

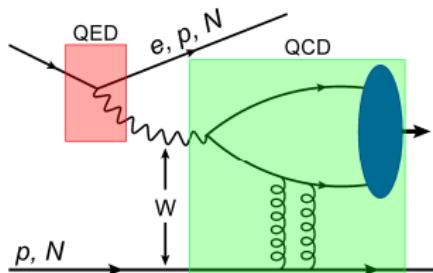
Exclusive photoproduction of charmonium-photon pairs in the small- x kinematics

Ivan Zemlyakov, Marat Siddikov, Michael Roa

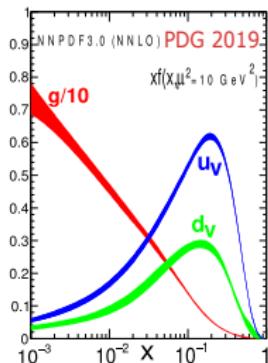
FEDERICO SANTA MARIA
TECHNICAL UNIVERSITY

based on Phys.Rev.D 111 (2025) 5, 056024
and arXiv 2510.14767 [hep-ph]

supported by 'ANID Beca de Doctorado Nacional' 21250067
Fondecyt Regular 1251975 (Chile)


December 4, 2025

Exclusive photoproduction at high energies


Exclusive photoproduction at high energies provides direct access to the gluon content of the hadron

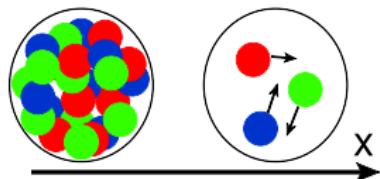
High energy = small- x kinematics: $x_{Bj}^* \sim M_V^2/W^2 \leq 10^{-3}$

*(for quasireal photon)

- Relative signal purity (compared to inclusive channels)
- A large rapidity gap between final particles
- Gluon exchanges give a large contribution due to the high gluon density at small- x

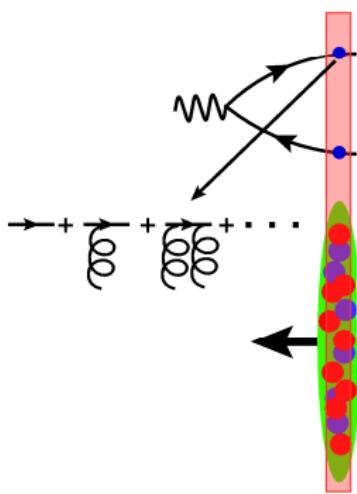
$$\frac{d\sigma_{\gamma p \rightarrow J/\psi p}}{dt} \propto [x g_p(x)]^2$$

[Z. Phys. C 57 (1993) 89]


pp, pN, NN collisions

LHC: $5 * 10^{-6} \leq x_{Bj} \leq 10^{-2}$ [\[arXiv 1301.7084 hep-ex\]](https://arxiv.org/abs/1301.7084)

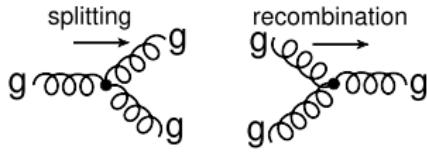
ep, eN collisions


EIC: $5 * 10^{-4} \leq x_{Bj} \leq 10^{-1}$ [\[arXiv 1610.08922 hep-ex\]](https://arxiv.org/abs/1610.08922)

Color Glass Condensate (CGC) model

In the region $x \leq 10^{-3}$, the partonic picture is not applicable anymore \implies The relevant object is the dipole amplitude in the CGC framework.

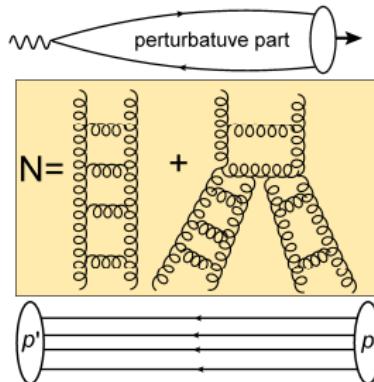
Main ingredients of CGC



- A large number of gluons allows to treat them as static color sources, which generate an effective classical gauge field $A_a^\mu(x)$.
- Eikonal approximation: The parton (q or \bar{q} in our case) moves along a straight line and interacts with the proton shock wave
 - All the interaction is encoded in the Wilson line
$$U(x_\perp) = P \exp \left(ig \int dz^- A^{+a}(z^-, x_\perp) t_a \right)$$
$$U(x_\perp)$$
 resums the effect of multiple gluon exchanges for a parton crossing the shock wave at the point x_\perp

