
Heavy Meson Dissociation in a Rotating Plasma from Holography

Yan Carlo F. Ferreira
Adviser: Nelson R. F. Braga

Instituto de Física
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil

12/2025

Motivation

The QGP

- State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)

The QGP

- State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)
- Theorized by QCD

The QGP

- State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)
- Theorized by QCD
- Observed em 2000

The QGP

- State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)
- Theorized by QCD
- Observed em 2000
- Deconfined Quarks and Gluons

The QGP

- State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)
- Theorized by QCD
- Observed em 2000
- Deconfined Quarks and Gluons
- Lowest known viscosity

The QGP

- State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)
- Theorized by QCD
- Observed em 2000
- Deconfined Quarks and Gluons
- Lowest known viscosity
- Very short lifetime

The QGP

- Why is it interesting to study quarkonia ($c\bar{c}$ and $b\bar{b}$) dissociation?

The QGP

- Why is it interesting to study quarkonia ($c\bar{c}$ and $b\bar{b}$) dissociation?
- Many particles are formed in the initial collision.

The QGP

- Why is it interesting to study quarkonia ($c\bar{c}$ and $b\bar{b}$) dissociation?
- Many particles are formed in the initial collision.
- A fraction of charmonia and bottomonia arrive to the detectors.

The QGP

- Why is it interesting to study quarkonia ($c\bar{c}$ and $b\bar{b}$) dissociation?
- Many particles are formed in the initial collision.
- A fraction of charmonia and bottomonia arrive to the detectors.
- Properties of the plasma like temperature, density, magnetic fields, and angular momentum affect how many of these particles arrive to the detectors.

Correspondência AdS/CFT (Maldacena, 1997)

Correspondência AdS/CFT

- Establishes an equivalence between a string theory in 10D and a *Conformal Field Theory* in 4D.

Correspondência AdS/CFT

- Establishes an equivalence between a string theory in 10D and a *Conformal Field Theory* in 4D.
- The string theory space is the $AdS_5 \times \mathbb{S}^5$:

$$ds^2 = \frac{R^2}{z^2} (dt^2 + d\mathbf{x} \cdot d\mathbf{x} + dz^2) + R^2 d\Omega_5^2. \quad (1)$$

Correspondência AdS/CFT

- Establishes an equivalence between a string theory in 10D and a *Conformal Field Theory* in 4D.
- The string theory space is the $AdS_5 \times \mathbb{S}^5$:

$$ds^2 = \frac{R^2}{z^2} (dt^2 + d\mathbf{x} \cdot d\mathbf{x} + dz^2). \quad (1)$$

Correspondência AdS/CFT

- Establishes an equivalence between a string theory in 10D and a *Conformal Field Theory* in 4D.
- The string theory space is the $AdS_5 \times \mathbb{S}^5$:

$$ds^2 = \frac{R^2}{z^2} (dt^2 + d\mathbf{x} \cdot d\mathbf{x} + dz^2). \quad (1)$$

- The meson is represented by a vector field subjected to an action of the form

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^\infty dz \sqrt{-g} F_{mn} F^{mn}. \quad (2)$$

Correspondência AdS/CFT

- Establishes an equivalence between a string theory in 10D and a *Conformal Field Theory* in 4D.
- The string theory space is the $AdS_5 \times \mathbb{S}^5$:

$$ds^2 = \frac{R^2}{z^2} (dt^2 + d\mathbf{x} \cdot d\mathbf{x} + dz^2). \quad (1)$$

- The meson is represented by a vector field subjected to an action of the form

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^\infty dz \sqrt{-g} F_{mn} F^{mn}. \quad (2)$$

- The 4D field theory is **conformal**.

Conformal Symmetry Breaking

■ Problem

We have to give the theory an energy scale from which we may calculate masses.

Conformal Symmetry Breaking

■ Problem

We have to give the theory an energy scale from which we may calculate masses.

■ Solution

Hard-Wall Model:

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^{z_0} dz \sqrt{-g} F_{mn} F^{mn}, \quad (3)$$

Conformal Symmetry Breaking

■ Problem

We have to give the theory an energy scale from which we may calculate masses.

