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Introduction

@ We consider the case of a low energy spacelike QCD observable
D(Q?) whose perturbation expansion has in general noninteger
powers of the coupling a(@?) = as(Q?)/m (due to nonzero value of
the associated anomalous dimension), D(Q?) = a(Q?)" + O(a**+1).

@ If the renormalon structure of D(QZ) is known, then the renormalon
structure of an associated auxiliary quantity D) (Q?) is known and
its so called characteristic function Fp)(t) can be obtained.

e The quantity D(Q?) can then be evaluated as an integral (over t) of
the product of Fp)(t) and 3,,(t@?), where the latter is a generalised
logarithmic derivative of order 1o of the coupling a(tQ?).

@ The procedure is then extended to the evaluation of timelike
observables (o), which involves some additional concepts.

@ The procedure is then applied to the evaluation of a specific timelike
observable F(¢) that has 1y = 1/3.

e Instead of the perturbative coupling a(@?), a (holomorphic) coupling
A(Qz) that has no Landau singularities is used as the basis, in order
to avoid ambiguities in the evaluation.
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Spacelike  (Q?)

The perturbation expansion of the considered low energy spacelike
observable D(Q?) is

D(Q@) = 3 dn(vo; m)a(s @) (1)
n=0
= 3 do(v0i W) n(Q?). (2)
n=0
Here, Q%> = —q? > 0 is spacelike; 1/ is the power index of the leading term

(0 < 19 <1); k= p?/Q? > 0 is the renormalisation scale parameter.

The (generalised) logarithmic derivatives a,,1, are related to the powers
al/0+m

3, = Y kn(n)atm  (ko(v)=1), (3)

3’ = Z Fm(V)gy—l—m (;O(V) = 1) (4)

m—
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Spacelike  (Q?)

When v = n is integer, then:

an1(Q%) = (nTﬁlg): <d|ndQ2> a(Q?). (5)

We have 3, = a” + O(a"*1). N

Explicit expressions for kn() and km() were obtained by (Kotikov &
G.C., JPG (2012)) for m < 4. When a holomorphic coupling A(Q?) is
used as a basis instead of a(Q?), the corresponding (exact) A, (Q?) was
constructed in (Kotikov & G.C., JPG (2012)) as an integral involving the
spectral function p4(c) = ImA(—o — ic) (see later).

The coefficients g,, and d,, are then related

dn(vo, ) = D kn-s(10 + 5)ds(110; ), (6)
s=0

dn(v0,K) = > kn_s(vo + 5)ds(v0; ). (7)
s=0
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Spacelike  (Q?)

We now construct an associated auxiliary quantity D(M)(Q?)

) = Z (1; K)an 1 (£ Q?), (8)
n=0

where

dn(1; k) = Wgn(vo;ﬁ)- (9)

(1)(Q?) can be shown to be k-independent.
We will apply to the evaluation of D(1)(Q?) the renormalon-motivated
formalism that was developed for the observables with 1y =1 (G.C., 2019
[PRD]):
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Spacelike D(Q?)

The modified Borel transform B of DM(Q?) is defined as

B[DW](u; ) = Z d;;%olj) u".

n=0

(10)

In practice we need to know the renormalon (singularity) structure of
B[DM](u). Then the quantity DM (Q?) is evaluated as (G.C., 2019
[PRD])

°° dt
D@ = [ G o (1a(e0%), (11)
where the characteristic function Fpu(t) is the inverse Mellin
transformation of the modified Borel B[D(M](u)
+oo

Fo () = % / duB[DD](u)t". (12)

—joco
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Spacelike  (Q?)

Theor. 1: Then it can be proved that the original spacelike observable
D(Q?) has the form

D@ = [ G Fo(0)3(102) (13)

0
In order to prove this, we must perform Taylor expansion of a,,(tQ?)
around (In)x @2, using recursive relations for 3,1 ,(kQ?)'s.
To obtain the needed Fju)(t), the (leading) renormalon (singularity)
structure of B[DW](u) [cf. Eq. (12)] should be known. However, in
practice, we may know the renormalon structure of B(*)[D](u).
The question then: how to get from
B0)[D](u) — BM)[D](u) — B[DM](u)? We recall:

B [D](u; k) i dnlvoiK) o (14)

= nlfo"
B [D](u; k) = Zdnn(lyﬁoo;:)un’ (15)

n—()
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Spacelike  (Q?)

