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Our rough understanding

• Low : Hadron resonance gas. 

• Agrees w. Lattice QCD up to , 

• Predicts freeze-out yields of HIC.
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Our rough understanding

• Low : Hadron resonance gas. 

• Agrees w. Lattice QCD up to , 

• Predicts freeze-out yields of HIC.

T

Tc

Low   high : rapid change in degrees of freedomT → T

• High : Strongly coupled fluid (~QGP), 
• Analytic crossover from the HRG, 

• HIC: anisotropic flow & jet quenching   
low viscosity, thermalized medium created.
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• Need to study: QCD at . 

• Expectations(funct.QCD, models):

μ ≠ 0

The desired understanding
Full QCD phase diagram
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• Crossover   depends on observable,⇒ Tc

• Approximate QCD order parameters: 

• Chiral condensates  (chiral sym. ), 

• Polyakov loops  (center sym. ).

⟨q̄q⟩ mq → 0

ℓ, ℓ̄ mq → ∞

A. Bazavov et al., PRD 87, 094505 (2013), [1301.3943]
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• Crossover   depends on observable,⇒ Tc

• Approximate QCD order parameters: 

• Chiral condensates  (chiral sym. ), 

• Polyakov loops  (center sym. ).

⟨q̄q⟩ mq → 0

ℓ, ℓ̄ mq → ∞

Use  in this talk, best for heavy quarks!ℓ, ℓ̄

A. Bazavov et al., PRD 87, 094505 (2013), [1301.3943]
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Polyakov loops and confinement

• QCD medium with a static quark :  
Part. fct.:  , 

•     
, 

•  measure free energy increase 
related to adding a static quark/anti-
quark source to a QCD medium.

q
Zq = Trq e−β(H−μQ)

ℓ = Zq/Z, ℓ̄ = Zq̄ /Z ⇒
−T ln(ℓ) = ΔFq, − T ln(ℓ̄) = ΔFq̄

ℓ, ℓ̄

Meaning of the Polyakov loops

4

Quark number



• YM: if confined ,ℓ=0 ⇔ ΔFq = ∞ → q
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• YM: if confined ,ℓ=0 ⇔ ΔFq = ∞ → q

• QCD:  breaks center-sym.:M < ∞

Polyakov loops and confinement
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Still, how can it be compatible 
with hadronic dof’s?
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Adding a quark is never 
forbidden?!

 not real order parameter!ℓ



• Net quark number : charge due to 
global  symmetry of QCD,

Q
U(1)

Thermodynamics  with Polyakov loops
Net quark number gain
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, 
,
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ΔQq̄ = − ∂μΔFq̄ = T∂μ ln ℓ̄

• The net quark number gain is then: 
upon bringing ,                 
upon bringing .

q : ΔQq + 1
q̄ : ΔQq̄ − 1

Thermodynamics  with Polyakov loops
Net quark number gain Important distinction:

• This is not the same as the net quark 
number density, .nq = −

∂Ω
∂μ

• Order parameters can feed back into ,

but  corresponds to -density of the 
system without an added quark.

nq

Ω = Ω(T, μ, ℓ(T, μ), ⟨q̄q⟩(T, μ), . . . ),
nq Q

• , the net quark number gain, is 
a “global” observable, not a density.
ΔQq,q̄ ± 1
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• When :  , with:T ≪ M Ω ≃ Vglue + Vquark

Thermodynamic potential at low T
Polyakov loop potential

6

heavy quark or chirally 
broken constituent mass



• When :  , with:T ≪ M Ω ≃ Vglue + Vquark

•  satisfying: 

• Center-symmetric:   
(as given by YM), 

• Confining at low :   (as seen on lattice), 

• -power-law behaviour at low : ,

Vglue(ℓ, ℓ̄, T)

Vglue(ℓ, ℓ̄) = Vglue(ei2π/3ℓ, e−i2π/3ℓ̄)

T ℓ, ℓ̄ T→0 0

T T Vglue ∼ T#

Thermodynamic potential at low T
Polyakov loop potential

6

 (in YM )Vglue ℓ* = ℓ̄

heavy quark or chirally 
broken constituent mass



• When :  , with:T ≪ M Ω ≃ Vglue + Vquark

• : confining, center-sym., -power-law at low ,Vglue(ℓ, ℓ̄, T) T T
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•
,
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TNf
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∞

0
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• , (0
0) =

∂Ω
∂ℓ
∂Ω
∂ℓ̄

⇒ (
0 ∂ℓ∂ℓ̄Vglue

∂ℓ∂ℓ̄Vglue 0 )
ℓ,ℓ̄=0

(ℓ
ℓ̄) ≃ (

eβμfβM + e−2βμf2βM

e−βμfβM + e2βμf2βM)

Calculating  at low ℓ, ℓ̄ T
Chemical potential  dependenceμ
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• Then the net quark number gains are:  

•  , 

• , 

• Independent of .

