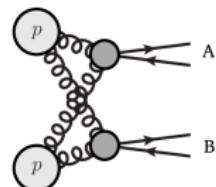
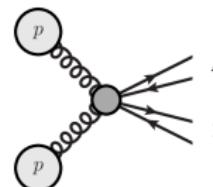


CGC description of double quarkonia production

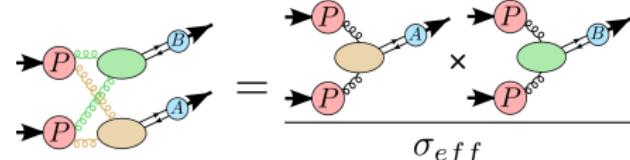
Benjamin Guiot
in collaboration with
Franco Barattini and Marat Siddikov

WONPAQCD2025

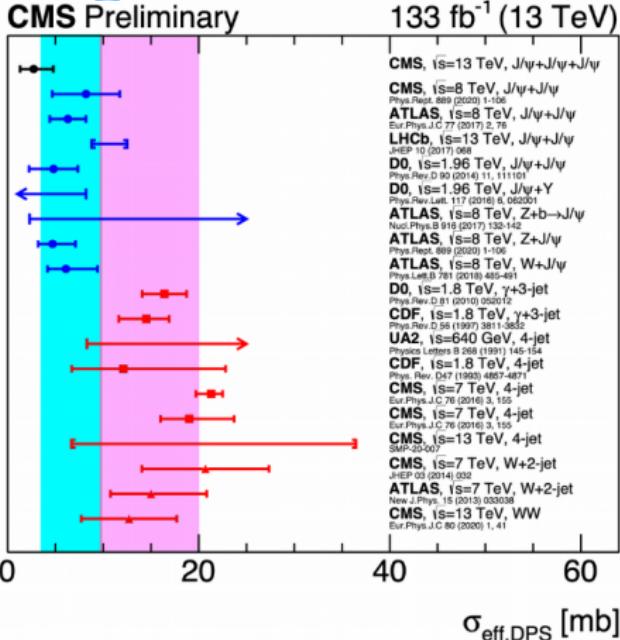
UNIVERSIDAD TÉCNICA
FEDERICO SANTA MARÍA



Heavy quarkonia (bound states of $c\bar{c}$ or $b\bar{b}$)

Production mechanism:

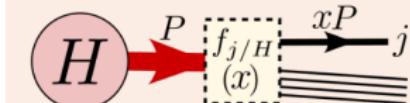

- ★ Color evaporation model (CEM)
- ★ Non-relativistic QCD (NRQCD)
- ★ Color-singlet model (part of NRQCD)

Why double quarkonia production?

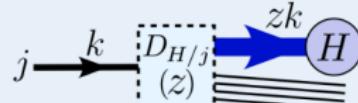

- ★ Gives access to double-parton scattering (DPS)
- ★ SPS and DPS do not have the same kinematics
- ★ Uncertainties on σ_{eff} , pocket formula

$$\sigma^{\text{DPS}} = \frac{\sigma^{\text{SPS}}(pp \rightarrow A)\sigma^{\text{SPS}}(pp \rightarrow B)}{\sigma_{\text{eff}}}$$

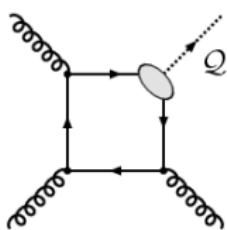
Studying the fragmentation mechanism



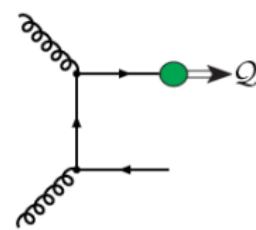
- σ_{eff} smaller for quarkonia.
- Since $\sigma^{\text{SPS}} + \sigma^{\text{DPS}} \simeq \sigma^{\text{exp}}$
- It suggests a missing contribution.


Our main goal: Evaluate the fragmentation contribution

What is a fragmentation function?


Parton Distribution Functions (PDFs)

Fragmentation Functions (FFs)


Direct versus fragmentation production (SPS)

Direct contribution:

Included in estimations of the SPS.

Evaluated with NRQCD.

Fragmentation contribution:

Not included for double-quarkonia production.

Non relativistic QCD

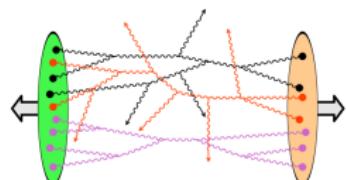
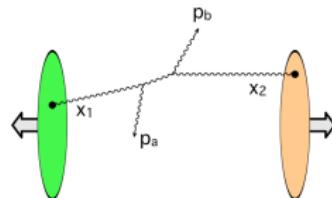
- Top-down effective field theory built from QCD.
- $\mu \sim m_Q$ is the ultraviolet scale.
- Expansion parameters: α_s and v , the relative velocity.
- $\sigma_{Q\bar{Q}(\kappa)}$: Feynman rules + projector for quantum state κ .

