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Quantum Action Principle

The Quantum Action Principle allows us to identify if a symmetry is preserved or not
during renormalization, i.e., if it remains a symmetry of the quantum theory. It can be
summarized as

WaΓ = ∆a · Γ, (1)

In a similar manner, we can define the dependence on the parameters of the theory as

∂

∂λ
Γ = ∆ · Γ, (2)

The renormalization of parameters and fields are expressed by invariant counterterms
which are added to the classical action Γ(0) → Γ(0) + εΓct, so that

WΓΓ
ct = 0. (3)

If the perturbation can be reabsorbed by a redefinition

Γ(0)[ϕ, λ, ρ] + εΓct[ϕ, λ, ρ] = Γ(0)[ϕ0, λ0, ρ0] +O(ε2), (4)

we say that the theory is multiplicatively renormalizable.
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Yang-Mills-Chern-Simons

The tree-level Yang-Mills-Chern-Simons1 action for a general semi-simple gauge group

SYMCS =

∫
d3x

[
−1

4
F a
µνF

aµν +
m

2
ϵµρν

(
Aa

µ∂ρA
a
ν +

2g

3
fabcAa

µA
b
ρA

c
ν

)]
. (5)

It is a well-known result that YMCS theory is finite, i.e., it receives no quantum
corrections on its fields and parameters. This can be summarized as a trivial quantum
insertion

∆ · Γ = 0 (6)

This finite character comes from the absence of local BRST-invariance of the YMCS
action2.

1For a detailed review of Chern-Simons theory, see G. Dunne, arXiv:9902.115
2Del Cima et al. Lett. Math. Phys., 47:265, 1999; Barnich. JHEP, 12:003, 1998.
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The Gribov Problem

Gauge-fixing amounts to choosing one
representative per orbit, necessary to avoid
overcounting in the functional integral. It
can be introduced via the Faddeev-Popov
procedure, so that

∫
DA eiS =

∫
DωDA δ(F [A′])

∣∣∣∣det(δF [A′]

δω

)∣∣∣∣ eiS . (7)
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The Faddeev-Popov procedure is able to do this provided that

• The gauge condition F [A] is ideal;

• The Faddeev-Popov determinant is positive;

In general, it is not possible to define a continuous gauge condition which fixes the gauge3.
One way to see this is to note that the Faddeev-Popov operator develops zero-modes

Mabωb = −∂µD
ab
µ ωb = 0, (8)

One way to deal with this problem is to restrict the integration over the gauge fields to a
region Ω free of copies

Ω = {Aa
µ, ∂µA

a
µ = 0|Mab > 0}, (9)

called the Gribov region.

3V. N. Gribov. Nucl. Phys. B, 139:1, 1978; I. M. Singer. Commun. Math. Phys., 60:7–12, 1978.
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Another way is to introduce a horizon term which effectively restricts the integration to
the Gribov region4

H(A) = g2
∫

dxdy fabcAb
µ(x)[M−1]ad(x, y)fdecAe

µ(y). (10)

These procedures are equivalent to one another and introduce self-consistently a mass
scale to the theory, called the Gribov mass γ, so that the gluon propagator is modified into

⟨TAa
µA

b
ν⟩(k) = δab

k2

k4 + γ4

(
δµν −

kµkν
k2

)
. (11)

It also displays an enhanced 1-loop ghost propagator, proportional to 1/k4. The horizon
term can be localized by introducing proper auxiliary fields5.

4D. Zwanziger. Nucl. Phys. B, 321:591–604, 1989.
5D. Zwanziger. Nucl. Phys. B, 323:513–544, 1989.
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Refined Gribov-Zwanziger (RGZ)

Due to results from the lattice6 showing

• a non-vanishing gluon propagator at null momentum;

• a non-enhanced ghost propagator;

It was necessary to introduce condensates to the theory7

m2

2

∫
dxAa

µA
a
µ and M2

∫
dx(φ̄ab

µ φab
µ − ω̄ab

µ ωab
µ ), (12)

leading to a modified gluon propagator

⟨Aa
µA

b
ν⟩(k) = δab

k2 +M2

(k2 +m2)(k2 +M2) + γ4

(
δµν −

kµkν
k2

)
, (13)

which agrees with the lattice data.
6Cucchieri, Mendes. PoS, LATTICE2007:297, 2007.; Bogolubsky et al . PoS, LATTICE2007:290, 2007.
7Dudal et al. Phys. Rev. D, 78:065047, 2008.
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A critical feature of the GZ action is that it presents a soft break of BRST symmetry8

sSGZ = gγ2fabc

∫
dx

(
Aa

µω
bc
µ −Dad

µ cd(φ̄+ φ)bcµ

)
. (14)