The following two Theorems can be proved:

Theor. 2: If
BONDl(uin) = SO -] = (19)
BOWD)(;k) = muw((p—u))l, (17)

where 55 = s — pB1//35. We recall the RGE:

da(p?)/dInp? = —Boa(p?)? — Bra(u?)® —

For UV renormalons, the substitutions (p — u) — (p+u) and

S = So + pfB1/B3 are made. The theorem is valid even for timelike
observable (see later).

Theor. 3: If B()[D](u; k) is as in Theor. 2, then

KM (k)

Wll +0((p—u))l, (18)

BIPW](u; v) = 0
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Spacelike  (Q?)

When knowing the renormalon structure Eq. (18) of B[D(](u), the
needed characteristic function Fp)(t) is obtained then via inverse Mellin
Eq. (12).

Theor. 4: If B[D™M](u) has the renormalon form as in Theor. 3, i.e.,
B[DW](u) = KB /(p — u)* then

tP

rE)(—Ine)s

This is then applied in the resummation Eq. (13) for D(Q?).
This then concludes the case of resummation of spacelike observables

D(Q?).

%—Vo—f—l.

Fpu(t) = (1 — t)kW
B
(19)

with: s=s5y—p
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Timelike (o)

A typical timelike observable F(o) is a function of positive squared energy
o > 0. It has the related spacelike quantity (observable) D(Q?).
Furthermore, the auxiliary spacelike quantity D(l)(Qz) has the

corresponding auxiliary timelike quantity F(1) (). The two pairs are
related via

1 [t ,
Flo) = o dp D(ce'?), (20)
FO(o) = % +7rd¢D(1)(aei¢). (21)
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Timelike (o)

If the expansion of D(Q?) in powers of a(kQ?) has powers a(xQ@2)"0+"
[cf.Egs. (1)-(2)], then the expansion of F (o) has powers a(ko)”0™".

Flo) = 3 fulooi w)a(ra) ot (24
n=0

= D falvo; K)aa(ro), (25)
n=0

and for F(I)() (that is obtained via Eq. (21)):
FO(o Zf (1; k)34 n(K0). (26)

We recall that the coefficients dn(1; k) of DO were defined via a simple
rescaling of the coefficients d,(10; k) of D:
[(v0)F (1 + n)

o+ 1) dn(v0; K).

dn(1; ) =
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Timelike (o)

When applying the resummation of D(Q?) Eq. (13) to the integration
form (20) and exchanging the order of integration, we obtain the
resummed form for F(o):

Hohes = [ G Fon(0a(t0), (27)

where b, (o) is the timelike analog of the spacelike (generalised logarithmic

derivative) a,(Q?), defined and investigated in (Kotikov and G.C., 2012
[JPG])

bo(ko)=— | do¢ 3, (koe). (28)
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Timelike (o)

We can then show the following relation between modified Borel of D(1)

and F(1):

Theor. 5: _
BIPO)u;m) ) BF0 (), (29)

and the similar version for the modified Borel transforms of D and F:

Theor. 6: If

BU[D)(u; k) = (plc—(’z))%
BEOLF(nr) = TP (p’c_(j))% 1+0((p-uw). (30

We recall that B0)[D](u; x) = 3= dy(v0; k)u"/(n!fo") and
BUOF)(u; w) = X fa(vos &)u"/(nl5o").
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Timelike (o)

One of the consequences of Theor. 5 and 6 the following Lemma:

~ M)l (1+n)+

f(lik) =~/ 2T g 1 1/n)), 1
(1) = S EE P i) 1+ 01/ m) (31)

i.e., the relation between f,(1; k) and fn(vo; , /) is in the leading order in

1/n equal to that between the coefficients d,,(1; k) and d, (uo, K).

By Lemma Eq. (31), Theor. 3 can be applied also to B(0)[F](u):

If B0 [F](u) ~ 1/(p — u)®, then BIFM](u) ~ 1/(p — u)® 0+,
From here, B[D(l)]( ) is obtained by Theor. 5.

We note that Theor. 2 is valid also for timelikNe observables, iN.e., we can
replace there B(*0)[D](u) — B)[F](u) and BH)[D](u) — BM)[F](u).