Factorization hypothesis:

$$\sigma^H = \sum_{\kappa} \sigma_{Q\bar{Q}(\kappa)}(\mu) \otimes \mathcal{O}_{\kappa}^H(\mu) \quad (1)$$

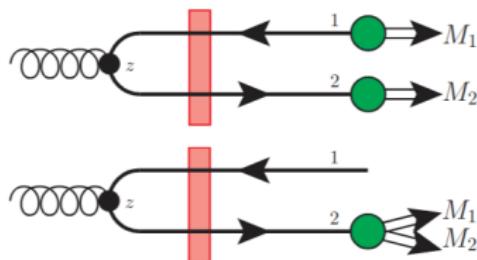
\mathcal{O}_{κ}^H : Long-distance-matrix element (LDME)

NRQCD Factorization												
	$1, {}^1S_0$	$1, {}^3S_1$	$8, {}^1S_0$	$8, {}^3S_1$	$1, {}^1P_1$	$1, {}^3P_0$	$1, {}^3P_1$	$1, {}^3P_2$	$8, {}^1P_1$	$8, {}^3P_0$	$8, {}^3P_1$	$8, {}^3P_2$
η_c	1		v^4	v^3					v^4			
J/ψ		1	v^3	v^4					v^4	v^4	v^4	



Color Glass Condensate effective theory

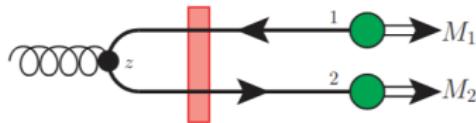
Factorization theorems:

- Proven to all orders in simple cases, e.g., DIS.
- Require a hard scale Q^2 : allows ignoring graph suppressed by $\left(\frac{1}{Q^2}\right)^n$.
- Large $Q^2 \rightarrow$ small occupation number: at most 1 parton collided.


CGC:

- At small Q^2 and small x , the gluon occupation number is large.
- The CGC is an effective theory built to describe this regime.

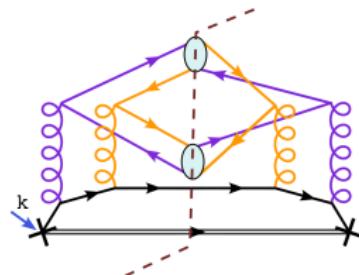
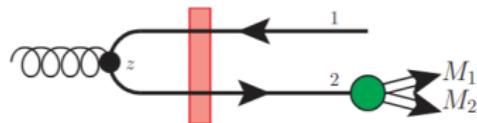
Pictures taken from Gelis, Iancu, Jalilian-Marian, Venugopalan, Ann.Rev.Nucl.Part.Sci. 60 (2010).


Color Glass Condensate effective theory

Dilute-dense colliding system:

- The gluon comes from the dilute proton.
- The red lines (the shock wave) represents the interaction of the $Q\bar{Q}$ with the dense proton.
- $0 + 1 + 2 + \dots$ interactions.
- Standard Feynman rules + specific CGC rules (for the Wilson line).
- Single and double fragmentation.

Single fragmentation

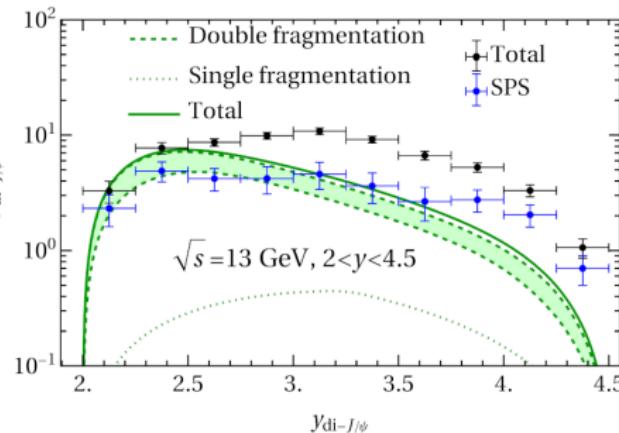
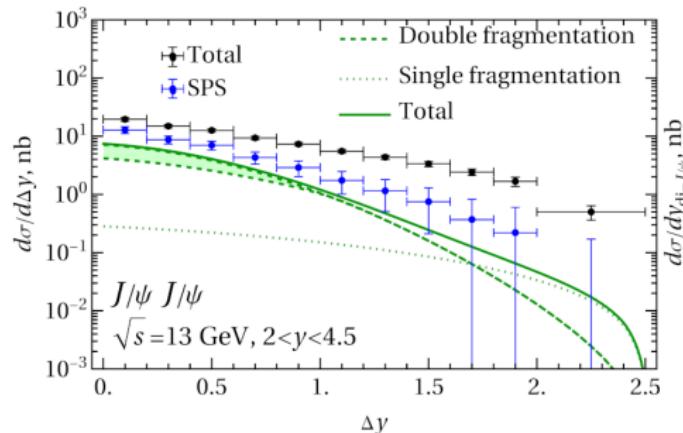



