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Motivation 2

• One of the main approaches to studying the hadronic cross sec-
tion at high energies is based on Regge theory;

• In a simple scenario, the scattering amplitude is governed by a
pole at j = αP(t), leading to:

A(s, t) ∝ sαP(t) (1)

where αP(t) denotes the Pomeron trajectory;

▶ Pomeron treated as a colorless state carrying vacuum
quantum numbers



Scattering Amplitude 3

• In the 1970s, Low and Nussinov independently proposed inter-
preting the Pomeron as a two-gluon exchange (2GE);

• The corresponding amplitude, later formalized through pertur-
bation theory, is expressed as:

A(s, t) = is
8

9
n2pα

2
s [T1 − T2] (2)

where T1 and T2 represent the contributions in which the gluons
couple to the same quark or to different quarks, respectively;

• This model exhibits singularities at −t = 0, arising from the
pole of the gluon propagator at q2 = 0;



β0 Parameter 4

• Landshoff and Nachtmann (LN) proposed modifying the gluon
propagator in the infrared region so that it remains finite at
q2 = 0;

• Within this framework, the Pomeron behaves as a C = +1
photon–like exchange, with amplitude:

iβ20(ūγµu)(ūγ
µu) (3)

where β0 characterizes the strength of the Pomeron–quark cou-
pling and is given by:

β20 =
1

36π2

∫
d2k

[
g2D(k2)

]2
(4)

• The expression above converges only if the gluon propagator is
non-perturbative;
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• For a more accurate description of high-energy experimental
data, it is essential to reggeize the amplitude;

• Consider a particle of mass M and spin j exchanged in the
t-channel of a scattering process. If the amplitude behaves as
A(s, t) ∝ sα(t), the exchanged particle is said to be reggeized.

• Phenomenologically, this reggeization can be implemented th-
rough the replacement:

s → sα(t)

• In our analysis, the amplitude in the LN model takes the form:

A(s, t) = i sαP(t)
1

s̃0

8

9
n2p

[
T̃1 − T̃2

]
(5)



Non-Perturbative Information 6

The quantities T̃1 and T̃2 are given by:

T̃1 =

∫ s

0
d2k ᾱ

( q
2 + k

)
D
( q
2 + k

)
ᾱ
( q
2 − k

)
D
( q
2 − k

)
[Gp(q, 0)]

2

(6)

T̃2 =

∫ s

0
d2k ᾱ

( q
2 + k

)
D
( q
2 + k

)
ᾱ
( q
2 − k

)
D
( q
2 − k

)
Gp

(
q, k − q

2

)
[
2Gp(q, 0)−Gp

(
q, k − q

2

)]
(7)

• In the amplitude, αP(t) = 1+ϵ+α′
Pt represents the Pomeron

trajectory in the LN model, and s̃0 ≡ s
αP(t)−1
0 . The function

Gp(q, k) corresponds to the convolution of the proton wave
functions:

Gp(q, k) =

∫
d2p dα ψ∗(α, p)ψ(α, p− k − αq) (8)

where ψ(α, p) denotes the amplitude for a quark to carry trans-
verse momentum p and longitudinal fraction α;



Cross Section 7

• By setting k = 0 in the previous expression, the result reduces
to the well-known proton elastic form factor F1(q

2);

• The terms T̃1 and T̃2 encodes the non-perturbative QCD con-
tributions to the amplitude;

• The total cross section σtot(s) and the differential cross section
dσ/dt are given by:

σtot(s) =
ImA(s, t = 0)

s
(9)

dσ

dt
(s, t) =

|A(s, t)|2

16πs2
(10)
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• The non-perturbative dynamics of QCD induces an effective
mass for the gluon m(q2);

• The Schwinger–Dyson equations indicate that a finite propa-
gator is associated with the dynamical generation of mass for
gluons;

• Lattice QCD studies indicate that:

▶ The momentum dependence of the gluon mass appears in
both SU(2) and SU(3);

▶ The gluon propagator remains finite in the infrared region;

