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o QCD perturbation theory for many observables produces a formal

series
X
pert(aX)— E P( ) n+1

which is asymptotic, with Iarge—order behaviour

pS) ~ ! (2%) (1+0(1/n)).

@ Divergence is tied to renormalon singularities in the Borel plane.

@ The inverse Borel transform from the approximate Borel sum is ill
defined. Here the associated error is not quantified.

@ To define nonperturbative (NP) quantities (masses, condensates,
gluelumps) consistently, the perturbative series must be handled with
exponential accuracy.

César Ayala (UTA, Chile) Hyperasymptotics & Gluelumps December 04, 2025 3/30



o Alternative approach: Minimal Term or superasymptotic
approximation (truncation when the series begins to diverge),
advantages and improvements:
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o Alternative approach: Minimal Term or superasymptotic
approximation (truncation when the series begins to diverge),
advantages and improvements:

» Renormalon dominance shows up at relatively low orders.
» Allows us to have a control on the power corrections.
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o Alternative approach: Minimal Term or superasymptotic
approximation (truncation when the series begins to diverge),

advantages and improvements:
» Renormalon dominance shows up at relatively low orders.
» Allows us to have a control on the power corrections.
» Add a NP power correction in a systematic way. Combined expansion
of perturbation series and NP terms (Hyperasymptotic expansion
[Proc.Roy.Soc.London A,430(1990)]).
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o Alternative approach: Minimal Term or superasymptotic
approximation (truncation when the series begins to diverge),
advantages and improvements:

» Renormalon dominance shows up at relatively low orders.

» Allows us to have a control on the power corrections.

» Add a NP power correction in a systematic way. Combined expansion
of perturbation series and NP terms (Hyperasymptotic expansion
[Proc.Roy.Soc.London A,430(1990)]).

» The mixing between perturbative and NP effects may hinder estimating
the real size of NP effects

@ Hyperasymptotic expansions provide a systematic framework to deal
with these issues.
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OPE as the Organizing Principle

Consider a dimensionless observable with a hard scale @ > Aqcp:

) pertaX )+ZCOdaX ))<g_z>7

Observable(
QCD

Spert ax Q) ZP n+1 )

@ Oy: local or non-local operators, (Oy) ~ /\(dQCD (up to anomalous
dimensions).

@ The same dynamics generating the NP power corrections
~ (Aqcp/ Q)9 produces the renormalon structure of Spert.
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Superasymptotics

What is the optimal
truncation order?

w1
2
8
3

(ry/Aaa”

Eé,woo .. .'.
n+1
Z rna ° [ 5 10 15 20
n=0 !
o For factorially divergent series, convergence, plateau, divergence
o Truncate in the plateau: Minimize |r,a"!|
@ Superasymptotics!
Noptimal ~ —
optimal .
o No fixed order. Exponentially suppressed ambiguity ~ a/2e=
@ Hyperasymptotic analysis disentangles the truncated perturbative sum

from the NP piece with power accuracy.

M. V. Berry et al. Proc. R. Soc. A 430, 653 (1990)
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Borel Transform and PV Prescription

Given Spert(@) = Y020 Pn a1 its Borel transform is

B[O](t) Z ”f £,

The (formal) Borel sum is Ogorel() = [, dt e~ t/a B[O](t).

@ Renormalons = singularities at ty = %. These singularities are
determined by the OPE (up to the normalization) and linked to the
asymptotic behavior of perturbation theory

@ For d > 0 these lie on the integration contour: ambiguity in Ogorel-

@ Singularities in the real axis! — Principal Value (PV) prescription:
Opy() = PV/ dt et/ B[O] ().
0

which is Scale and Scheme independent (Ayala, Llobregat, Pineda;
Takaura)
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Divergent Series and Large-Order Behaviour

For an IR renormalon associated to dimension d > 0 one expects

d n
(as) _ 5o [\ T(n+b)( Bo c o
P = 2X (Q) r(b) (%d) (1+n+b+(n+b)(n+b—1)+"‘)

with b related to anomalous dimensions.

@ This behaviour implies Spert has zero radius of convergence.

@ Nevertheless, it is highly informative: the same parameters
Z)‘?, d, b, c; enter the NP sector.
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Hyperasymptotic Expansion: General Structure

Spy will be computed truncating the hyperasymptotic expansion in a
systematic way. This means truncating as follows:

Ny

Sev(@) = Sp(Qim) + Q)+ Y- (o= pEY) k() + () +

n=Np+1
where Sp is the superasymptotic sum,

NP(|dmin|)
Z pnc™ (1) = Sjg=o

where Np is chosen around the minimal term:

27|d|
Boar(p

Np ~ jL-ca(u),  c=00)
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Hyperasymptotic Expansion: General Structure

@ The truncation error is of order

s - 2]

which is of NP size (power-suppressed in Q).
@ This is the superasymptotic approximation.