Dipole amplitude

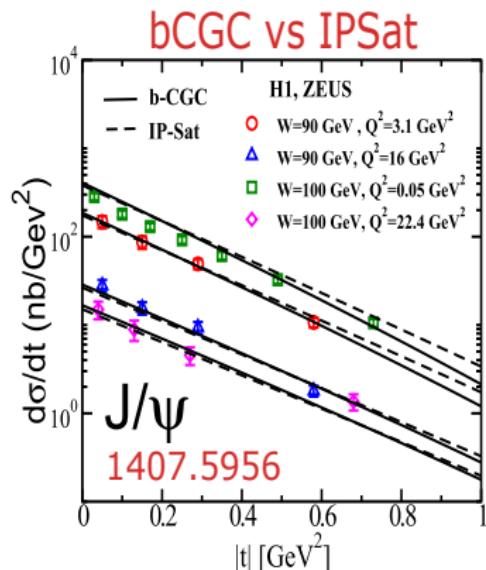
Dipole amplitude = probability for a $q\bar{q}$ dipole to interact with a hadron


$$N(x, r, b) = 1 - \frac{1}{N_c} \text{Tr} \left[U^\dagger(\mathbf{x}_1) U(\mathbf{x}_2) \right]$$

- Evolution in x : the nonlinear Balitsky–Kovchegov (BK) equation

$$\partial_Y N = \alpha_s \mathcal{K} \otimes (N - N^2) \quad [Y = \ln(1/x)]$$

growth – saturation

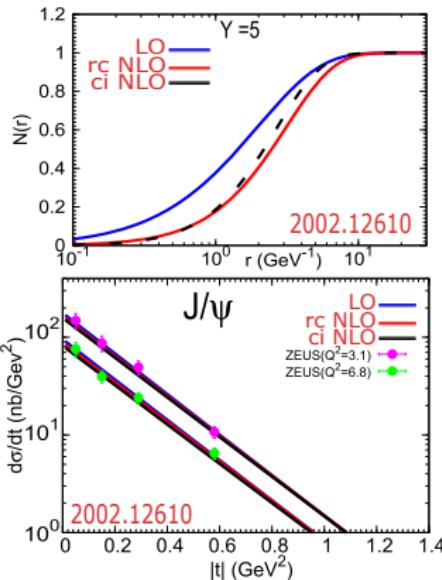


- The BK equation resums much more than a simple two-gluon exchange: it includes BFKL 'ladder' diagrams and 'fan' diagrams
- The BK equation has no known complete analytic solution. In practice, one uses phenomenological models (bCGC, IPsat, bSat,...)
- $N(x, r, b)$ can be defined for protons/neutrons or nuclei

There is a large amount of experimental data on the photoproduction of mesons (J/ψ , Υ , ρ , ...)

But this is not enough:

- many models (IPSat, bCGC, etc.) describe photoproduction equally well
 \Rightarrow we need to additionally constrain $N(x, r, b)$
- It is important to probe quarkonia with different quantum numbers in order to test the mechanisms of their formation and the universality of $N(x, r, b)$



Higher multipoles

LO observables are controlled by the dipole amplitude $N(x, r, b)$.

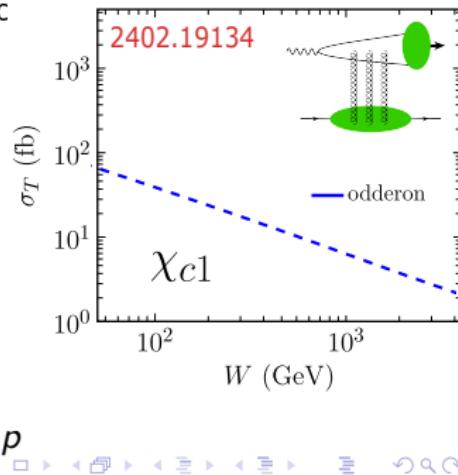
NLO: The emergence of higher multipoles

$$N_{2n} = 1 - \frac{1}{N_c} \text{Tr} [U^\dagger(x_1)U(y_1)\dots U^\dagger(x_n)U(y_n)]$$