So: BUO[F](u) = B[ F](u) — B[FD)(u) — B[DD](u).
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Holomorphic QCD

In order to apply the described resummations formally consistently, i.e.,
without ambiguities due to Landau singularities of pQCD coupling a(t@?)
(at 0 < t@* <1 GeV2), we should use a spacelike coupling

a(Q?) — A(Q?) that is free from Landau singularities. In principle, we can
use any such coupling that is defined via its spectral (discontinuity)
function p4(c) = ImA(—o — ie). For example, one choice of such
spectral function can be (36AQCD 0 < M2 < My? < Ms? < My?)

= WZH o — M)+ 0(c — My?)pa(o), (32)

where: A(Q?) = (1/7) fMlz dopa(o)/(c + @3).
The generalised logarithmic derivative A, (Q?) (the analog of 3,(Q?)) is
then (Kotikov and G.C., 2021 [JPG])

L [ @i (‘52) (v > 0)(33)

"ZV(Q2) ﬂ_BOV 1r V)
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Holomorphic QCD

The timelike coupling $,, (the analog of b,) is then

9,(ko) = % i do A, (koe'). (34)
sin(mv) > dw

- _71'2(1/ —1)Bov 1 /0 W’jflpA(UeW) (0 <v<2)(39)

The resummations of the quantities D), D and F in this formulation are

PO(Q)e = /OOGZ-FD(l)(t)A(te—ReQZ)’ (36)
0

D(Q2)res. = / %FD(l)(t)AvUo(te_Rst)a (37)
0

]:(U)res. = /0 %FD(I)(t)%yo(te_ReU)‘ (38)
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Holomorphic QCD
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Figure: The specific 35-parametrised choice of p.4 (o) gives: A(Q?) for positive Q?, in
36AQCD, with ns = 3, a}™®(M2) = 0.1180, and three different values of the
IR-threshold scale parameter My (C. Ayala, G.C. et al., 2017 [JPG]); cf. also (Pelaez et
al., 2017 [PRD]). Based on lattice calculations (Bogolubsky et al., 2009 [PLB]). The

underlying pQCD coupling is included, all in (Lambert) MiniMOM scheme (LMM).
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Holomorphic QCD

The specific 30-parametrised choice of p4(c) then gives
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Figure: The spacelike running coupling .Z,,O(Qz) for positive @ (left-hand figure), and
the timelike running coupling $,,(c) (right-hand figure), in 36AQCD, with v = 1/3
and ns = 3, aMS(M32) = 0.1180, and three different values of the IR-threshold scale
parameter M.
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Implementation: an example

We consider F(c) oc C(m) of (Grozin and Neubert, 1997 [NPB]), which is
proportional to the factor of the Wilson coefficient of the chromomagnetic
operator in the heavy-quark effective theory (HQET) for hadronic bound
states containing one heavy quark (c or b). Strictly speaking,

F(o) = = C(m), where o = m is the (pole) mass of the heavy quark.

In this case, the first four expansion coefficients f;(vo; k) (j =0,...,3) are
known, and vy = 1/3,9/25 (for nf = 3,4) Further, the (leading)
renormalon structure of the Borel B(*0)[F](u) is known (Grozin and
Neubert, 1997 [NPB])

S So
BW[F(u;1) = { x -
' +10+51/(283) +81/(282)
() Dy
S_
+ u)uo+ﬁ1/(253)}[1+O(1/2_u)]' (39)

G-
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Implementation: an example

Application of Theor. 2 then gives
_ S = (1 S
B Fl(u1) = 74_1/4‘5' <_ >+
[ ](U ) {(%—U) 0 01N 2 u (%_u)—l/o
[1+0(1/2—-u). (40)

Since Lemma s valid (relating f,(1) with f,(11)), Theor. 3 can be
applied, giving

} S0 R 50
B[‘F(l)](u' H) - { S+ 1 + : —vp+1 + _—2V0 1 }
G-v G-o" G-u"
[1+0(1/2-u). (41)
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Implementation: an example

The use of Theor. 5 then gives

~(1) (1) (1)
~ K K K
By = {0y ) )
G-u  G-u ™ G-u
14+ 0(1/2 - u)], (42)
where Kgl) = (7r/2)§¢(71). We have the k-dependence
KD (k) = exp (In(x)u) K (g = +,0,-). (43)

Therefore, we include in our ansatz for B[DM](u; k) this factor. This then
gives us our ansatz ( “the point of departure”):
RO R R }

1 1 1 —19+1 1 —2uv0+1 .