For an IR renormalon at d > 0 one can write schematically (4, that are the terminants
completing the contribution of the renormalon at u = % =4d/2,

Qi Q) = 2% > g AQ(b—)),

Jj=0

Aﬂ(b—j):#/mdttb*f*e* 14 ¢ Joox() -
NCEREA 2rd ’

with b related to anomalous dimensions, and ¢ =1, ¢; = 51, & = %b%l(sf —2s), ...
are determined purely by the -function coefficients.
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Infrared (IR) Renormalons

Located at u = d/2 > 0 in the Borel plane.

Associated with NP power corrections ~ (Aqcp/@)9.

For d > 0 one finds (as a series of a(u))
Qus0 ~ V/als) (g)d (ﬁ"f;f“))bexp [— nga)} (1+O(a(n))).

Needed to correctly define NP parameters (e.g. pole mass, gluelump
mass) in the PV scheme.
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Ultraviolet (UV) Renormalons

For a UV renormalon at u = d/2 < 0 we have asymptotically

d n
(X) o\ T(n+b+1) ( Bo
P o X (Q) M(bo + 1) (%d) <1+“')’

and the associated terminant behaves as

Qo ~ (~1)"" 1/ a(u) (%) . <ﬁ0247§l‘)) - =P [_ 52072((2)] '

@ UV renormalons do not correspond to genuine NP operators but
control alternating large-order behaviour.

@ For u~ Q and Q > Aqcp. they are highly suppressed but can be
systematically included.
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IR vs. UV Renormalons: Summary

IR Renormalons (d > 0) UV Renormalons (d < 0)

e u=4d/2>0. e u=d/2<0.

@ Related to NP power @ Control oscillatory large-order
corrections ~ (Aqcp/@)¢. tail of perturbation theory.

@ Dominant ambiguity in many @ No direct NP operator
QCD observables. counterpart.

@ Must be treated to define NP @ Hyperasymptotics allows their
constants (e.g. ABY). ] systematics when needed. |
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Renormalization Group and Ax

The RG-invariant scale in scheme X can be written as

ool i) (5 g (5],

,Boax(,u,) 21 =1 21

Y
265

@ This expression governs the scaling of NP terms and of terminants
with ax(p).

@ Provides the bridge between perturbative ax(Q) and the physical
scale AQcp.-
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Lattice Scheme and Asymptotics

@ In the lattice scheme, one typically uses oy (a) defined at the lattice
spacing a.
o In practice, a;(a) is smaller than ag;5(1/a) at the same scale.

@ Asymptotic behaviour of the series (renormalon dominance) often sets
in at relatively low orders (e.g. n ~ 6 —7).

@ This makes lattice observables (static energies, gluelumps, plaquette)
ideal laboratories to test hyperasymptotic ideas.
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Gluelumps and EFT Picture

o Gluelump: static adjoint colour source attached to gluonic excitations
such that the full state is a colour singlet.

@ In the case of bound states mass of heavy gluinos within the EFT:
Mug = mgY + ALY +O(1/mZY).

@ In the case of B meson mass in HQEFT:
Mg = mpy + Apy + O(1/mpy).

@ On the lattice (Wilson action), the gluelump energy of a static adjoint
source attached to glue yield

Ah(a) = dmyV(a) + ALY + O(a?).

Here 5m£\’PV is the adjoint static self-energy in the lattice scheme,

defined using the PV Borel prescription.
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Hyperasymptotic Form of 5mL PV

The hyperasymptotic approximation reads schematically

6mLPV ZCA,-, +1(a )+= QA(l/a a)
sm)(1/a)
N/
1
2 2 [ean—eanloft(a) +O().
n=Np+1

@ Np chosen by the minimal term criterion; N’ defines a “window”
where asymptotic subtractions are applied.

@ Q4 is the terminant associated with the leading IR renormalon of the
adjoint self energy.

o Lattice data for AL (a) can then be fitted to extract AFY = AEV.
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Heavy Quarkonium Hybrids

Heavy Quarkonium Hybrids: Unique place to study the behavior of QCD
dynamics under the influence of a static octet colour source.

Simplified setup compared with glueballs.

The energy of a static quark and a static antiquark in a colour singlet
configuration admits an OPE using pPNRQCD (Pineda, Brambilla):

Es(r) =2mpy + VSPV(r; Vus) + 5ESP:le(r; Vis) - (2)

The energy of a static quark and a static antiquark in a colour octet
configuration follows a similar pattern,

En(r) =2mpy + va(r; vys) + SEFV (r;vus) - (3)

o,us
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Heavy Quarkonium Hybrids

If we consider lattice analyses, the following “observables” show up:
Es:(ria) = Vi(ria) + O(r?), (4)

EL(r;a) = VE(ra) + AL + O(r2). (5)
In this work, rather than considering each static energy independently, we
consider the following combination:

En, — Exs = V&Y + ALY + 00" (6)

u A,us

We can fully work in the MS scheme, where we have used the following

definitions: VEV = VPV — VPV and 6EQPY = @Y — 6EPY.
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Renormalon Normalizations