■ Solution

Hard-Wall Model:

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^{z_0} dz \sqrt{-g} F_{mn} F^{mn}, \quad (3)$$

Soft-Wall Model:

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^{\infty} dz \sqrt{-g} e^{-\phi(z)} F_{mn} F^{mn}, \quad (4)$$

where $\phi(z) = \kappa^2 z^2$.

Conformal Symmetry Breaking

■ Problem

The soft-wall model gives the proper behavior of masses, but doesn't provide the correct behavior of decay constants.

Conformal Symmetry Breaking

■ Problem

The soft-wall model gives the proper behavior of masses, but doesn't provide the correct behavior of decay constants.

■ Solution

Modify the soft-wall model:

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^\infty dz \sqrt{-g} e^{-\phi(z)} F_{mn} F^{mn}, \quad (5)$$

onde $\phi(z) = \kappa^2 z^2 + Mz + \tanh\left(\frac{1}{Mz} - \frac{\kappa}{\sqrt{\Gamma}}\right)$.

Masses and Decay Constants

Resultados holográficos (e experimentais) para o charmônio		
Estado	Massa (MeV)	Constante de decaimento (MeV)
1S	2943(3096.900 \pm 0.006)	399(416.4 \pm 3.8)
2S	3959(3686.097 \pm 0.025)	255(294.3 \pm 2.5)
3S	4757(4039 \pm 1)	198(187.1 \pm 7.6)
4S	5426(4421 \pm 4)	169(160.8 \pm 9.7)

Resultados holográficos (e experimentais) para o botomônio		
Estado	Massa (MeV)	Constante de decaimento (MeV)
1S	6905(9460.30 \pm 0.26)	719(715.0 \pm 2.4)
2S	8871(10023.26 \pm 0.32)	512(497.4 \pm 2.2)
3S	10442(10355.2 \pm 0.5)	427(430.1 \pm 1.9)
4S	11772(10579.2 \pm 1.2)	375(340.7 \pm 9.1)

Masses and Decay Constants

■ Two point function:

$$\Pi(p^2) = \sum_{n=0}^{\infty} \frac{f_n^2}{-p^2 - m_n^2 + i\varepsilon}, \quad (6)$$

where

$$\langle 0 | J_\mu(0) | n \rangle = \varepsilon_\mu f_n m_n \quad \text{and} \quad f_n^2 = \frac{3m_n \Gamma_{n \rightarrow e^+ e^-}}{4\pi \alpha^2 c_V^2} \quad (7)$$

Masses and Decay Constants

- Two point function:

$$\Pi(p^2) = \sum_{n=0}^{\infty} \frac{f_n^2}{-p^2 - m_n^2 + i\varepsilon}, \quad (6)$$

where

$$\langle 0 | J_\mu(0) | n \rangle = \varepsilon_\mu f_n m_n \quad \text{and} \quad f_n^2 = \frac{3m_n \Gamma_{n \rightarrow e^+ e^-}}{4\pi \alpha^2 c_V^2} \quad (7)$$

- Gauge/String duality provides a tool to calculate the LHS of Eq. (??).

AdS/CFT Correspondence at Finite Temperature

Finite Temperature

- AdS Black Hole:

$$ds^2 = \frac{R^2}{z^2} \left(-f(z)dt^2 + d\mathbf{x} \cdot d\mathbf{x} + \frac{1}{f(z)}dz^2 \right), \quad f(z) = 1 - \frac{z^4}{z_h^4}. \quad (8)$$

Hawking Temperature:

$$T = \frac{1}{4\pi} |f'(z_h)|. \quad (9)$$

Finite Temperature

- AdS Black Hole:

$$ds^2 = \frac{R^2}{z^2} \left(-f(z)dt^2 + d\mathbf{x} \cdot d\mathbf{x} + \frac{1}{f(z)}dz^2 \right), \quad f(z) = 1 - \frac{z^4}{z_h^4}. \quad (8)$$

Hawking Temperature:

$$T = \frac{1}{4\pi} |f'(z_h)|. \quad (9)$$

- The action has the same form:

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^\infty dz \sqrt{-g} e^{-\phi(z)} F_{mn} F^{mn}, \quad (10)$$

where $\phi(z) = \kappa^2 z^2 + Mz + \tanh\left(\frac{1}{Mz} - \frac{\kappa}{\sqrt{\Gamma}}\right)$.