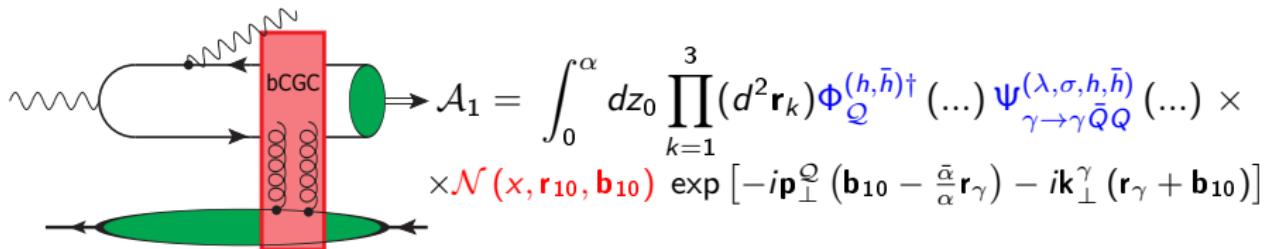
- NLO corrections can lead to substantially different fit parameters

On the other side

- Most phenomenological fits are based on LO, dominant contribution of dipole amplitude
 - LO provides reasonable fits of existing data (DIS, J/ψ photoproduction)
 - At NLO the x and t -dependences remain qualitatively similar to the LO results

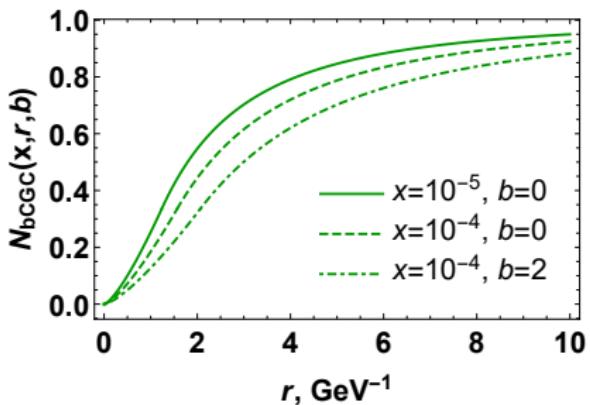

New channels would help us test the universality of $N(x, r, b)$

Characteristics and advantages of $\gamma p \rightarrow \gamma Qp$


$$\gamma p \rightarrow \gamma \eta_c p \quad \text{and} \quad \gamma p \rightarrow \gamma \chi_{cJ} p$$

* $\gamma J/\psi$ can't proceed via pomeron exchanges, proceeds via suppressed odderon

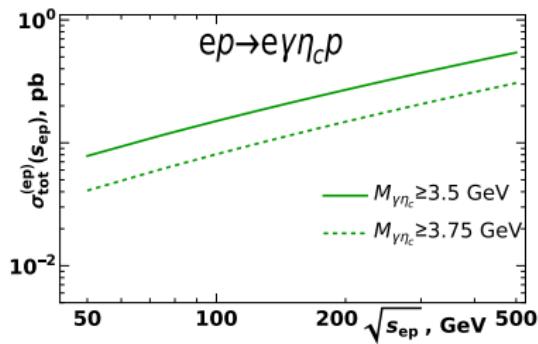
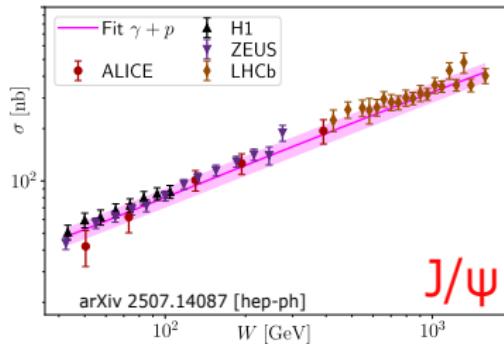
- The WFs of η_c , χ_{cJ} are known from literature
- χ_{cJ} has 3 different states ($J = 0, 1, 2$) with similar masses
 - Since in the limit $m_c \gg \Lambda_{\text{QCD}}$, spin-orbit interaction is suppressed, orbital wave functions of χ_{cJ} are almost identical which provides an ideal test for spin effects
- Charmonia η_c , χ_{cJ} are currently a very active topic in the context of future EIC
 - Study of the odderon (3-gluon exchange in t -channel)
 - Control of background processes, e.g. Primakoff contribution (photon exchange in t -channel)
- The proposed channels have large feed-down contributions and must be removed with a simple cutoff ($M_{\gamma \eta_c} > M_{J/\psi} \circ M_{\gamma \chi_c} > M_{\psi(2S)}$):
 $\gamma p \rightarrow J/\psi p \rightarrow \gamma \eta_c p$ $\gamma p \rightarrow \psi(2S) p \rightarrow \gamma \chi_c p$