We can restore BRST symmetry9 defining Ω in terms of Ah,a
µ , which minimizes the

functional ||A||2= 1
2

∫
Aa

µA
a
µ

Ah,a
µ =

(
δµν −

∂µ∂ν
∂2

)(
Aa

ν − ig

[
1

∂2
∂Aa, Aa

ν

]
+

ig

2

[
1

∂2
∂Aa, ∂ν

1

∂2
∂Aa

]
+O(A3)

)
,

(15)

These fields are transverse and BRST-invariant, and they allow for the investigation of
Gribov copies in linear covariant gauges.

8D. Zwanziger. Nucl. Phys. B, 399:477–513, 1993.
9Capri et al. Phys. Rev. D, 92(4):045039, 2015.
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YMCS within the Gribov Horizon

Our goal now is to prove that the restriction to the Gribov region does not affect the
finite character of the YMCS theory. We start with a localized RGZ modification of the
YMCS action in linear covariant gauges10

SRGZ
YMCS = SYMCS + SLC

GF −
∫

d3x
(
φ̄ac
µ Mab(Ah)φbc

µ − ω̄ac
µ Mab(Ah)ωbc

µ

)
+

∫
d3x gγ2fabcAh,a

µ (φ̄+ φ)bcµ +
M2

2

∫
d3x Ah,a

µ Ah,a
µ

− µ2

∫
d3x

(
φ̄ab
µ φab

µ − ω̄ab
µ ωab

µ

)
+

∫
d3x

(
τa∂µA

h,a
µ − η̄aMab(Ah)ηb

)
,

(16)

10Daniel O. R. Azevedo and Antonio D. Pereira, Phys. Rev. D 111, 085028 (2025)
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First, we introduce external sources coupled to the non-linear BRST variations and the
composite field Ah

Sext =

∫
d3x

(
−Ωa

µD
ab
µ cb +

g

2
Lafabccbcc +Kagab(ξ)cb + J a

µA
h,a
µ

)
, (17)

and sources coupled to the condensates11,

Scond =

∫
d3x

[
J
(
Ah,a

µ Ah,a
µ

)
− ρ

(
φ̄ab
µ φab

µ − ω̄ab
µ ωab

µ

)]
. (18)

which should attain the physical values

J |phys=
M2

2
, ρ|phys= µ2. (19)

in the end.

11K. Knecht and H. Verschelde. Phys. Rev. D, 64:085006, 2001.
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We also modify the Gribov mass term

Sγ2 ≡
∫

d3x gγ2fabcAh,a
µ (φ̄+ φ)bcµ , (20)

with the introduction of new sources12

Sγ2 ≡
∫

d3x
[
Mai

µ Dab
µ (Ah)φbi + V ai

µ Dab
µ (Ah)φ̄bi +Nai

µ Dab
µ (Ah)ωbi

+ Uai
µ Dab

µ (Ah)ω̄bi −Mai
µ V ai

µ +Nai
µ Uai

µ

]
,

(21)

which return the original term in the limit

Mab
µν |phys= V ab

µν |phys= γ2δµνδ
ab,

Nab
µν |phys= Uab

µν |phys= 0.
(22)

12D. Zwanziger. Nucl. Phys. B, 323:513–544, 1989.; Dudal et al. Phys. Rev. D, 78:065047, 2008.
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And finally, we introduce a new set of sources

Sextra =

∫
d3x

[
−Ξa

µD
ab
µ (Ah)ηa +Xiηaω̄ai

+ Y iηaφ̄ai + X̄abiηaωbi + Ȳ abiηaφbi
]
,

(23)

which are related to the Ah field13. All the new sources introduced are invariant under
BRST, that is

sρi = 0. (24)

The full tree-level action to be considered is

Σ = SYMCS + SLC
GF −

∫
d3x

(
φ̄ac
µ Mab(Ah)φbc

µ − ω̄ac
µ Mab(Ah)ωbc

µ

)
+

∫
d3x

(
τa∂µA

h,a
µ − η̄aMab(Ah)ηb

)
+ Sγ2 + Scond + Sext + Sextra,

(25)

13Capri et al. Phys. Rev. D, 96(5):054022, 2017.
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This enlarged action is invariant under BRST

sΣ = 0, (26)

and in the limit where the sources take their physical values

Σ|phys= SRGZ
YMCS . (27)
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The introduction of the sources gives another invariance (δ) to the action Σ, defined by
the transformations