Other Properties

■ Density:

$$ds^2 = \frac{R^2}{z^2} \left(-f(z)dt^2 + d\mathbf{x} \cdot d\mathbf{x} + \frac{1}{f(z)}dz^2 \right), \quad (11)$$

onde $f(z) = 1 - \frac{z^4}{z_h^4} - q^2 z_h^2 z^4 + q^2 z^6$.

Other Properties

■ Density:

$$ds^2 = \frac{R^2}{z^2} \left(-f(z)dt^2 + d\mathbf{x} \cdot d\mathbf{x} + \frac{1}{f(z)}dz^2 \right), \quad (11)$$

onde $f(z) = 1 - \frac{z^4}{z_h^4} - q^2 z_h^2 z^4 + q^2 z^6$.

■ Magnetic Field:

$$ds^2 = \frac{R^2}{z^2} \left\{ -f(z)dt^2 + d(z) [(dx^1)^2 + (dx^2)^2] + h(z)(dx^3)^2 + \frac{1}{f(z)}dz^2 \right\}, \quad (12)$$

where $f(z)$, $d(z)$ e $h(z)$ depend on B and z_h .

Other Properties

■ Density:

$$ds^2 = \frac{R^2}{z^2} \left(-f(z)dt^2 + d\mathbf{x} \cdot d\mathbf{x} + \frac{1}{f(z)}dz^2 \right), \quad (11)$$

onde $f(z) = 1 - \frac{z^4}{z_h^4} - q^2 z_h^2 z^4 + q^2 z^6$.

■ Magnetic Field:

$$ds^2 = \frac{R^2}{z^2} \left\{ -f(z)dt^2 + d(z)[(dx^1)^2 + (dx^2)^2] + h(z)(dx^3)^2 + \frac{1}{f(z)}dz^2 \right\}, \quad (12)$$

where $f(z)$, $d(z)$ e $h(z)$ depend on B and z_h .

■ In any case,

$$T = \frac{1}{4\pi} |f'(z_h)|. \quad (13)$$

Angular momentum

■ Metric:

$$\begin{aligned} ds^2 = \frac{R^2}{z^2} \Big[& -dt^2 \\ & + \ell^2 d\varphi^2 + (dx^1)^2 + (dx^2)^2 + \frac{1}{f(z)} dz^2 \Big]. \end{aligned} \tag{14}$$

Angular momentum

■ Metric:

$$ds^2 = \frac{R^2}{z^2} \left[-dt^2 + \ell^2 d\varphi^2 + (dx^1)^2 + (dx^2)^2 + \frac{1}{f(z)} dz^2 \right]. \quad (14)$$

■ Boost-like transformation:

$$t \rightarrow \gamma(t - \ell^2 \Omega \varphi), \quad \varphi \rightarrow \gamma(\varphi + \Omega t) \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1 - \ell^2 \Omega^2}} \quad (15)$$

Angular momentum

■ Metric:

$$\begin{aligned} ds^2 = \frac{R^2}{z^2} \Big[& -\gamma^2 (f(z) - \Omega^2 \ell^2) dt^2 + 2\gamma^2 (1 - f(z)) \Omega \ell^2 dt d\varphi \\ & + \gamma^2 (1 - \Omega^2 \ell^2 f(z)) \ell^2 d\varphi^2 + (dx^1)^2 + (dx^2)^2 + \frac{1}{f(z)} dz^2 \Big]. \end{aligned} \quad (14)$$

■ Boost-like transformation:

$$t \rightarrow \gamma(t - \ell^2 \Omega \varphi), \quad \varphi \rightarrow \gamma(\varphi + \Omega t) \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1 - \ell^2 \Omega^2}} \quad (15)$$

■ As always, $T = \frac{1}{4\pi} |f'(z_h)|$.