ΔQq + 1 ≃
3

1 + e−3βμfβM /f2βM

ΔQq̄ − 1 ≃
−3

1 + e3βμfβM /f2βM

Vglue

Net quark number gains ΔQq,q̄
From Polyakov loop potential
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• Then the net quark number gains are:  

•  , 

• , 

• Independent of .

ΔQq + 1 ≃
3

1 + e−3βμfβM /f2βM

ΔQq̄ − 1 ≃
−3

1 + e3βμfβM /f2βM

Vglue

only the added q only the q̄
meson-like configurations

baryon-like configurations

Net quark number gains ΔQq,q̄
From Polyakov loop potential
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• Net quark number gain for heavy quark QCD:

QCD phase diagram
Net quark number of dominant degrees of freedom
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• Net quark number gain for heavy quark QCD:

QCD phase diagram
Net quark number of dominant degrees of freedom
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Tc
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deconfined q ,q

q , q : confined
with ΔQ±1=0

q : confined
with ΔQq_-1=0

q : confined
with ΔQq+1=3

Heavy-quark QCD   vs   PNJL model:

meson-like

baryon-like

whole confined phase    vs    only at low T
Plateau of  for:ΔQq,q̄ ± 1



• Net quark number gain with chiral SB:

QCD phase diagram
Net quark number of dominant degrees of freedom
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• : with the  added q’s get a -mesons- or one-baryon-like configuration, 

• Change from meson- to baryon-like being favorable at , 

• Color charges in non-fundamental : only -ality matters

ΔQν + ν ν ν

μ = mq(1 − 2ν/Nc)

ℛ Nc

Generalization to SU(Nc)
 fundamental Polyakov loops adding  quarks(Nc − 1) ℓν ↔ ν
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• Theoretical observable, sensitive to net quark number content of active dof’s, 

• Shows transitions and critical point , 

• Sensitive to dof’s in other phases (diquarks, chiral-spin symm. hadrons at )? 

• The net quark number gain is essentially , 
other combinations of Polyakov loops and conserved charges could be interesting: 
e.g.  color Casimir, or  isospin, … 

• Heavy-quark lattice simulations are viable at   tests possible.

→ ΔQq + 1 ≫ 3

T > Tc

⟨ΦQ⟩

⟨ΦQaQa⟩ ⟨ΦI⟩

μ ≠ 0 →

Outlook
Possible applications of the net quark number gain

Thank you! :)



Backup

For questions also: victor-tomas.mari-surkau@polytechnique.edu
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• Consider heavy-quark QCD at low : what states dominate ? 

• Heavy-quark, non-relativistic system: 

                 , 

• Dof’s with  -ality:  

                  

• If  then  dominates, if  then , never  and higher.

T Zq

H − μQ ≃ (Nq + Nq̄)mq − μ(Nq − Nq̄)

0 Nc Nq − Nq̄ + 1 = 3k, k ∈ ℤ ⇒ (Nq, Nq̄) = (0,1), (2,0) (3,1), . . .

H − μQ ≃ mq + μ, 2mq − 2μ, 4mq − 2μ, . . .

μ < mq/3 (0,1) μ > mq/3 (2,0) (3,1)

Confinement from -ality and in MinkowskiNC
Expectations for ΔQq + 1
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(0,1) (2,0) (3,1)

→ ΔQq + 1 = 0 → ΔQq + 1 = 3

Meson Baryon

No Euclidean path integral needed!→



Beyond the linear order in ℓ, ℓ̄
Modifications at finite temperatures
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μ

T
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Tc
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deconfined q ,q

q , q : meson-like
gain ΔQ±1=0

q : meson-like
gain ΔQq_-1=0

q : baryon-like
gain ΔQq+1=3

Effect of -termD

• At non-zero :  more suppressed than , and vice-versa at  

• In equation with  take into account the order , 

•   ,  with  

 

 

μ > 0 ℓ ℓ̄ μ < 0

ℓ
1
2

ℓ̄2∂3
ℓ̄Vglue

ΔQq + 1 ≃
3

1 + D e−3βμfβM /f2βM

D =
1 − C

∂3
ℓ̄Vglue

(∂ℓ∂ℓ̄Vglue)2 f2βM

1 − 1
2 C

∂3
ℓ̄Vglue

(∂ℓ∂ℓ̄Vglue)2 f 2
βM /f2βM

C ≡ 3NfTM3



• The quark potential is only power-law suppressed at low , no longer exponentially, 

• Polyakov loops either , or , depending on if  or  dominate, 

• For heavy quarks and any : see as deconfined phase, (nuclear liquid in QCD), 

• -derivatives of  and  vanish, 

•  , 

T

→ 1 power−law 0 Vq Vglue

Vglue

μ ln(ℓ) ln(ℓ̄)

ΔQq,q̄ ± 1 ≃ ± 1 ΔQq,q̄ = 0

The case of |μ | > mq
Heavy quarks deconfine
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