• Intrinsically related to the dynamical gluon mass is the QCD
effective charge ᾱ(q2);



Charge and Propagator 9

• The effective charge is expressed as:

1

ᾱ(q2)
= b0 ln

(
q2 +m2(q2)

Λ2

)
(11)

where b0 = β0/4π = (33− 2nf )/12π is the first coefficient of the
QCD β-function and Λ a QCD dimensional parameter;

• The propagator Dµν = −igµνD(q2) has a scaling factor given
by:

D−1(q2) =
[
q2 +m2(q2)

]
bg2 ln

[
q2 + 4m2(q2)

Λ2

]
(12)

• Functional forms for m(q2) and for the non-perturbative pro-
pagator Dµν were obtained by Cornwall via the Pinch technique;
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• In Euclidean space, the dynamical mass is given by:

m2(q2) = m2
g

 ln
(
q2+4m2

g

Λ2

)
ln
(
4m2

g

Λ2

)

−12/11

(13)

where b = b0/4π and m2
g = m2(0);

• Through non-linear Schwinger–Dyson equations, we can obtain
a more general version of the previous equation:

m2
log(q

2) = m2
g

 ln
(
q2+ρm2

g

Λ2

)
ln
(
ρm2

g

Λ2

)

−1−γ1

(14)

where γ1 = −6(1 + c2 − c1)/5, with c1 and c2 being parameters
related to the gluon self-energy;
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• The parameters ρ and mg control the behavior of the dynami-
cal mass in the infrared region;

• A second possibility for the dynamical mass in asymptotic re-
gions is given by a power law:

m2
pl(q

2) =
m4

g

q2 +m2
g

 ln
(
q2+ρm2

g

Λ2

)
ln
(
ρm2

g

Λ2

)

γ2−1

(15)

where γ2 = (4 + 6c1)/5;

• The values ρ = 4, γ1 = 0.084 and γ2 = 2.36 were fixed, since
these minimize χ2/ν, where ν is the number of degrees of freedom;



Product of Effective Charge and Propagator 12

• The effective charge can be rewritten in terms of the dynamical
mass functions mi(q

2) as:

ᾱi(q
2) =

1

b0 ln
(
q2+4m2

i (q
2)

Λ2

) , i = log, pl (16)

• Using the previous results, we obtain expressions that ensure
the convergence of the integrals T̃1 and T̃2:

1

ᾱi(q2)D(q2)
= b0

[
q2 +m2

i (q
2)
]
ln

(
q2 + 4m2

i (q
2)

Λ2

)
(17)

where in the propagator expression we take g2 = 4π ᾱi(q
2);



Ensembles and Form Factor 13

• In this model, a good description of the differential and total
cross sections requires:

▶ A reggeized amplitude;

▶ An alternative implementation of the convolution of the
proton wave function;

• As shown previously, for k2 = 0, the wave function reduces to:

Gp(q, 0) = F1(q
2) = exp

[
−

(
Na∑
n=1

an|t|n
)]

(18)

where −t = q2;

• Using χ2 minimization, we find that Na = 2 provides a good
description of dσ/dt for both the ATLAS and TOTEM datasets;
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• Following the philosophy of maintaining the smallest possible
number of free parameters, we adopt the expansion with Na = 2;

• In total, the model contains four free parameters:

mg, ϵ, a1, a2

• Whenever possible, we set nf = 3 and Λ = 284 MeV for the
following reasons:

▶ These values are consistent with those used in calculations
of strong-interaction processes;

▶ Our primary objective is to investigate the behavior of the
dynamical gluon mass;
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• As presented previously:

β20 =
1

36π2

∫
d2k

[
g2D(k2)

]2
• Since the phenomenological values of the dynamical gluon mass
are known, we can use them to compute the corresponding quan-
tities2;