Angular momentum

- Metric:

$$\begin{aligned} ds^2 = \frac{R^2}{z^2} \Big[& -\gamma^2 (f(z) - \Omega^2 \ell^2) dt^2 + 2\gamma^2 (1 - f(z)) \Omega \ell^2 dt d\varphi \\ & + \gamma^2 (1 - \Omega^2 \ell^2 f(z)) \ell^2 d\varphi^2 + (dx^1)^2 + (dx^2)^2 + \frac{1}{f(z)} dz^2 \Big]. \end{aligned} \quad (14)$$

- Boost-like transformation:

$$t \rightarrow \gamma(t - \ell^2 \Omega \varphi), \quad \varphi \rightarrow \gamma(\varphi + \Omega t) \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1 - \ell^2 \Omega^2}} \quad (15)$$

- As always, $T = \frac{1}{4\pi} |f'(z_h)|$.
- Why do we have to consider plasma rotation?

Dissociation

Spectral Functions

■ Definition:

$$\rho_{\mu\nu}(\omega) = -2 \operatorname{Im}(G_{\mu\nu}^R(\omega)) \quad (16)$$

Spectral Functions

- **Definition:**

$$\rho_{\mu\nu}(\omega) = -2 \operatorname{Im}(G_{\mu\nu}^R(\omega)) \quad (16)$$

- At $T = 0$:

$$\Pi(p^2) = \sum_{n=1}^{\infty} \frac{f_n^2}{-p^2 - m_n^2 + i\varepsilon} = \sum_{n=1}^{\infty} \frac{(-p^2 - m_n^2 - i\varepsilon) f_n^2}{(p^2 + m_n^2)^2 + \varepsilon^2}, \quad (17)$$

Spectral Functions

■ Definition:

$$\rho_{\mu\nu}(\omega) = -2 \operatorname{Im}(G_{\mu\nu}^R(\omega)) \quad (16)$$

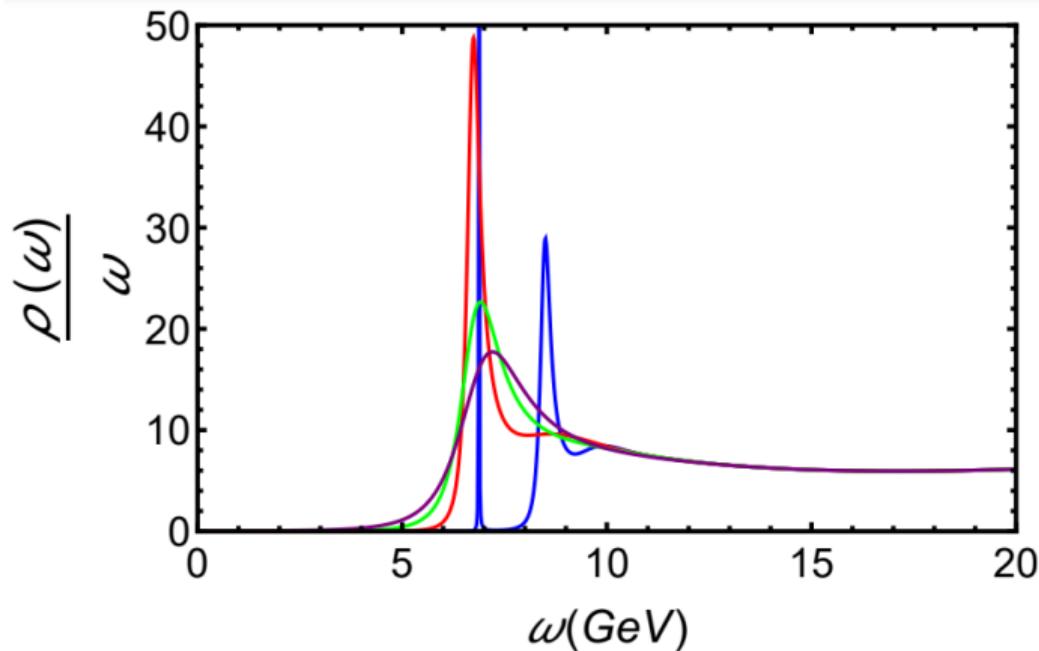
■ At $T = 0$:

$$\Pi(p^2) = \sum_{n=1}^{\infty} \frac{f_n^2}{-p^2 - m_n^2 + i\varepsilon} = \sum_{n=1}^{\infty} \frac{(-p^2 - m_n^2 - i\varepsilon) f_n^2}{(p^2 + m_n^2)^2 + \varepsilon^2}, \quad (17)$$

whose imaginary part is proportional to

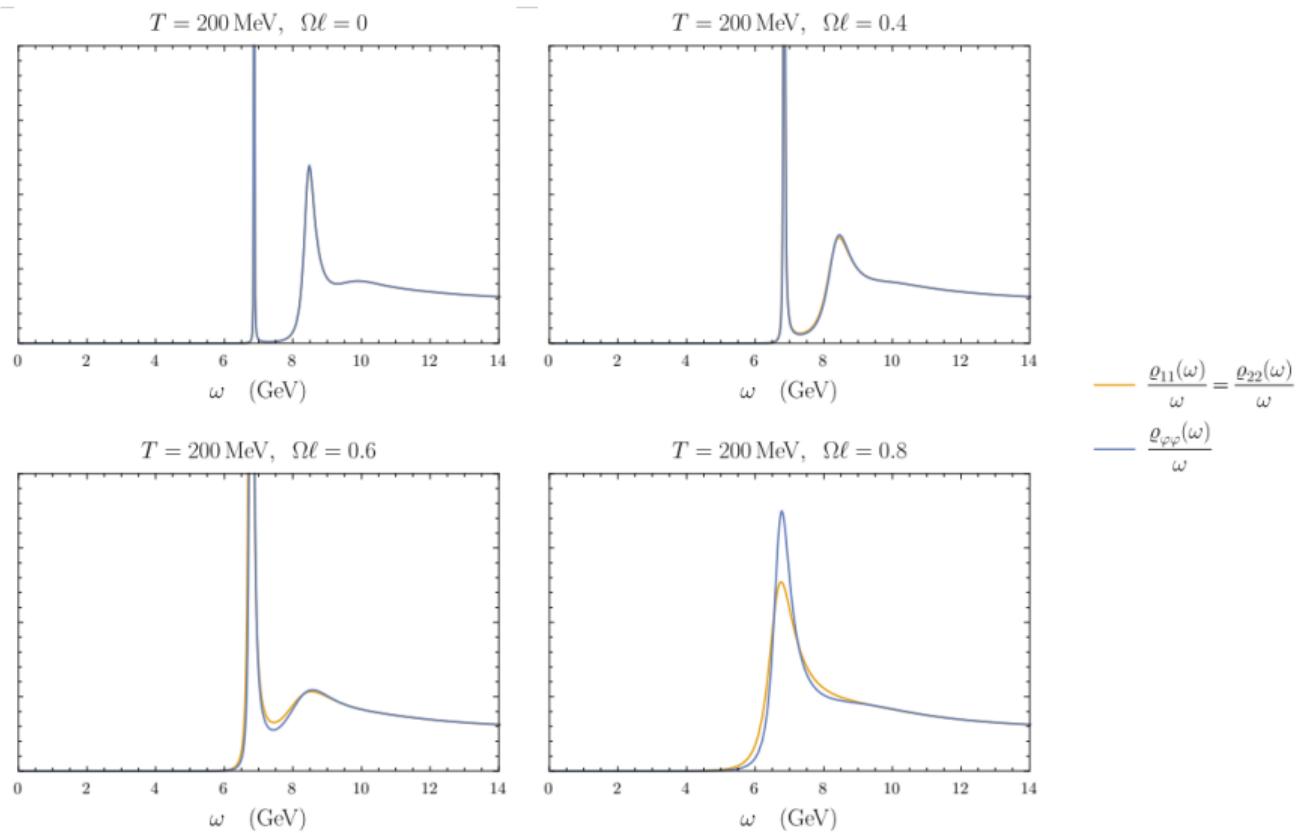
$$- \sum_{n=1}^{\infty} \begin{cases} f_n^2 / \varepsilon & \text{if } p^2 = -m_n^2 \\ 0 & \text{if } p^2 \neq -m_n^2 \end{cases} \propto \sum_{n=1}^{\infty} f_n^2 \delta(p^2 + m_n^2), \quad (18)$$