Example: photon emission before the shockwave

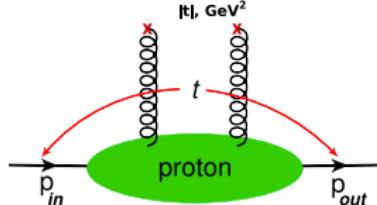
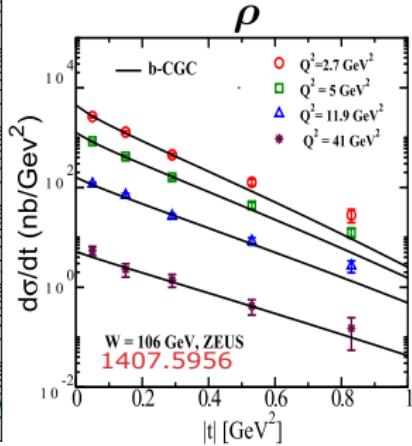
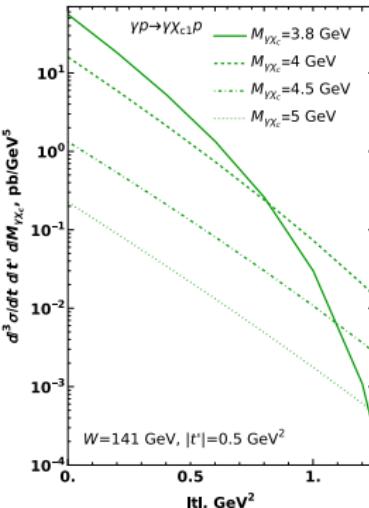
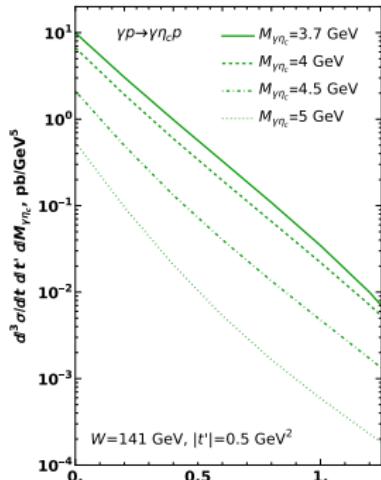
- We will perform evaluations in the photon-proton collision frame
- The incoming and outgoing photons are supposed to be real