β0, log,ATLAS = 2.33+0.39
−0.30GeV−1 β0,pl,ATLAS = 2.13+0.33

−0.25GeV−1

β0, log,TOTEM = 2.04+0.28
−0.22GeV−1 β0,pl,TOTEM = 1.91+0.22

−0.19GeV−1

2G. B. Bopsin, E. G. S. Luna, A. A. Natale, and M. Peláez, Phys. Rev.
D 107 (2023) 114011
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• We aim to evaluate the amplitude:

A(s, t) = i sαP(t)
1

s̃0

8

9
n2p

[
T̃1 − T̃2

]
where:

T̃1 =

∫ s

0
d2k ᾱ

( q
2 + k

)
D
( q
2 + k

)
ᾱ
( q
2 − k

)
D
( q
2 − k

)
[Gp(q, 0)]

2

T̃2 =

∫ s

0
d2k ᾱ

( q
2 + k

)
D
( q
2 + k

)
ᾱ
( q
2 − k

)
D
( q
2 − k

)
Gp

(
q, k − q

2

) [
2Gp(q, 0)−Gp

(
q, k − q

2

)]
• Here, ᾱ and D denote the effective charge and propagator sca-
ling factor, respectively, both depending on q2 and on the chosen
dynamical mass model.
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• The inverse of the product of the effective charge and propaga-
tor is:

1

ᾱi(q2)D(q2)
= b0

[
q2 +m2

i (q
2)
]
ln

(
q2 + 4m2

i (q
2)

Λ2

)
• For each ensemble, we consider both dynamical gluon mass
model:

m2
log(q

2) = m2
g

 ln

(
q2+ρm2

g

Λ2

)
ln
(

ρm2
g

Λ2

)


−1−γ1

m2
pl(q

2) =
m4

g

q2 +m2
g

 ln

(
q2+ρm2

g

Λ2

)
ln
(

ρm2
g

Λ2

)


γ2−1
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• To apply eikonal unitarization, we first express the scattering
amplitude Hpp(s, b) in terms of the Born amplitude χpp(s, b);

• The physical scattering amplitude in momentum space is ob-
tained through the inverse Fourier-Bessel transform of Hpp(s, b):

App(s, t) = s

∫ ∞

0
b db J0(bq)Hpp(s, b) (19)

• The explicit form of H[χ(s, b)] depends on the chosen unita-
rization scheme and follows from the solution of the unitarity
equation:

ImH(s, b) =
1±

√
1− (1 + ρ2)Gin(s, b)

1 + ρ2
(20)
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• The eikonal unitarization corresponds to choosing the solution
with the negative square root in the unitarity equation;

• This leads to the eikonal expression:

H(s, b) = i
[
1− e iχ(s,b)

]
(21)

• Substituting we get the eikonal scattering amplitude:

Aeik(s, t) = is

∫ ∞

0
b db J0(bq)

[
1− e iχ(s,b)

]
(22)



Methodology 20

• Numerical evaluation of the integrals is performed with scipy

(python) using non-adaptive methods (fixed quad);

▶ Adaptive methods produced significant numerical
instabilities;

• First, we reproduce the fits of σtot and dσ/dt reported in the
reference paper as a validation of our code and methodology;

• Minimization of free parameters is implemented using iminuit;
▶ Other libraries such as PYROOT did not satisfy the

programming requirements;

• Future steps:

▶ Numerical eikonalization of the amplitude;



Reproduction of Results — σtot 21

• Fit performed using the least-squares method with iminuit;
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Figura: Total cross section minimized via iminuit.
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Figura: Differential cross section (ATLAS) minimized via iminuit.
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Figura: Differential cross section (TOTEM) minimized via iminuit.
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• Developments already implemented:

▶ Reproduction of the amplitude at Born level;

▶ Adaptation of the code for numerical eikonalization;

▶ Construction of the required equations and integrals;
▶ Integrals currently evaluated via mid-point Riemann sum;

• Work to be carried out:

▶ Fit of dσ/dt in the eikonal model using data at
√
s = 7, 8,

and 13 TeV for ATLAS and TOTEM;
▶ Using χ2 minimization;

▶ Determination of the free parameters and computation of
the eikonalized σtot(s) via iminuit;



Thank you!
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