Spectral Functions ($\Omega = 0$)



Blue: $T = 195\text{MeV}$, Red: $T = 330\text{MeV}$, Green: $T = 465\text{MeV}$, Purple: $T = 600\text{MeV}$

Spectral Functions ($T = 200\text{MeV}$)



Quasinormal Modes

- Consider $T = 0$ again.
- We have the action

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^\infty dz \sqrt{-g} e^{-\phi(z)} F_{mn} F^{mn}. \quad (19)$$

Quasinormal Modes

- Consider $T = 0$ again.

- We have the action

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^\infty dz \sqrt{-g} e^{-\phi(z)} F_{mn} F^{mn}. \quad (19)$$

- Taking $V_\mu(x^\mu, z) = \epsilon_\mu v(\omega, z) e^{-i\omega t}$, we write the equation for the mode:

$$\frac{\omega^2}{f(z)^2} v + P(z)v' + v'' = 0 \quad \longrightarrow \quad -\psi''(z) + V(z)\psi(z) = \omega^2\psi(z). \quad (20)$$

Quasinormal Modes

- Consider $T = 0$ again.

- We have the action

$$\mathcal{S} = -\frac{1}{4g_5^2} \int d^4x \int_0^\infty dz \sqrt{-g} e^{-\phi(z)} F_{mn} F^{mn}. \quad (19)$$

- Taking $V_\mu(x^\mu, z) = \epsilon_\mu v(\omega, z) e^{-i\omega t}$, we write the equation for the mode:

$$\frac{\omega^2}{f(z)^2} v + P(z) v' + v'' = 0 \quad \longrightarrow \quad -\psi''(z) + V(z)\psi(z) = \omega^2\psi(z). \quad (20)$$

- Boundary conditions:

- Normalization condition at the AdS boundary:

$$v(z \rightarrow 0) = 0 \quad \longrightarrow \quad \psi(z \rightarrow 0) = 0. \quad (21)$$

- Normalization condition as $z \rightarrow \infty$:

$$v(z \rightarrow \infty) = 0 \quad \longrightarrow \quad \psi(z \rightarrow \infty) = 0. \quad (22)$$

Quasinormal Modes

- Given the action and the metric, we write the equations of motion.

Quasinormal Modes

- Given the action and the metric, we write the equations of motion.
- Taking $V_\mu(x^\mu, z) = \epsilon_\mu v(\omega, z) e^{-i\omega t}$, we write the equation for the mode:

$$\frac{\omega^2}{f(z)^2} v + P(z)v' + v'' = 0 \quad \longrightarrow \quad -\psi''(r_*) + V(r_*)\psi(r_*) = \omega^2\psi(r_*), \quad (23)$$

Quasinormal Modes

- Given the action and the metric, we write the equations of motion.
- Taking $V_\mu(x^\mu, z) = \epsilon_\mu v(\omega, z) e^{-i\omega t}$, we write the equation for the mode:

$$\frac{\omega^2}{f(z)^2} v + P(z)v' + v'' = 0 \quad \longrightarrow \quad -\psi''(r_*) + V(r_*)\psi(r_*) = \omega^2\psi(r_*), \quad (23)$$