We use b-CGC model for the dipole amplitude

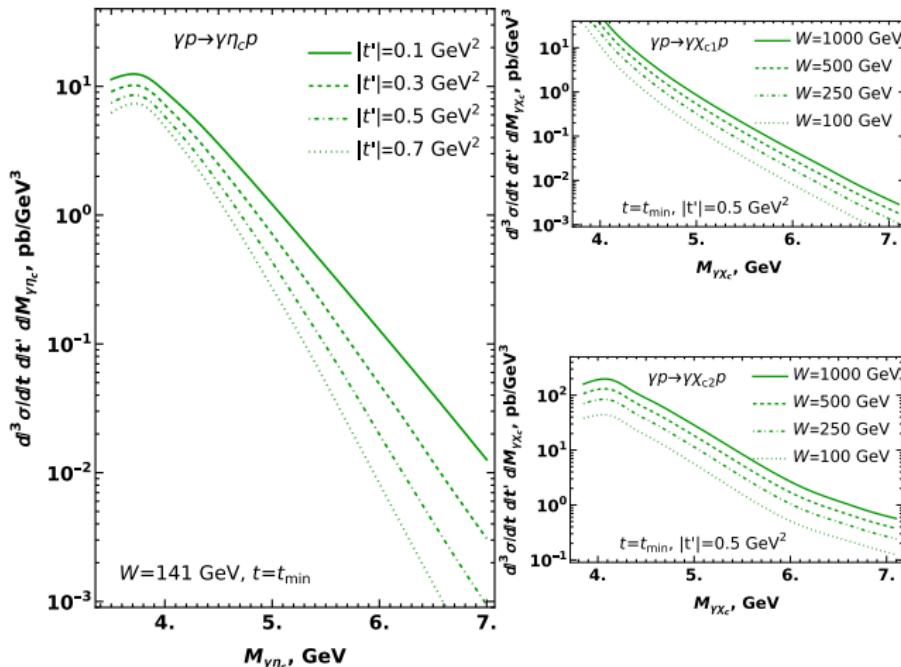



- Fitted simultaneously to inclusive DIS and exclusive processes (J/ψ , ρ ...)
- r -dependence interpolates between color transparency and black-disk limit
- Provides a realistic b -profile convenient for nuclear extensions $N^A(x, r, b)$
- At smaller x , gluon densities become larger, leading to a growth of $N(x, r, b)$

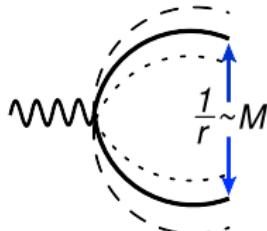
Expected rates with bCGC parametrization





$$\sqrt{s_{\text{sep}}} = 141 \text{ GeV}, \quad \mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}, \quad \int dt \mathcal{L} = 100 \text{ fb}^{-1}$$

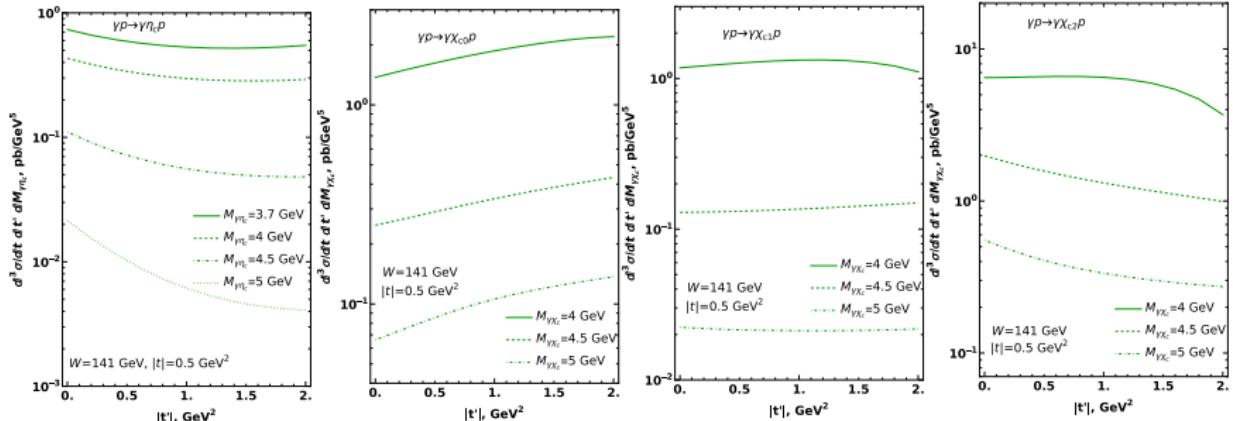
Meson	σ_{tot} [pb]	Decay channel	Branching	N_d	dN_d/dt [month $^{-1}$]
η_c	0.2	$\eta_c(1S) \rightarrow K^0_S K^+ \pi^-$ $\chi_c \rightarrow J/\psi \gamma$ $J/\psi \rightarrow \mu^+ \mu^-$	2.6%	540	139
χ_{c0}	0.45		0.08%	36	9.1
χ_{c1}	0.41		2.0%	816	211
χ_{c2}	2.5		1.1%	2750	695

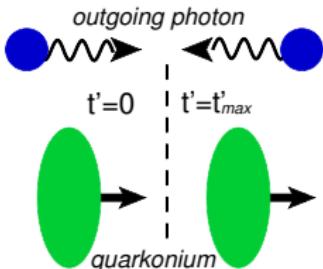

- We do not expect the onset of saturation for the proposed channels
 - Within current uncertainties there is no evidence for a saturation effects in the measured exclusive processes
- $\sigma \sim W^\delta$; $\delta = 0.6 - 0.7$ and almost does not depend on other variables and type of meson (encoded in the dipole amplitude)

Dependencies of the differential cross section



- $N(x, r, b)$ has a Gaussian profile in b , then $d\sigma/d\Omega \sim e^{-C_* t}$
 - In log-scale: almost straight line
- There is additional suppression from constraints in the near-threshold kinematics when $M_{\gamma Q} \rightarrow M_Q$

