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Introduction



Motivation for studying the Infrared Regime of QCD

e Quark mass Generation: The infrared regime is crucial for
understanding the mechanism of mass generation for quarks.
The spontaneous breaking of chiral symmetry, essential for
hadron physics, takes place in this regime.

e Confinement: Quarks and gluons are never found in isolation.
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Challenges in Infrared QCD

e Non-perturbative regime:

Standard perturbative
techniques are not

o(p)

applicable.
e Complexity: High

computational complexity

in dealing with low-energy | B R B B
GeV

QCD phenomena. pIaeY]

e Lattice QCD: Requires

sophisticated numerical

[Bloch et al, Nucl.Phys. B687 (2004)]

methods to study QCD on Standard perturbative
a discretized space-time correlation functions
lattice. diverge in the IR.
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What do the numerical simulations observe?

The coupling constant (scheme dependent) has no Landau pole...
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[I. L. Bogolubsky et al. Phys.Lett.B 676 (2009)]
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Gluon propagator and ghost dressing function in SU(3).
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SU(3) gluon propagator and ghost dressing function from [I. L. Bogolubsky et
al. Phys.Lett.B 676 (2009)]
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How large is the coupling in infrared regime of QCD?

[A. Sternbeck et al, Nucl.Phys.B Proc.Suppl. 153 (2006) 185-190]

In fact the expansion parameter

A= g

A7

is not large!

Some kind of perturbation theory should be possible.
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The model: Massive gluons (Curci-Ferrari)

Simplest Lagrangian with massive gluon behaviour

e Add a gluon mass term:
. m?
L = Liny + ihPOu A% + 0,8°(Dyc)® + 7AZAZ

[G. Curci and R. Ferrari, Nuovo Cim. A 32, 151 (1976).]

e Cons:

e We don’t know how to generate this Lagrangian.
e One free parameter to be adjusted.

e The usual construction of the physical space does not apply.
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e Pros:

e |t still has a modified-BRST symmetry which allows to prove
renormalizability. [G. Curci and R. Ferrari, Nuovo Cim. A 35, 1
(1976)]

e The mass term regularizes the infrared.

e |t is possible to use an infrared safe renormalization scheme.

e Perturbation theory can be implemented even in the infrared

e Feynman rules are identical to usual ones, except for a massive
gluon propagator still transverse in Landau gauge.

e Could be related to de Gribov problem.

e In the last decade perturbative one and two-loop calculation
of several correlation functions have been done and compared

successfully with lattice simulations.
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Renormalization Scheme

Infrared safe scheme:
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e From the propagators we can compute S—functions.

e In the infrared-safe scheme, the gluon and the ghost
propagators are given explicitely in terms of the running

parameters.
_ g%(po) m*(p) 1 ~ m*(uo) g2(p)
D)= (0) 200) P ) P T 220y m(p)
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Massive behaviour of the gluon propagator
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[Gracey, MP, Reinosa, Tissier Phys.Rev.D 100 (2019) 3, 034023]
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Massless ghosts

3.0R

—— IS two —loop results

------- IS one —loop results

I(p)

[Gracey, MP, Reinosa, Tissier Phys.Rev.D 100 (2019) 3, 034023]
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Moderate coupling constant
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[Gracey, MP, Reinosa, Tissier Phys.Rev.D 100 (2019) 3, 034023]
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Euclidean Model: Effective Coupling

e An effective coupling Aefr = A/(1 + m?) provides a more
sensible measure of perturbative validity.

e The flow diagram in the (M2, Aegr) plane (Figure 2) highlights
the behavior of this effective coupling.

e At the non-trivial fixed point, the effective coupling
Aefr = 1.06.
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e For the comparison of other correlation functions see Nahuel
Barrios's talk.

e very good description of pure-gauge correlation functions can
be obtained at one and two-loops.
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e For the comparison of other correlation functions see Nahuel

Barrios's talk.

e very good description of pure-gauge correlation functions can

be obtained at one and two-loops.

