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Motivation

QCD perturbation theory for many observables produces a formal
series

Spert(αX ) =
∞∑
n=0

p
(X )
n αn+1

X

which is asymptotic, with large-order behaviour

p
(X )
n ∼ n!

(
β0

2πd

)n (
1 +O(1/n)

)
.

Divergence is tied to renormalon singularities in the Borel plane.

The inverse Borel transform from the approximate Borel sum is ill
defined. Here the associated error is not quantified.

To define nonperturbative (NP) quantities (masses, condensates,
gluelumps) consistently, the perturbative series must be handled with
exponential accuracy.
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Motivation

Alternative approach: Minimal Term or superasymptotic
approximation (truncation when the series begins to diverge),
advantages and improvements:

ä Renormalon dominance shows up at relatively low orders.
ä Allows us to have a control on the power corrections.
ä Add a NP power correction in a systematic way. Combined expansion

of perturbation series and NP terms (Hyperasymptotic expansion
[Proc.Roy.Soc.London A,430(1990)]).

ä The mixing between perturbative and NP effects may hinder estimating
the real size of NP effects

Hyperasymptotic expansions provide a systematic framework to deal
with these issues.
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OPE as the Organizing Principle

Consider a dimensionless observable with a hard scale Q � ΛQCD:

Observable

(
Q

ΛQCD

)
= Spert(αX (Q)) +

∑
d

CO,d(αX (Q))
〈Od〉
Qd

,

Spert(αX (Q)) =
∞∑
n=0

p
(X )
n αn+1

X (Q).

Od : local or non-local operators, 〈Od〉 ∼ Λd
QCD (up to anomalous

dimensions).

The same dynamics generating the NP power corrections
∼ (ΛQCD/Q)d produces the renormalon structure of Spert.
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Superasymptotics

What is the optimal
truncation order?

N∑
n=0

rnα
n+1

For factorially divergent series, convergence, plateau, divergence

Truncate in the plateau: Minimize |rnαn+1|
Superasymptotics1

Noptimal ∼
#

α

No fixed order. Exponentially suppressed ambiguity ∼ α1/2e
−#
α

Hyperasymptotic analysis disentangles the truncated perturbative sum
from the NP piece with power accuracy.

1M. V. Berry et al. Proc. R. Soc. A 430, 653 (1990)
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Borel Transform and PV Prescription

Given Spert(α) =
∑∞

n=0 pn α
n+1, its Borel transform is

B[O](t) =
∞∑
n=0

pn
n!

tn.

The (formal) Borel sum is OBorel(α) =
∫∞

0 dt e−t/α B[O](t).

Renormalons ⇒ singularities at td = 2πd
β0

. These singularities are
determined by the OPE (up to the normalization) and linked to the
asymptotic behavior of perturbation theory

For d > 0 these lie on the integration contour: ambiguity in OBorel.

Singularities in the real axis! → Principal Value (PV) prescription:

OPV(α) = PV

∫ ∞
0

dt e−t/α B[O](t).

which is Scale and Scheme independent (Ayala, Llobregat, Pineda;
Takaura)

César Ayala (UTA, Chile) Hyperasymptotics & Gluelumps December 04, 2025 7 / 30



Divergent Series and Large-Order Behaviour

For an IR renormalon associated to dimension d > 0 one expects

p
(as)
n = ZO

X

(
µ

Q

)d Γ(n + b)

Γ(b)

(
β0

2πd

)n (
1+

c1

n + b
+

c2

(n + b)(n + b − 1)
+. . .

)
,

with b related to anomalous dimensions.

This behaviour implies Spert has zero radius of convergence.

