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The QGP

m State of matter formed after heavy ion collisions (Au-Au or Pb-Pb, for example)
m Theorized by QCD

m Observed em 2000

Deconfined Quarks and Gluons
m Lowest known viscosity

m Very short lifetime
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The QGP

m Why is it interesting to study quarkonia (c¢ and bb) dissociation?
m Many particles are formed in the initial collision.

m A fraction of charmonia and bottomonia arrive to the detectors.

m Properties of the plasma like temperature, density, magnetic fields, and angular momentum
affect how many of these particles arrive to the detectors.
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Correspondéncia AdS/CFT

m Establishes an equivalence between a string theory in 10D and a Conformal Field Theory in 4D.

m The string theory space is the AdS5 x S°:
R2
ds® = —Q(dtz +dx - dx + dz?). (1)

m The meson is represented by a vector field subjected to an action of the form
1 oo
S = ——2/d4:c/ dz /=g Fpn F™". (2)
4gs 0

m The 4D field theory is conformal.
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m Problem
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m Solution
Hard-Wall Model:

1 0
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Soft-Wall Model:

1
S=- 42 d4/ dz\/—ge G R, F™", (4

where ¢(z) = r222.
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Conformal Symmetry Breaking

= Problem
The soft-wall model gives the proper behavior of masses, but doesn’t provide the correct
behavior of decay constants.

m Solution
Modify the soft-wall model:

S = dz / dzy/—ge *GE, F™" (5)

1
onde ¢(z) = K?2% + Mz +tanh<]wz — \%)




Masses and Decay Constants

| Resultados holograficos (e experimentais) para o charmonio |

Estado || Massa (MeV) Constante de decaimento (MeV)
1S 2943(3096.900 + 0.006) 399(4164 +3.8)
25 3959(3686.097 + 0.025) 55(294.3 + 2.5)
3S 4757(4039 + 1) 198(1871 +7.6
i3 5426(4421 = 4) 169(160.8 = 9.7)
| Resultados holograficos (e experimentais) para o botoménio |
Estado || Massa (MeV) Constante de decaimento (MeV)
1S 6905(9460.30 = 0.26) || 719(715.0 = 2.4)
25 8871(10023.26 £ 0.32) || 512(497.4 £2.2)
35 10442(10355.2 + 0.5) || 427(430.1 + 1.9)
as 11772(10579.2 & 1.2) || 375(340.7 £ 9.1)




Masses and Decay Constants

= Two point function:
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Masses and Decay Constants

= Two point function:

St 2
H 2 _ n
(%) Z—_pg_m3+15, (6)
n=0
where
3m’n]-—"l’b ere
(O17,(0)|n) = epfumy  and  f2 = Znoete (7)

dracey,

m Gauge/String duality provides a tool to calculate the LHS of Eq. (?7).




AdS/CFT Correspondence
at Finite Temperature




Finite Temperature

m AdS Black Hole:

2
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Finite Temperature

m AdS Black Hole:

2 R? 2 1 2 2
ds =3 —f(z)dt* +dx - dx + mdz ) f(z)zl—%. (8)
Hawking Temperature:

1
T=—|f . 9
PRI EN] ©)

m The action has the same form:

1 o0

S = ——2/d4x/ dzv/=ge *GE,  F™ (10)
dg; 0

1
where ¢(z) = k222 + Mz + tanh(]wz - \;})




Other Properties

m Density:
ds? = i <—f( )dt? + dx - dx + 1d22> (11)
AN &)
4
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z
onde f(z) =1— — — 222t + g0,
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m Density:
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m Density:
2 R2 2 1 2 1
ds” = ? —f(Z)dt 4+ dx - dx + mdz , ( )
4
onde f(z)=1-— 274 — 22224+ 225,
h
m Magnetic Field:
s R

e {f (2)de? + d(=)[ (da")? + (d)?] + h(z)(da®)? +

1 2
ek } (12)

22
where f(z), d(z) e h(z) depend on B and z.
m In any case,

T= Elf/(zh)l (13)




Angular momentum

m Metric:
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Angular momentum

m Metric:

2
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m Boost-like transformation:

t—y(t— ), o = v(p + Q) where




Angular momentum

m Metric:
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1
m As always, T'= —|f'(z3)|.
4

m Why do we have to consider plasma rotation?
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Spectral Functions

m Definition:
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Spectral Functions

m Definition:

m At T =0:

© 2
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Spectral Functions

m Definition:

Qv (16)
m At T =0:
o0 2 . (—p? — m2 —ie) f2
p* —mi—ie)f,
I 2\ __ n —_ n n 17
=2 T L wmr e (17)

whose imaginary part is proportional to

n=1

[eS) 2 i 2 o
Z{gn/g :fz 4 mZ o D [t +m?), (18)
= n n=1




Spectral Functions ({2 = 0)

50
40}
3%
QU 20}
10f
0 2 2
0 5 10 15 20

w(GeV)
Blue: T'= 195MeV, Red: T' = 330MeV, Green: T = 465MeV, Purple: T' = 600MeV




Spectral Functions (7" = 200MeV)

T'=200MeV, Q=0 T =200MeV, Qf =04

0 2 1 6 s 10 12 o0 2 1 [ 8, 10 12 14 0ulw) _ ol)
w  (GeV) w  (GeV) w  w
. , . Cop (@)
T =200MeV, Q=06 T =200MeV, Q€ =08 —

w  (GeV) w  (GeV)




Quasinormal Modes

m Consider T' = 0 again.

m We have the action

S=- d4/ dzy/—ge *GE, F™. (19)




Quasinormal Modes

m Consider T' = 0 again.

m We have the action
1

S =
4g2

/d4x/0 dzy/—ge *GE, F™. (19)

m Taking V,,(z#,2) = €,0(w, 2z)e~*!, we write the equation for the mode:
2
w

v+ P +0" =0 — =" (2) + V(2)U(2) = w(2). (20)

f(z)?




Quasinormal Modes

m Consider T' = 0 again.

m We have the action
1

S:
4g2

/d4x/ dz/—=ge G E,, F™. (19)
0

m Taking V,,(z#,2) = €,0(w, 2z)e~*!, we write the equation for the mode:
2
ﬁ%ﬂ+P@W+W:O — —"(2) + V(2)(2) = wP(2). (20)
m Boundary conditions:
m Normalization condition at the AdS boundary:
v(z—=0=0 — Y(z—0)=0. (21)

m Normalization condition as z — oo:

v(z—=>00)=0 — P(z—00)=0. (22)
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Quasinormal Modes

m Given the action and the metric, we write the equations of motion.

m Taking V,,(z",2) = €,v(w, z)e~'“!, we write the equation for the mode:

2
Tt T PEY =0 = ) S VU =), ()
z
m The quasionormal modes are determined through the imposition of the boundary conditions
m The Dirichlet condition at the AdS boundary:
v(z—=0)=0 —  (r.) =0, (24)

m The field at the horizon has the form of an infilling wave:

2 —iw/4nT .
v= (1 - ;) () = e, (25)
h




Quasinormal Modes
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Other Recent and On Going Projects

m Configuration entropy of the meson in a plasma with magnetic field.

m Quark-antiquark potential (William CUNHA's poster).

m Non-linear Regge trajectories (better fit of masses).
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