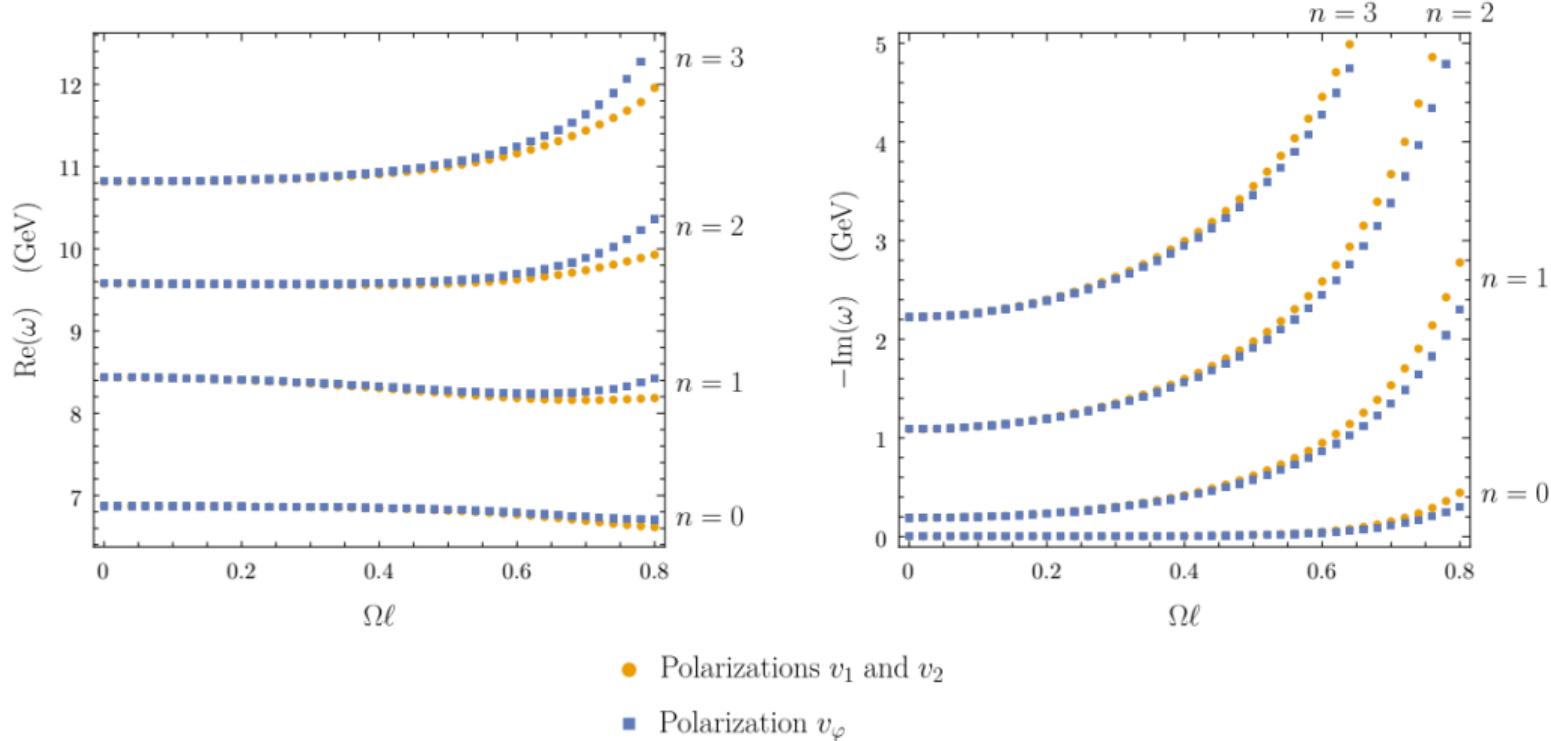
- The quasinormal modes are determined through the imposition of the boundary conditions
 - The Dirichlet condition at the AdS boundary:

$$v(z \rightarrow 0) = 0 \quad \longrightarrow \quad \psi(r_*) = 0, \quad (24)$$

- The field at the horizon has the form of an infilling wave:

$$v = \left(1 - \frac{z}{z_h}\right)^{-i\omega/4\pi T} \quad \longrightarrow \quad \psi(r_*) = e^{-i\omega r_*}. \quad (25)$$

Quasinormal Modes



Other Recent and On Going Projects

- Configuration entropy of the meson in a plasma with magnetic field.
- Quark-antiquark potential (William CUNHA's poster).
- Non-linear Regge trajectories (better fit of masses).

Other Recent and On Going Projects

- Configuration entropy of the meson in a plasma with magnetic field.
- Quark-antiquark potential (William CUNHA's poster).
- Non-linear Regge trajectories (better fit of masses).

¡Gracias!