Nevertheless, it is highly informative: the same parameters
ZO
X , d , b, ci enter the NP sector.
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Hyperasymptotic Expansion: General Structure

SPV will be computed truncating the hyperasymptotic expansion in a
systematic way. This means truncating as follows:

SPV(Q) = SP(Q;µ) + Ω(µ) +

N′P∑
n=NP+1

(
pn − p

(as)
n

)
αn+1
X (µ) + Ω′(µ) + · · · , (1)

where SP is the superasymptotic sum,

SP ≡
NP(|dmin|)∑

n=0

pnα
n+1(µ) ≡ S|d |=0

where NP is chosen around the minimal term:

NP '
2π|d |
β0α(µ)

(1− c α(µ)), c = O(1).
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Hyperasymptotic Expansion: General Structure

The truncation error is of order

δS ∼
√
α(µ) exp

[
− 2π|d |
β0α(µ)

]
,

which is of NP size (power-suppressed in Q).

This is the superasymptotic approximation.

For an IR renormalon at d > 0 one can write schematically Ωd , that are the terminants
completing the contribution of the renormalon at u = β0t

4π
= d/2,

Ωd(µ;Q) = ZO
X

∞∑
j=0

cj ∆Ω(b − j),

∆Ω(b − j) =
1

Γ(b − j)

∫ ∞
0

dt tb−j−1e−t

(
1 + t

β0αX (µ)

2πd

)−1

,

with b related to anomalous dimensions, and c0 = 1, c1 = s1, c2 = 1
2

b
b−1

(s2
1 − 2s2), . . .

are determined purely by the β-function coefficients.
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Infrared (IR) Renormalons

Located at u = d/2 > 0 in the Borel plane.

Associated with NP power corrections ∼ (ΛQCD/Q)d .

For d > 0 one finds (as a series of α(µ))

Ωd>0 ∼
√
α(µ)

(
µ

Q

)d (β0α(µ)

4π

)−b
exp

[
− 2πd

β0α(µ)

] (
1 +O(α(µ))

)
.

Needed to correctly define NP parameters (e.g. pole mass, gluelump
mass) in the PV scheme.
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Ultraviolet (UV) Renormalons

For a UV renormalon at u = d/2 < 0 we have asymptotically

p
(X )
n −−−→

n→∞
ZO
X

(
µ

Q

)d Γ(n + b0 + 1)

Γ(b0 + 1)

(
β0

2πd

)n (
1 + . . .

)
,

and the associated terminant behaves as

Ωd<0 ∼ (−1)NP+1
√
α(µ)

(
Q

µ

)|d |(β0α(µ)

4π

)−b0

exp

[
− 2π|d |
β0α(µ)

]
.

UV renormalons do not correspond to genuine NP operators but
control alternating large-order behaviour.

For µ ∼ Q and Q � ΛQCD, they are highly suppressed but can be
systematically included.
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IR vs. UV Renormalons: Summary

IR Renormalons (d > 0)

u = d/2 > 0.

Related to NP power
corrections ∼ (ΛQCD/Q)d .

Dominant ambiguity in many
QCD observables.

Must be treated to define NP
constants (e.g. ΛPV

B ).

UV Renormalons (d < 0)

u = d/2 < 0.

Control oscillatory large-order
tail of perturbation theory.

No direct NP operator
counterpart.

Hyperasymptotics allows their
systematics when needed.
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Renormalization Group and ΛX

The RG-invariant scale in scheme X can be written as

ΛX = µ exp

[
− 2π

β0αX (µ)

](
β0αX (µ)

2π

)−b 1 +
∑
j≥1

s
(X )
j

(
β0αX (µ)

2π

)j
 ,

b =
β1

2β2
0

.

This expression governs the scaling of NP terms and of terminants
with αX (µ).

Provides the bridge between perturbative αX (Q) and the physical
scale ΛQCD.
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Lattice Scheme and Asymptotics

In the lattice scheme, one typically uses αL(a) defined at the lattice
spacing a.

In practice, αL(a) is smaller than αMS(1/a) at the same scale.

Asymptotic behaviour of the series (renormalon dominance) often sets
in at relatively low orders (e.g. n ∼ 6− 7).