@ The large-order behaviour of the relevant perturbative series depends on the
renormalon normalizations and the updated analyses gives:
Zm = —1 2y, = {0.604(17), 0.551(20)} (nr = 0,3),
Zy, = {0.136(8), 0.121(13)}, Zy = {—1.343(36), —1.224(43)}.

o

. . . as -
@ These enter directly in the asymptotic templates C;(x ") and in the prefactor of Q4.
5
017 —— . —~ . . ) 16 .
. o 5 T
(a) "\ n=0 Vo lvo 2y, (a) 3 n=0 vo vy 2y,
0.16F L e ez, 1.5F R — Wz,
5 Oz, s,
0.15F ez, 14f Aoz,
= 014F : i NN i
NOOME T~ e A N 1B
0.13F T, 12F ]
0.12F o E| 14F S 1
0.1 10l : : : T :
0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 0.6 0.8 1.0 1.2 14 1.6 1.8 20
X = Vgl X = Vgl

FIgU €. Determination of Zy,, and 2y, with ng = 0 using v,<,°"’)/v£‘”)zv as a function of x = vsr and for different values

of n in the MS scheme. The gray continuous line is vgo)/vgo’as)zvo without the ultrasoft logarithmically related term. The
black horizontal line is our final prediction and the blue band our final error estimate.
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Ay from PV scheme

Nothing fundamentally wrong but renormalization scale/scheme dependent =
Alternative: PV summation prescription + Hyperasymptotics:

@ Independent of scale and scheme of the strong coupling constant
@ Controlled approximation to the exact result

Determination of A5V from the lattice gluelump energy (lattice scheme)

N’=3Np
1 1 as n
AgY = N5(a) —6mi(1/a) — ~Qa(1/aia) > ~lean— cNait(a) + O(a°).
Np+1

Determination of A" from the static hybrid energy (MS scheme)

Ng" = (En,(r) = Egs(r)) = Var(r) - *QVA —SVA4(r) (@)
3NP/Nmax

= > (VI = VIR Nagd(vs) = SER Y (rivis) + o(rF)  (8)
n=Np+1
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Final Result for the Lightest Gluelump

0.10 0.15 0.20 0.25 0.30

28 g 28
.{ -------------- ';'

24/ ==t ! ll2a
22 22
A 2.0
18 -

0.10 0.15 0.20 0.25 0.30

alr

Figure: We have truncated at different orders in the hyperasymptotic expansion:
AE(a) — P)(l/a) (cyan band), A5 (a) — P (l/a) 1Q, (orange band),
AE(a) — 5mA (1/a) 10— ZNP+1 a[CA” c:An]ozz+1 (green line). The dashed
blue line is a fit to Ns(a) — om)(1/a) = Ag + Ka?.
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Final Result for the Lightest Gluelump

0.15 0. 20 0.25 0.30 0.35 0.40 0.45 0.50

2.5*_ _______________________________ ] """""""""""" 12.5
24f { ] ” i i { | Hi lo4
i L L 8

2'10.15 0.20 0.25 0.30 0.35 0.40 0.45 0.502'1
riry

Figure: We have truncated at different orders in the hyperasymptotic expansion:
Ef,(r) — E£,(r) - V{FA(r) — 1Qu, (orange band), EE (r) - EL(r) - ViA(r) —

1Qv, — 0Vara(r) + ZNPHW Llean— Ca, ,1)]c)z"+:l 5E¢§?3,§V(r; vus) (green line).
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Final Result for the Lightest Gluelump and Conclusions

For nf = 0 (quenched), we have obtained two independent
hyperasymptotic determinations (lattice gluelump energy and static hybrid
energy)

N =24709)ryt, AR =238(11) 7,

Final Result: combined in quadrature

NBY = 2.44(7) !, rg ! & 400 MeV.

This is a renormalization-group invariant and renormalization-scale
independent determination in the PV summation scheme.
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Final Result for the Lightest Gluelump and Conclusions

We have devised an hyperasymptotic expansion applicable to QCD
observables. We use the PV prescription of the Borel integral
(scheme/scale independence). Analytic control of the error.

@ Smooth connection with perturbation theory
@ Parametric control of the error

@ We get good agreement for the ground state hybrid potential up to
relatively long distances — spectrum and properties of some heavy
quarkonium hybrid states.

@ The values we have obtained of the gluelump masses can be directly
put in first principle computations of the hybrid spectrum when
solving the Schroedinger equations.
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Error Budget and Systematics

Perturbative:

» Variation of Np and of the window N’.
» Truncation of the expansion of Q4 in .

@ Renormalon inputs:
» Uncertainties in Zp,, Zv,, Zy,, Za and B-function coefficients.
o Lattice:

» Discretization effects O(a?).
» Finite-volume effects and continuum extrapolation.

Scheme/scale:
» Choices of renormalization scale p around o~ 1/aor p~1/r.
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