δφab = ωab
µ , δωab

µ = 0,

δω̄ab
µ = φ̄ab

µ , δφ̄ab
µ = 0,

δNai
µ = Mai

µ , δMai
µ = 0, (28)

δV ai
µ = Uai

µ , δUai
µ = 0,

δY i = Xi, δY i = 0,

δX̄abi = Ȳ abi, δȲ abi = 0,

where δΦ = 0 for all other fields and sources and δ2 = 0. It also possible to define the
gauge parameter α and the auxiliary fields source ρ as doublets

sα = χ, sχ = 0, δρ = σ, δσ = 0, (29)
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We can then define an extended BRST operator Q, given by

Q = s+ δ, Q2 = 0, (30)

so that the complete extended action Σ is left invariant

QΣ = 0. (31)

Fields A b c c̄ ξ φ̄ φ ω̄ ω α χ

d 1/2 3/2 -1/2 3/2 -1/2 1/2 1/2 1/2 1/2 0 0

ΦΠ-ghost 0 0 1 -1 0 0 0 -1 1 0 1

η-ghost 0 0 0 0 0 0 0 0 0 0 0

U(f)-number 0 0 0 0 0 -1 1 -1 1 0 0

Nature B B F F B B B F F B F
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Sources Ω L K J M N U V J ρ σ

d 5/2 7/2 7/2 5/2 3/2 3/2 3/2 3/2 2 2 2

ΦΠ-ghost -1 -2 -1 0 0 -1 1 0 0 0 1

η-ghost 0 0 0 0 0 0 0 0 0 0 0

U(f)-number 0 0 0 0 -1 -1 1 1 0 0 0

Nature F B F B B F F B B B F

Fields/Sources τ η η̄ Ξ X Y X̄ Ȳ

d 3/2 1/2 1/2 3/2 2 2 2 2

ΦΠ-ghost 0 0 0 0 1 0 −1 0

η-ghost 0 1 −1 −1 −1 −1 −1 −1

U(f)-number 0 1 −1 0 1 1 −1 −1

Nature B F F F B F B F
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The extended action Σ presents a large set of symmetries and functional identities, like
the Slavnov-Taylor

SQ(Σ) =

∫
d3x

[
δΣ

δΩa
µ

δΣ

δAa
µ

+
δΣ

δLa

δΣ

δca
+

δΣ

δKa

δΣ

δξa
+ ba

δΣ

δc̄a
+ ωai δΣ

δφai
+ φ̄ai δΣ

δω̄ai

+ Mai
µ

δΣ

δNai
µ

+ Uai
µ

δΣ

δV ai
µ

+ σ
δΣ

δρ
+Xi δΣ

δY i
− Ȳ abi δΣ

δX̄abi

]
+ χ

∂Σ

∂α
= 0,

(32)

the gauge-fixing condition
δΣ

δba
= ∂µA

a
µ − αba − 1

2
χc̄a, (33)

the ghost equation
δΣ

δc̄a
− ∂µ

δΣ

δΩa
µ

=
1

2
χba, (34)
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The equations of motion of the lagrange multiplier τa

δΣ

δτa
− ∂µ

δΣ

δJ a
µ

= 0, (35)

a global U(f) symmetry

Uij =

∫
d3x

[
φai δ

δφaj
− φ̄aj δ

δφ̄ai
+ ωai δ

δωaj
− ω̄aj δ

δω̄ai

−Maj
µ

δ

δMai
µ

+ V ai
µ

δ

δV aj
µ

−Naj
µ

δ

δNai
µ

+ Uai
µ

δ

δUaj
µ

+ Xi δ

δXj
+ Y i δ

δY j
− X̄abj δ

δX̄abi
− Ȳ abj δ

δȲ abi

]
= 0,

(36)
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a set of linearly broken identities

δΣ

δφ̄ai
+ ∂µ

δΣ

δMai
µ

+ gfabcV bi
µ

δΣ

δJ c
µ

= −ρφai + Y iηa; (37)

δΣ

δφai
+ ∂µ

δΣ

δV ai
µ

− gfabcφ̄bi δΣ

δτ c
+ gfabcM bi

µ

δΣ

δJ c
µ

= −ρφ̄ai − σω̄ai + Ȳ baiηb; (38)

δΣ

δω̄ai
+ ∂µ

δΣ

δNai
µ

− gfabcU bi
µ

δΣ

δJ c
µ

= ρωai + σφai −Xiηa; (39)

δΣ

δωai
+ ∂µ

δΣ

δUai
µ

− gfabcω̄bi δΣ

δτ c
+ gfabcN bi

µ

δΣ

δJ c
µ

= −ρω̄ai − X̄baiηb; (40)
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two distinct global ghost number identities for ΦΠ∫
d3x