This makes lattice observables (static energies, gluelumps, plaquette)
ideal laboratories to test hyperasymptotic ideas.
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Gluelumps and EFT Picture

Gluelump: static adjoint colour source attached to gluonic excitations
such that the full state is a colour singlet.

In the case of bound states mass of heavy gluinos within the EFT:

MH,g̃ = mPV
g̃ + ΛPV

H +O(1/mPV
g̃ ).

In the case of B meson mass in HQEFT:

MB = mPV + ΛPV +O(1/mPV).

On the lattice (Wilson action), the gluelump energy of a static adjoint
source attached to glue yield

ΛL
H(a) = δmL,PV

A (a) + ΛPV
H +O(a2).

Here δmL,PV
A is the adjoint static self-energy in the lattice scheme,

defined using the PV Borel prescription.
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Hyperasymptotic Form of δmL,PV
A

The hyperasymptotic approximation reads schematically

δmL,PV
A (a) =

1

a

NP∑
n=0

cA,n α
n+1
L (a)︸ ︷︷ ︸

δm
(P)
A (1/a)

+
1

a
ΩA(1/a; a)

+
1

a

N′∑
n=NP+1

[
cA,n − c

(as)
A,n

]
αn+1
L (a) +O(a2).

NP chosen by the minimal term criterion; N ′ defines a “window”
where asymptotic subtractions are applied.

ΩA is the terminant associated with the leading IR renormalon of the
adjoint self energy.

Lattice data for ΛL
H(a) can then be fitted to extract ΛPV

H ≡ ΛPV
B .
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Heavy Quarkonium Hybrids

Heavy Quarkonium Hybrids: Unique place to study the behavior of QCD
dynamics under the influence of a static octet colour source.
Simplified setup compared with glueballs.
The energy of a static quark and a static antiquark in a colour singlet
configuration admits an OPE using pNRQCD (Pineda, Brambilla):

Es(r) = 2mPV + V PV
s (r ; νus) + δEPV

s,us(r ; νus) . (2)

The energy of a static quark and a static antiquark in a colour octet
configuration follows a similar pattern,

EH(r) = 2mPV + V PV
o (r ; νus) + δEPV

o,us(r ; νus) . (3)
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Heavy Quarkonium Hybrids

If we consider lattice analyses, the following “observables” show up:

EL
Σ+

g
(r ; a) = V L

s (r ; a) +O(r2) , (4)

EL
H(r ; a) = V L

o (r ; a) + ΛL
H +O(r2) . (5)

In this work, rather than considering each static energy independently, we
consider the following combination:

EΠu − EΣ+
g

= V PV
A + ΛPV

H + δE
(2)PV
A,us . (6)

We can fully work in the MS scheme, where we have used the following

definitions: V PV
A = V PV

o − V PV
s and δE

(2)PV
A,us = δE

(2)PV
o,us − δEPV

s,us .
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Renormalon Normalizations

The large-order behaviour of the relevant perturbative series depends on the
renormalon normalizations and the updated analyses gives:

Zm = − 1
2
ZVs = {0.604(17), 0.551(20)} (nf = 0, 3),

ZVo = {0.136(8), 0.121(13)}, ZA = {−1.343(36), −1.224(43)}.

These enter directly in the asymptotic templates c
(as)
A,n and in the prefactor of ΩA.

v0
(o)
/v0

(o,as)
ZVo

v1
(o)
/v1

(o,as)
ZVo

v2
(o)
/v2

(o,as)
ZVo

v3
(o)
/v3

(o,as)
ZVo

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.11

0.12

0.13

0.14

0.15

0.16

0.17

x = νsr

Z
V
o

(a) nf=0
v0
(A)
/v0

(A,as)
ZVA

v1
(A)
/v1

(A,as)
ZVA

v2
(A)
/v2

(A,as)
ZVA

v3
(A)
/v3

(A,as)
ZVA

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

x = νsr

Z
V
A

(a) nf=0

Figure: Determination of ZVo and ZVA
with nf = 0 using v

(o,a)
n /v

(as)
n ZV as a function of x = νs r and for different values

of n in the MS scheme. The gray continuous line is v
(o)
3 /v

(o,as)
3 ZVo without the ultrasoft logarithmically related term. The

black horizontal line is our final prediction and the blue band our final error estimate.
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ΛH from PV scheme

