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The QGP

State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)

Theorized by QCD

Observed em 2000

Deconfined Quarks and Gluons

Lowest known viscosity

Very short lifetime
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The QGP

Why is it interesting to study quarkonia (cc̄ and bb̄) dissociation?

Many particles are formed in the initial collision.

A fraction of charmonia and bottomonia arrive to the detectors.

Properties of the plasma like temperature, density, magnetic fields, and angular momentum
affect how many of these particles arrive to the detectors.
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Correspondência AdS/CFT
(Maldacena, 1997)
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Correspondência AdS/CFT

Establishes an equivalence between a string theory in 10D and a Conformal Field Theory in 4D.

The string theory space is the AdS5 × S5:

ds2 =
R2

z2
�
dt2 + dx · dx+ dz2

�
. (1)

The meson is represented by a vector field subjected to an action of the form

S = − 1

4g25

∫
d4x

∫ ∞

0

dz
√
−g FmnF

mn. (2)

The 4D field theory is conformal.
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Conformal Symmetry Breaking

Problem
We have to give the theory an energy scale from which we may calculate masses.

Solution
Hard-Wall Model:

S = − 1

4g25

∫
d4x

∫ z0

0

dz
√
−g FmnF

mn, (3)

Soft-Wall Model:

S = − 1

4g25

∫
d4x

∫ ∞

0

dz
√
−g e−ϕ(z)FmnF

mn, (4)

where ϕ(z) = κ2z2.
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Conformal Symmetry Breaking

Problem
The soft-wall model gives the proper behavior of masses, but doesn’t provide the correct
behavior of decay constants.

Solution
Modify the soft-wall model:

S = − 1

4g25

∫
d4x

∫ ∞

0

dz
√
−g e−ϕ(z)FmnF

mn, (5)

onde ϕ(z) = κ2z2 +Mz + tanh

�
1

Mz
− κ√

Γ

�
.
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Masses and Decay Constants
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Masses and Decay Constants

Two point function:

Π(p2) =

∞∑
n=0

fn
2

−p2 −mn
2 + iε

, (6)

where

⟨0|Jµ(0)|n⟩ = εµfnmn and f2n =
3mnΓn→e+e−

4πα2c2V
(7)

Gauge/String duality provides a tool to calculate the LHS of Eq. (??).
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AdS/CFT Correspondence
at Finite Temperature
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Finite Temperature

AdS Black Hole:

ds2 =
R2

z2

�
−f(z)dt2 + dx · dx+ 1

f(z)
dz2

�
, f(z) = 1− z4

z4h
. (8)

Hawking Temperature:

T =
1

4π
|f ′(zh)|. (9)

The action has the same form:

S = − 1

4g25

∫
d4x

∫ ∞

0

dz
√
−g e−ϕ(z)FmnF

mn, (10)

where ϕ(z) = κ2z2 +Mz + tanh

�
1

Mz
− κ√

Γ

�
.
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Other Properties

Density:

ds2 =
R2

z2

�
−f(z)dt2 + dx · dx+ 1

f(z)
dz2

�
, (11)

onde f(z) = 1− z4

z4h
− q2z2hz

4 + q2z6.

Magnetic Field:

ds2 =
R2

z2

�
−f(z)dt2 + d(z)

�
(dx1)2 + (dx2)2

�
+ h(z)(dx3)2 +

1

f(z)
dz2

�
, (12)

where f(z), d(z) e h(z) depend on B and zh.

In any case,

T =
1

4π
|f ′(zh)|. (13)
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Angular momentum

Metric:

ds2 =
R2

z2

h
− dt2

+ ℓ2dφ2 + (dx1)2 + (dx2)2 +
1

f(z)
dz2

i
.

(14)

Boost-like transformation:

t→ γ
�
t− ℓ2Ωφ

�
, φ→ γ(φ+Ωt) where γ =

1√
1− ℓ2Ω2

(15)

As always, T =
1

4π
|f ′(zh)|.

Why do we have to consider plasma rotation?
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Dissociation
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Spectral Functions

Definition:

ρµν(ω) = −2 Im(GR
µν(ω)) (16)

At T = 0:

Π(p2) =
∞∑

n=1

f2n
−p2 −m2

n + iε
=

∞∑
n=1

(−p2 −m2
n−iε)f2n

(p2 +m2
n)

2 + ε2
, (17)

whose imaginary part is proportional to

−
∞∑

n=1

(
f2n/ε if p2 = −m2

n

0 if p2 ̸= −m2
n

∝
∞∑

n=1

f2n δ(p
2 +m2

n), (18)
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Spectral Functions (Ω = 0)

Blue: T = 195MeV, Red: T = 330MeV, Green: T = 465MeV, Purple: T = 600MeV
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Spectral Functions (T = 200MeV)
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Quasinormal Modes

Consider T = 0 again.

We have the action

S = − 1

4g25

∫
d4x

∫ ∞

0

dz
√
−g e−ϕ(z)FmnF

mn. (19)

Taking Vµ(x
µ, z) = ϵµv(ω, z)e

−iωt, we write the equation for the mode:

ω2

f(z)2
v + P (z)v′ + v′′ = 0 −→ −ψ′′(z) + V (z)ψ(z) = ω2ψ(z). (20)

Boundary conditions:

Normalization condition at the AdS boundary:

v(z → 0) = 0 −→ ψ(z → 0) = 0. (21)

Normalization condition as z → ∞:

v(z → ∞) = 0 −→ ψ(z → ∞) = 0. (22)
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Quasinormal Modes

Given the action and the metric, we write the equations of motion.

Taking Vµ(x
µ, z) = ϵµv(ω, z)e

−iωt, we write the equation for the mode:

ω2

f(z)2
v + P (z)v′ + v′′ = 0 −→ −ψ′′(r∗) + V (r∗)ψ(r∗) = ω2ψ(r∗), (23)

The quasionormal modes are determined through the imposition of the boundary conditions

The Dirichlet condition at the AdS boundary:

v(z → 0) = 0 −→ ψ(r∗) = 0, (24)

The field at the horizon has the form of an infilling wave:

v =
�
1− z

zh

�−iω/4πT

−→ ψ(r∗) = e−iωr∗ . (25)
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Quasinormal Modes

17/18



Other Recent and On Going Projects

Configuration entropy of the meson in a plasma with magnetic field.

Quark-antiquark potential (William CUNHA’s poster).

Non-linear Regge trajectories (better fit of masses).

¡Gracias!
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