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Montevideo, Uruguay,
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Introduction



Motivation for studying the Infrared Regime of QCD

• Quark mass Generation: The infrared regime is crucial for

understanding the mechanism of mass generation for quarks.

The spontaneous breaking of chiral symmetry, essential for

hadron physics, takes place in this regime.

• Confinement: Quarks and gluons are never found in isolation.
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Challenges in Infrared QCD

• Non-perturbative regime:

Standard perturbative

techniques are not

applicable.

• Complexity: High

computational complexity

in dealing with low-energy

QCD phenomena.

• Lattice QCD: Requires

sophisticated numerical

methods to study QCD on

a discretized space-time

lattice.
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Standard perturbative

correlation functions

diverge in the IR.
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What do the numerical simulations observe?

The coupling constant (scheme dependent) has no Landau pole...
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Gluon propagator and ghost dressing function in SU(3).
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al. Phys.Lett.B 676 (2009)]
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How large is the coupling in infrared regime of QCD?
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In fact the expansion parameter

λ =
Nα

4π
∼ 0.3

is not large!

Some kind of perturbation theory should be possible.
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Infrared-safe behaviour:

Curci-Ferrari model



The model: Massive gluons (Curci-Ferrari)

Simplest Lagrangian with massive gluon behaviour

• Add a gluon mass term:

L = Linv + iha∂µA
a
µ + ∂µc̄

a(Dµc)
a +

m2

2
Aa

µA
a
µ

[G. Curci and R. Ferrari, Nuovo Cim. A 32, 151 (1976).]

• Cons:

• We don’t know how to generate this Lagrangian.

• One free parameter to be adjusted.

• The usual construction of the physical space does not apply.
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• Pros:

• It still has a modified-BRST symmetry which allows to prove

renormalizability. [G. Curci and R. Ferrari, Nuovo Cim. A 35, 1

(1976)]

• The mass term regularizes the infrared.

• It is possible to use an infrared safe renormalization scheme.

• Perturbation theory can be implemented even in the infrared

• Feynman rules are identical to usual ones, except for a massive

gluon propagator still transverse in Landau gauge.

• Could be related to de Gribov problem.

• In the last decade perturbative one and two-loop calculation

of several correlation functions have been done and compared

successfully with lattice simulations.
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Renormalization Scheme

Infrared safe scheme:
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• From the propagators we can compute β−functions.

• In the infrared-safe scheme, the gluon and the ghost

propagators are given explicitely in terms of the running

parameters.

D(p) =
g2(µ0)

m4(µ0)

m4(p)

g2(p)

1

p2 +m2(p)
, J(p) =

m2(µ0)

g2(µ0)

g2(p)

m2(p)
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Massive behaviour of the gluon propagator
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Massless ghosts
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Moderate coupling constant
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Euclidean Model: Effective Coupling

• An effective coupling λeff = λ/(1 + m̃2) provides a more

sensible measure of perturbative validity.

• The flow diagram in the (m̃2, λeff ) plane (Figure 2) highlights

the behavior of this effective coupling.

• At the non-trivial fixed point, the effective coupling

λeff ≈ 1.06.
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Figure 1: One-loop flow of the Euclidean Curci-Ferrari model in the IR-safe scheme
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• For the comparison of other correlation functions see Nahuel

Barrios’s talk.

• very good description of pure-gauge correlation functions can

be obtained at one and two-loops.

• But... All these results are in the Euclidean space, why is this

interesting? We have in information of the infrared regime

from Euclidean lattice simulations.

• Could be possible for us to use this information to explore also
the Minkowski region? [S. Oribe, MP, U. Reinosa Phys.Rev.D 112

(2025) 1, 014005]
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Minkowskian Curci-Ferrari Model



Minkowskian CF Model: Formulation & Self-Energies

• The Minkowskian model is obtained from the Euclidean

version via formal replacements: x0 → ix0, ∂0 → −i∂0, etc.

• Minkowskian self-energies Π(p2) are obtained by analytic

continuation of Euclidean self-energies Π̂(−p2).

• Key relation for any p2 ∈ R: Π(p2) = Π̂(z = p2 + i0+).

• This method bypasses direct Minkowskian calculations.
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Minkowskian Model: Real-valued Renormalization Factors

• An IR-safe scheme using real-valued renormalization factors

ZX (q
2) is defined for the Minkowskian model.

• Renormalization conditions:

Re G̃−1(p2 = q2; q2) = q2

Re G̃−1
A (p2 = q2; q2) = q2 −m2

• In the space-like region (q2 < 0), the flow is identical to the

Euclidean flow, with Q2 = −q2.

• In the time-like region (q2 > 0), a similar but distinct flow is

observed.
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Figure 2: One-loop time-like Minkowskian flow in the real-valued IR-safe

scheme, in the plane (m̃2, λ).
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Real-valued Renormalization: Time-like Analysis

• The time-like flow also exhibits four types of theories and

fixed points, structurally similar to the Euclidean case.

• UV fixed point: (m2 = 0, λ = 0).

• The effective coupling λeff at the time-like fixed point is

≈ 0.97.

• Crucial Limitation: In this real-valued scheme, the space-like

and time-like flows are not connected.
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Analytic (Complex-valued) IR-Safe

Flow



Analytic IR-Safe Flow: Complex-valued Factors

• To connect space-like and time-like flows, we investigate using

complex-valued renormalization factors ZX (ω).

• This implies that the renormalized parameters (g2,m2) can

become complex.

• The analytic flow is solved by integrating along a slightly

imaginary trajectory (z = q2 + i0+).

• Branchcuts of the beta functions must be managed by

adding/subtracting 2πi to logarithms.
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Analytic IR-Safe Flow: Complex Coupling Results
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Figure 3: Real and imaginary parts of the coupling from space-like to time-like running scales as one makes

the i0+ smaller and smaller: 10−1 (blue), 10−2 (red), 10−3 (green), 10−4 (orange), 10−5 (purple).
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Analytic IR-Safe Flow: Complex Coupling Results

• The coupling is not symmetric between space-like and

time-like regions.

• Values of λ in the time-like region can be significantly larger,

sometimes exceeding the perturbative boundary (λ = 1).

• The evolution of the complex coupling is tracked across the

phase space.
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Analytic IR-Safe Flow: Effective Coupling Results

• The effective coupling λeff in the complex scheme shows

different behavior. Real and imaginary parts of λeff in modulus

remain at most slightly above 1, even in the time-like region.

• This suggests that semi-perturbative applications might still

be valid.

• This scheme successfully connects the space-like and

time-like regions, allowing the continuation of Euclidean

trajectories.
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Figure 4: Real and imaginary parts of the effective coupling λeff from

space-like to time-like running scales as one makes the i0+ smaller and

smaller: 10−1 (blue), 10−2 (red), 10−3 (green), 10−4 (orange), 10−5

(purple). The last two curves are essentially on top of each other.
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Conclusions and Outlook



Conclusions and Outlook

• Real-valued IR-safe scheme:

• Euclidean flow matches Minkowskian space-like flow.

• Time-like flow is distinct but also shows bounded coupling.

• Cannot connect space-like and time-like regions.

• Complex-valued IR-safe scheme:

• Allows analytical connection between space-like and time-like

regions.

• Effective coupling λeff remains moderate (modulus close to 1).

• Supports semi-perturbative applications in Minkowskian

domain.

• Future Work:

• Detailed study of gluon and ghost two-point correlators in the

time-like region.
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Thanks
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