$$\frac{d\sigma_{g+\text{proton} \rightarrow H_1 + H_2 + X}}{dy_1 d^2 \mathbf{P}_1^\perp dy_2 d^2 \mathbf{P}_2^\perp} = \int \frac{dz_1}{z_1^2} \frac{dz_2}{z_2^2} \frac{d\hat{\sigma}_{g+P \rightarrow Q+\bar{Q}}}{dy_1 d^2 \mathbf{p}_1^\perp dy_2 d^2 \mathbf{p}_2^\perp} D_{Q \rightarrow H_1}(z_1) D_{Q \rightarrow H_2}(z_2)$$

with $\mathbf{P}_1^\perp = z_1 \mathbf{p}_1^\perp$ and $\mathbf{P}_2^\perp = z_2 \mathbf{p}_2^\perp$.

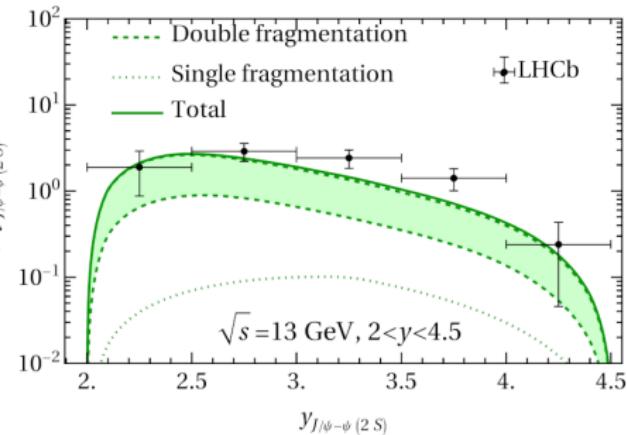
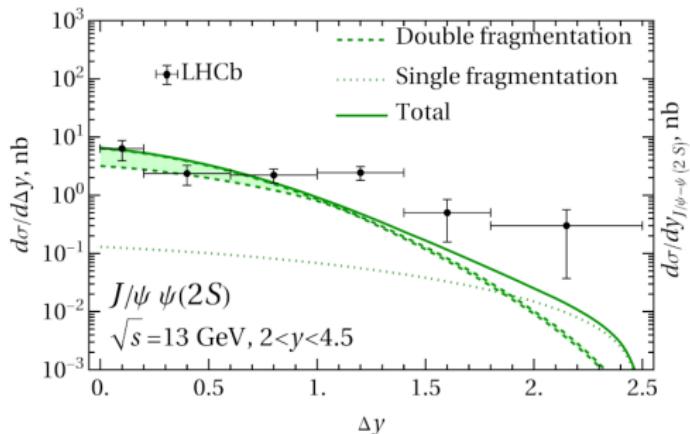
- Heavy numerical simulations for the fully-differential X-section.
- Integrating on transverse momenta simplifies the result.
- We considered two cases: $D_{c \rightarrow H}$ and $D_{b \rightarrow H}$.
- The FFs taken from literature: perturbative + NRQCD.

Double fragmentation

$$\frac{d\sigma_{g+\text{proton} \rightarrow H_1+H_2+X}}{dy_1 dy_2} = \int dz \left(\frac{d\hat{\sigma}_{g+P \rightarrow Q+\bar{Q}}}{dy_1 dy_2} \int_{M_{\min}} dM_{12} D_{b \rightarrow H_1 H_2}(z, \zeta, M_{12}) \right)$$

$$D_{b \rightarrow H_1 H_2}(z_1, z_2, M_{12}, R) \propto \frac{1}{4z} \sum_X \text{Tr}\{\gamma^+ \times \text{cut diagram}\}$$



- The di-quarkonia FF was unknown.
- We did the calculation for the bottom quark with the help of Feyncalc.
- Not clear if our result is still valid at $M_{\min} = 2m_{J/\psi}$ (near-threshold kinematics).

Results: double J/ψ

- Single fragmentation (SF) dominated by the charm contribution.
- SF negligible, except at large Δy .
- $M_{\min} = 6.2$ and $7 \text{ TeV} \rightarrow$ theoretical uncertainty green color band.
- Our results show that the SPS contribution may be larger than expected.
- \Rightarrow smaller DPS \Rightarrow Larger σ_{eff} ?

Results: J/ψ - $\psi(2S)$

Similar conclusions for the J/ψ - $\psi(2S)$ measurement.

Conclusion

- ★ We have evaluated the single- and double-fragmentation contribution to double-quarkonia production.
- ★ The double fragmentation is significant.
- ★ Possible smaller DPS (larger σ_{eff}): may bring agreement with other measurements.
- ★ We have computed for the first time the $D_{b \rightarrow H_1 H_2}$ di-quarkonia fragmentation function.

Thanks for your attention!