e But... All these results are in the Euclidean space, why is this
interesting? We have in information of the infrared regime

from Euclidean lattice simulations.
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e For the comparison of other correlation functions see Nahuel
Barrios's talk.

e very good description of pure-gauge correlation functions can

be obtained at one and two-loops.

e But... All these results are in the Euclidean space, why is this
interesting? We have in information of the infrared regime
from Euclidean lattice simulations.

e Could be possible for us to use this information to explore also
the Minkowski region? [S. Oribe, MP, U. Reinosa Phys.Rev.D 112
(2025) 1, 014005]
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Minkowskian Curci-Ferrari Model




Minkowskian CF Model: Formulation & Self-Energies

e The Minkowskian model is obtained from the Euclidean
version via formal replacements: xp — ix%, 9y — —id°, etc.

e Minkowskian self-energies M(p?) are obtained by analytic
continuation of Euclidean self-energies [1(—p?).

e Key relation for any p? € R: MN(p?) = f1(z = p2 4 i0t).

e This method bypasses direct Minkowskian calculations.
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Minkowskian Model: Real-valued Renormalization Factors

e An IR-safe scheme using real-valued renormalization factors
Zx(q?) is defined for the Minkowskian model.

e Renormalization conditions:

[

Re G (P’ =q¢%¢%) =¢°

Re G'(pP=d%¢)=¢*—m

13

2

e In the space-like region (g < 0), the flow is identical to the

Euclidean flow, with Q2 = —q2.

e In the time-like region (g2 > 0), a similar but distinct flow is
observed.
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Figure 2: One-loop time-like Minkowskian flow in the real-valued IR-safe
scheme, in the plane (M2, \).
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Real-valued Renormalization: Time-like Analysis

The time-like flow also exhibits four types of theories and
fixed points, structurally similar to the Euclidean case.
UV fixed point: (m? =0, A = 0).

The effective coupling Ao at the time-like fixed point is
~ 0.97.

Crucial Limitation: In this real-valued scheme, the space-like
and time-like flows are not connected.
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Analytic (Complex-valued) IR-Safe
Flow




Analytic IR-Safe Flow: Complex-valued Factors

e To connect space-like and time-like flows, we investigate using
complex-valued renormalization factors Zx(w).

e This implies that the renormalized parameters (g2, m?) can
become complex.

e The analytic flow is solved by integrating along a slightly
imaginary trajectory (z = g2 + i0™).

e Branchcuts of the beta functions must be managed by
adding/subtracting 27/ to logarithms.

M. Peldez Valparaiso, November 2025



Analytic IR-Safe Flow: Complex Coupling Results
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Figure 3: Real and imaginary parts of the coupling from space-like to time-like running scales as one makes
the i0" smaller and smaller: 101 (blue), 102 (red), 103 (green), 10~ * (orange), 10~ (purple).
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Analytic IR-Safe Flow: Complex Coupling Results

e The coupling is not symmetric between space-like and
time-like regions.

e Values of X in the time-like region can be significantly larger,
sometimes exceeding the perturbative boundary (A = 1).

e The evolution of the complex coupling is tracked across the
phase space.
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Analytic IR-Safe Flow: Effective Coupling Results

e The effective coupling Aesr in the complex scheme shows
different behavior. Real and imaginary parts of Aes in modulus
remain at most slightly above 1, even in the time-like region.

e This suggests that semi-perturbative applications might still
be valid.

e This scheme successfully connects the space-like and
time-like regions, allowing the continuation of Euclidean
trajectories.
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Conclusions and Outlook




Conclusions and Outlook

e Real-valued IR-safe scheme:
e Euclidean flow matches Minkowskian space-like flow.
e Time-like flow is distinct but also shows bounded coupling.
e Cannot connect space-like and time-like regions.
¢ Complex-valued IR-safe scheme:
e Allows analytical connection between space-like and time-like
regions.
e Effective coupling Aer remains moderate (modulus close to 1).
e Supports semi-perturbative applications in Minkowskian
domain.

e Future Work:

e Detailed study of gluon and ghost two-point correlators in the
time-like region.
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Thanks
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