Nothing fundamentally wrong but renormalization scale/scheme dependent ⇒
Alternative: PV summation prescription + Hyperasymptotics:

Independent of scale and scheme of the strong coupling constant

Controlled approximation to the exact result

Determination of ΛPV
B from the lattice gluelump energy (lattice scheme)

ΛPV
B = ΛL

B(a)− δm(P)
A (1/a)− 1

a
ΩA(1/a; a)−

N′=3NP∑
NP+1

1

a
[cA,n − c

(as)
A,n ]αn+1

L (a) +O(a2) .

Determination of ΛPV
B from the static hybrid energy (MS scheme)

ΛPV
B = (EΠu (r)− EΣ+

g
(r))− VA,P(r)− 1

r
ΩVA − δV

RG
A (r) (7)

−
3NP/Nmax∑
n=NP+1

(V (A)
n − V (A,as)

n )αn+1

MS
(νs)− δE (2)PV

A,us (r ; νus) + o(r 2) (8)
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Final Result for the Lightest Gluelump
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Figure: We have truncated at different orders in the hyperasymptotic expansion:

ΛL
B(a)− δm(P)

A (1/a) (cyan band), ΛL
B(a)− δm(P)

A (1/a)− 1
aΩA (orange band),

ΛL
B(a)− δm(P)

A (1/a)− 1
aΩA −

∑13
NP+1

1
a [cA,n − c

(as)
A,n ]αn+1

L (green line). The dashed

blue line is a fit to ΛL
B(a)− δm(P)

A (1/a) = ΛB + Ka2.
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Final Result for the Lightest Gluelump
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Figure: We have truncated at different orders in the hyperasymptotic expansion:

EL
Πu

(r)− EL
Σ+

g
(r)− V

(P)
A,P(r)− 1

r ΩVA
(orange band), EL

Πu
(r)− EL

Σ+
g

(r)− V
(P)
A,P(r)−

1
r ΩVA

− δVA,RG(r) +
∑N′=Nmax

NP+1
1
a [cA,n − c

(as)
A,n ]αn+1

MS
− δE (2)PV

o,us (r ; νus) (green line).
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Final Result for the Lightest Gluelump and Conclusions

For nf = 0 (quenched), we have obtained two independent
hyperasymptotic determinations (lattice gluelump energy and static hybrid
energy)

ΛPV
B = 2.47(9) r−1

0 , ΛPV
B = 2.38(11) r−1

0 ,

Final Result: combined in quadrature

ΛPV
B = 2.44(7) r−1

0 , r−1
0 ≈ 400 MeV.

This is a renormalization-group invariant and renormalization-scale
independent determination in the PV summation scheme.
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Final Result for the Lightest Gluelump and Conclusions

We have devised an hyperasymptotic expansion applicable to QCD
observables. We use the PV prescription of the Borel integral
(scheme/scale independence). Analytic control of the error.

Smooth connection with perturbation theory

Parametric control of the error

We get good agreement for the ground state hybrid potential up to
relatively long distances → spectrum and properties of some heavy
quarkonium hybrid states.

The values we have obtained of the gluelump masses can be directly
put in first principle computations of the hybrid spectrum when
solving the Schroedinger equations.
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Error Budget and Systematics

Perturbative:
ä Variation of NP and of the window N ′.
ä Truncation of the expansion of ΩA in αL.

Renormalon inputs:
ä Uncertainties in Zm,ZVs ,ZVo ,ZA and β-function coefficients.

Lattice:
ä Discretization effects O(a2).
ä Finite-volume effects and continuum extrapolation.

Scheme/scale:
ä Choices of renormalization scale µ around µ ∼ 1/a or µ ∼ 1/r .
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