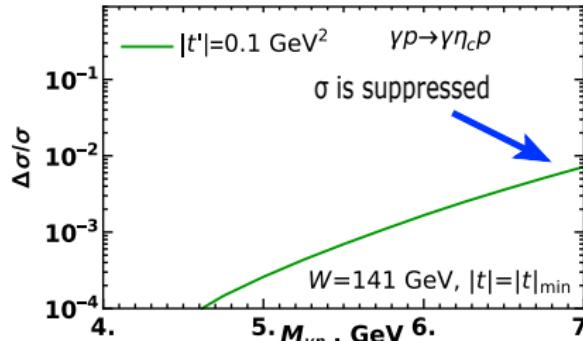

The observed t -dependence is the same for different mesons; It's also a general feature of $2 \rightarrow 2$ photoproduction of both light and heavy quarkonia


Photon-meson invariant mass: new independent kinematic variable

- encoded in the perturbative part
 - different dependence for different mesons
- responsible for the size of the dipole
- The differential cross section decreases rapidly as $M_{\gamma Q}$ increases

The momentum transfer $t' = (k_{out}^\gamma - k_{in}^\gamma)^2$ determines the angle between the meson and the final-state photon

- The photon and meson momenta are collinear at $t' = 0$ and become anti-collinear at $t'_{max} = M_{\gamma Q}^2 - M_Q^2$
- The t' -dependence is incorporated in the perturbative part
 - different dependence for different mesons
- The t' is rather mild for small $|t'| \ll |t'|_{max}$

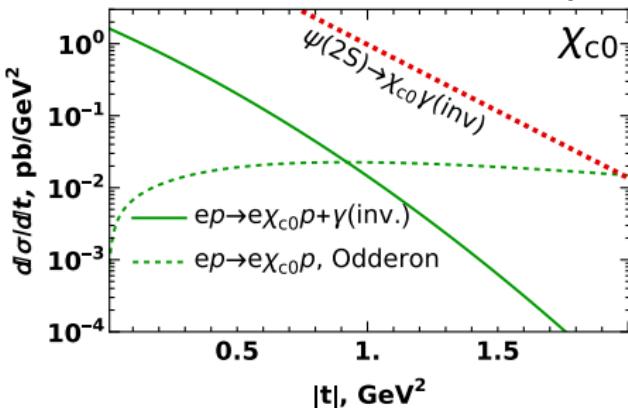

Polarizations of the particles

Helicity conservation is exact at $p_{\perp}^Q = 0$ where it coincides with the projection of the angular momentum on the collision axis

Helicity conservation law: $H_{\gamma}^{(in)} = H_Q + H_{\gamma}^{(out)}$

For $p_{\perp}^Q \neq 0$ the selection rule can be violated; however, the helicity-violating amplitudes are suppressed

Example for η_c ($H_{\eta_c} = 0$): We have the helicity-flip part $H_{\gamma}^{(in)} = -H_{\gamma}^{(out)}$ and the non-flip part $H_{\gamma}^{(in)} = H_{\gamma}^{(out)}$



Helicity-flip part* is strongly suppressed in the region which gives the dominant contribution

* not suppressed only for χ_{c2} ; for η_c , χ_{c0} and χ_{c1} it violates helicity conservation

Comparison with odderon-mediated channel

Odderon is taken from [PRD 110 (2024) 1, 014025]

The γQ photoproduction can contaminate the aforementioned odderon-mediated Q production if the final photon is undetected!

- The dominant contribution for $\chi_c\gamma$ is radiative decay of $\psi(2S)$
 - The pictures for χ_{c1} , χ_{c2} and η_c are similar (with $J/\psi \rightarrow \eta_c\gamma$ feed-down contribution for η_c)
 - Feed-down contribution for the study of pomeron-mediated γQ production **can be easily eliminated** by using cutoff on invariant mass
- The odderon-mediated process **is the smallest one** at $t \leq 1 \text{ GeV}^2$

- ✓ The photoproduction of $\gamma\eta_c$ and $\gamma\chi_{cJ}$ is measurable at EIC and LHC energies
- ✓ The suggested channels when the emitted photon is not observed may contaminate the exclusive production of η_c and χ_{cJ} mesons via odderon
- ✓ We have found a large contribution from radiative decay may challenge the use of η_c , χ_c photoproduction for studies of odderons

Thank you for your attention!