[
ca

δΣ

δca
− c̄a

δΣ

δc̄a
+ ωai δΣ

δωai
− ω̄ai δΣ

δω̄ai
− Ωa

µ

δΣ

δΩa
µ

− 2La δΣ

δLa
−Ka δΣ

δKa

+ Uai
µ

δΣ

δUai
µ

−Nai
µ

δΣ

δNai
µ

+Xi δΣ

δXi
− X̄abi δΣ

δX̄abi

]
+ χ

∂Σ

∂χ
= 0;

(41)

and η ∫
d3x

[
ηa

δΣ

δηa
− η̄a

δΣ

δη̄a
− Ξa

µ

δΣ

δΞa
µ

− Xi δΣ

δXi
− Y i δΣ

δY i
− X̄abi δΣ

δX̄abi
− Ȳ abi δΣ

δȲ abi

]
= 0,

(42)
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a Rij symmetry, corresponding to an exchange between the auxiliary fields and sources

Rij =

∫
d3x

[
φai δΣ

δωaj
− ω̄aj δΣ

δφ̄ai
+ V ai

µ

δΣ

δUaj
µ

− Naj
µ

δΣ

δMai
µ

+ X̄abj δΣ

δȲ abi
+ Y i δΣ

δXj

]
= 0,

(43)

a η-ghost equation
δΣ

δη̄a
− ∂µ

δΣ

δΞa
µ

= 0, (44)

and a η anti-ghost equation∫
d3x

[
δΣ

δηa
+ gfabcη̄b

δΣ

δτ c
− gfabcΞb

µ

δΣ

δJ c
µ

]
=

∫
d3x

[
Xiω̄ai − Y iφ̄ai + X̄abiωbi − Ȳ abiφbi

]
;

(45)
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a series of identities that mix the auxiliary fields (φ̄, φ, ω̄, ω) with the ghosts (η̄, η)

W i
(1)Σ =

∫
d3x

(
ω̄ai δΣ

δη̄a
+ ηa

δΣ

δωai
+Nai

µ

δΣ

δΞa
µ

+ ρ
δΣ

δXi

)
= 0; (46)

W i
(2)Σ =

∫
d3x

(
φ̄ai δΣ

δη̄a
− ηa

δΣ

δφai
+Mai

µ

δΣ

δΞa
µ

− ρ
δΣ

δY i
+ σ

δΣ

δXi

)
= 0; (47)

W i
(3)Σ =

∫
d3x

(
φai δΣ

δη̄a
− ηa

δΣ

δφ̄ai
− gfabc δΣ

δȲ abi

δΣ

δτ c
− V ai

µ

δΣ

δΞa
µ

+ ρ
δΣ

δȲ aai

)
= 0; (48)

W i
(4)Σ =

∫
d3x

(
ωai δΣ

δη̄a
− ηa

δΣ

δω̄ai

+ gfabc δΣ

δX̄abi

δΣ

δτ c
+ Uai

µ

δΣ

δΞa
µ

+ ρ
δΣ

δX̄aai
+ σ

δΣ

δȲ aai

)
= 0.

(49)
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The counterterm action ΣCT is written as a perturbation of the classical action
(Σ + ϵΣCT ) and must obey

WiΣCT = 0, (50)

where Wi stands for all the functional operators of the identities of Σ. It can be written as

ΣCT = ∆+ BQ∆
(−1), (51)

where ∆ and BQ∆
(−1) are local, integrated polynomials bounded by dimension 2 and

with ghost number 0 and −1, respectively.
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The most general ΣCT which respects the symmetry constraints is the non-trivial term

∆ =

∫
d3x

[
a0ϵµρν

(
1

2
Aa

µ∂ρA
a
ν +

g

3!
fabcAa

µA
b
ρA

c
ν

)
+ a1J

]
. (52)

The a1 source term must be taken at the physical value, being just an additive constant;
and the a0 term is the Chern-Simons action, which does not contribute to the
counterterm, since it is not locally invariant under BRST.

Therefore, the counterterm action is trivial and the YMCS theory in linear covariant
gauges remain finite when Gribov copies and condensates are taken into account.
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Concluding Remarks

• The Quantum Action Principle allows to prove the finite character of YMCS theory
without explicit computations;

• The restriction of YMCS theory to the Gribov region, within the RGZ framework,
does not spoil the finiteness of the theory;

• YMCS is a good laboratory to study how the interplay between different mass
parameters affect the confining/deconfined character of the theory;
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Thank you!
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