fopm | :
—3 31 F — AQq+1 —
AQ_ — 1 = DY YR ET:O.STS T 0 - AQp-1 |-
’ L+ ePhfpnlfopm 2 "/ |/
Independent of Value: 1 I -
OF—— il .
Y R A A 9 S
0 i om3 Ill/l am3
u

Net quark number gains AQ, -
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Net quark number gains AQ, -

From Polyakov loop potential

Then the net quark number gains are:

baryon-like configurations

AQ + 1 ~ : —
1 l + e_3ﬂﬂf,‘BM/fZﬁM Z/ Z
_3 3 P — AQg+1 | -
A - 1 0 —m——F———— 1=057° [|150 A%
1 l + EB'BM]%M/]CZBM 2_ N/ |/
Independent of V.. 1 I \ 7 _ 1170
/ T o
meson-like configurations o | L
0 M/3 2M/3 M 4M/3
u

“-like” since don’t know color representation

9
2504.0645
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Net quark number gains AQ, -

From Polyakov loop potential

Then the net quark number gains are:

AQ, + 1 ~

| + 6_3’Bﬂ]€BM/f2,BM,
-3

1 + e3ﬁM]75M/]C2ﬂM’

Independent of V,

AQ;— 1

lue:

only the added ¢

meson-like configurations

“-like” since don’t know color representation
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QCD phase diagram

Net quark number of dominant degrees of freedom

* Net quark number gain for heavy quark QCD:

0 M/3 M
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QCD phase diagram

Net quark number of dominant degrees of freedom

* Net quark number gain for heavy quark QCD:

Heavy-quark QCD vs PNJL modet:

..~ baryon-like

meson-like
Plateau of AQ_ - * 1 for:

0 M3 } M whole confined phase vs onlyatlow T
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QCD phase diagram

Net quark number of dominant degrees of freedom

* Net quark number gain with chiral SB:
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Generalization to SUN,)

(N, — 1) fundamental Polyakov loops £, <> adding v quarks

a(\(S
_ N.a¥

» AQ, + v: with the v added q’s get a v-mesons- or one-baryon-like configuration,

» Change from meson- to baryon-like being favorable at y = mq(l — 2UIN,),

» Color charges in non-fundamental %: only N -ality matters

""""""" V::,I"""""""_ o y=2
] N ]
AF,/M 115 AF, /M v:s// Nov=1 :
L0 7 N : T o G T :
5 7 \ |3 : | . SUE) -
1 05¢F /7 N ) i AQp . . ]
Z N 2F 1 | i ]
---------------------------- | 0.0 pmmmmmemmee L Tmmeemeas ; \ p :
A A A 1; o 1 ]
SU(2) 5 SU(4) i W\ 1 ]
37 _ ]
v ! Y : O* R =8 ‘\~ :

- ' ; jl meson |k =6 E 31
1 \ , v=] oSE A v
-2 i 2 mesons : 10  -05 0.0 05 1.0 :

I | _3f = 3 mesons g Y
S0 05 00 o5 10 0 05 oo os 10 adjoint repr. not confined, reps. of same N -ality behave the same!
u/M u/M
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Outlook

Possible applications of the net quark number gain

Theoretical observable, sensitive to net quark number content of active dof’s,

Shows transitions and critical point — AQ, + 1> 3,

Sensitive to dof’s in other phases (diquarks, chiral-spin symm. hadrons at 7 > T )?

The net quark number gain is essentially (®Q),
other combinations of Polyakov loops and conserved charges could be interesting:

e.g. (POYQ%) color Casimir, or (D) isospin, ...

Heavy-quark lattice simulations are viable at 4 # 0 — tests possible.

Thank you! ;)



Backup

For questions also: victor-tomas.mari-surkau@polytechnique.edu
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Confinement from N -ality and in Minkowski

Expectqtigns for AQ +1 —No Euclidean path integral needed!
q

Consider heavy-quark QCD at low T: what states dominate Z ?

Heavy-quark, non-relativistic system:
Dof’s with O N -ality: N, — Nz + 1 =3k, k€ Z = (N, Ny = (0,1),(2,0) (3,1), ...

H—puQ ~m,+u, 2m, —2u, am,—2py,...
(0,1) (2,0) (3,1)

If u < mq/ 3 then (0,1) dominates, if 4 > mq/ 3 then (2,0), never (3,1) and higher.
- AQ, +1=0 - AQ, +1=3

Meson Baryon
15



Beyond the linear orderin 2, 7

Modifications at finite temperatures

« At non-zero u > 0: £ more suppressed than #Z, and vice-versa at 4 < 0

. In equation with Z take into account the order —7~03V

AQ, + 1 ~

1
2

07V

lue

N 7 glue’
3 .
3— , with T
| + D e~ ﬁﬂf:ﬁM/fZﬂM
4—
aL32Vglue f
(0207V1e)? 2pM '

C = 3NfTM3

2
¢ (0207V1e)? f'ﬁ M/fzﬁ M

g, q : meson-like
gain AQx1=0 *°

16 0

Effect of D-term

deconfined q , G

g : meson-like
gain AQg;-1=0 s

q : baryon-like
gain AQg+1=3 e

0




Thecaseof |u| > m,

Heavy quarks deconfine

The quark potential is only power-law suppressed at low 7, no longer exponentially,

1
Polyakov loops either — 1, or ———— 0, depending on if V,or Vglue dominate,

u-derivatives of In(Z’) and ln(f )vanish, \ \/

-1.0 |

AQ,,£1~%1,A0,,=0

NN )

: 4 :
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