G-u G-u 7 (G-u
(44)

The four parameters here are determined by the knowledge of the first four
coefficients f,(v0; k) (n=0,...,3; Kk =1).

BID™M](u) = exp(KM ) {

César Ayala (Univ. de Tarapaca, lquique), Go renormalons in QCD, 4 Dec. 2025 21 /27



Implementation: an example

The relevant characteristic function for the resummations of D), D and
F is then, according to Theorem 4

(1)

Ko
M(—vo+1)(—Int)n

Fpo(t) = @(l_t)t1/2{kj_1)+

KM
+ M(—2vp + 1)(—Int)?vo } (45)

This then gives us the final result for the evaluation (resummation) of
F(o):

Jren, = / o (1)51s(te o), (46)
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Implementation: an example

1.0 r T T
N res 36AQCD

05 L Il Il Il
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o(GeV?)

Figure: The renormalon-resummed F (o), as a function of the squared timelike
momentum (squared mass) o, in 36AQCD, for nr = 3, My = 0.150 GeV and

a5 (M2) = 0.1180. For comparison, we include also the corresponding pQCD TPS in
the MS and LMM schemes, with three terms included (N = 3).
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Implementation: an example
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Figure: The resummed values of (o) as in the previous Figure, but now when (a) the
IR-threshold scale My is varied and a)"(M2) = 0.1180; (b) when ol'®(M?) value is

varied and M; = 0.150 GeV.

renormalons in QCD, 4 Dec. 2025

César Ayala (Univ. de Tarapaca, Iquique), Go



Implementation: an example

Results:
F(m)res. = 0.6365 00050 (mc) 30108 (ovs) 0 0342 (Mh)
= 0.6365 + 0.0273. (47)
F(m)res. = 0.4792 F 0.0010(mp) 53925 (cvs) 150008 (M)
— 0.479270:008%, (48)

pQCD TPS approach gives:

Fm)TTS — 0.66045818(me) 38122 (0,) £0.0854(TPS)
0660400566 (49)
2\TPS[4] _
F(m?) —  0.4807 F 0.0014(m,) & 0.0049(a5)-0.0184(TPS)
— 0.4807 & 0.0191. (50)
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Implementation: an example

The ratio F(m?)/F(m?2) is related to the following ratio of mass splitting
between the ground-state pseudoscalar and vector mesons, in the bottom
and charm quark systems:

Ma. =Mz o(a)-wo(3) 7 (m3) [1 b A (1 _ 1> . ] 61

Mp. — Mp F(m?) me  mp

Here, hadronic parameter A.g in the subleading terms is a combination of
the hadronic parameters. The ratio of mass splitting is 0.8776, using the
data PDG2024. We now use in this relation the results (47)-(50) and we
extract the value of this hadronic parameter

res: A = (0.335.5:99%(mc) F 0.004(mp) 3375 (Mi&as)) GeV
= (0.335+£0.075) GeV, (52)
TPS: Ay = (043573920 (mc) + 0.006(mp) 3252 (TPS&as)) GeV
~ (0435935 Gev, 53)
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Conclusions

@ We presented a renormalon-motivated evaluation (resummation) for general
spacelike QCD observables D(Q?) whose perturbation expansion in powers of
couplings is D(Q%) — a(k@%)" + O(a”"™) with 15 in general noninteger. This
approach is an extension of a previous approach that had be constructed for the
case of v integer (vo = 1).

@ The resummation involved a characteristic function Fa)(t) that can be obtained
if the renormalon structure of D(Q?) is known.

@ In order to have the correct holomorphic behaviour of the evaluated (resummed)
D(Q?)res., it was necessary to replace in the integration the pQCD generalised
logarithmic derivative 3,,(t@%) by a holomorphic analog A, (tQ).

@ We then extended this approch to the evaluation of timelike QCD observables
F(o) (with g in general noninteger).

@ We applied this approach to a timelike low energy QCD quantity, the scheme
invariant factor of the Wilson coefficient of the chromomagnetic factor of the
heavy-quark effective Lagrangian, and compared the obtained results with those of
a naive pQCD evaluation.

César Ayala (Univ. de Tarapaca, lquique), Go renormalons in QCD, 4 Dec. 2025 27 /27



