

A renormalon-motivated resummation for low-energy QCD observables

César Ayala (Univ. de Tarapacá, Iquique), Gorazd Cvetič (UTFSM, Valparaíso) and Reinhart Kögerler (Univ. Bielefeld, FRG)

Talk presented by G.C.

[arXiv:2509.09042]

WONPAQCD25, Valparaiso, 4 Dec. 2025

Introduction

- We consider the case of a **low energy spacelike QCD** observable $\mathcal{D}(Q^2)$ whose **perturbation expansion** has in general **noninteger** powers of the coupling $a(Q^2) \equiv \alpha_s(Q^2)/\pi$ (due to nonzero value of the associated anomalous dimension), $\mathcal{D}(Q^2) = a(Q^2)^{\nu_0} + \mathcal{O}(a^{\nu_0+1})$.
- If the **renormalon** structure of $\mathcal{D}(Q^2)$ is known, then the renormalon structure of an **associated auxiliary** quantity $\mathcal{D}^{(1)}(Q^2)$ is known and its so called **characteristic function** $F_{\mathcal{D}^{(1)}}(t)$ can be obtained.
- The quantity $\mathcal{D}(Q^2)$ can then be evaluated as an integral (over t) of the product of $F_{\mathcal{D}^{(1)}}(t)$ and $\tilde{a}_{\nu_0}(tQ^2)$, where the latter is a **generalised logarithmic derivative** of order ν_0 of the coupling $a(tQ^2)$.
- The procedure is then extended to the evaluation of **timelike** observables $\mathcal{F}(\sigma)$, which involves some additional concepts.
- The procedure is then **applied to the evaluation** of a specific **timelike** observable $\mathcal{F}(\sigma)$ that has $\nu_0 = 1/3$.
- Instead of the perturbative coupling $a(Q^2)$, a **(holomorphic)** coupling $\mathcal{A}(Q^2)$ that has **no Landau singularities** is used as the basis, in order to avoid ambiguities in the evaluation.

Spacelike $\mathcal{D}(Q^2)$

The perturbation expansion of the considered low energy spacelike observable $\mathcal{D}(Q^2)$ is

$$\mathcal{D}(Q^2) = \sum_{n=0}^{\infty} d_n(\nu_0; \kappa) a(\kappa Q^2)^{\nu_0+n} \quad (1)$$

$$= \sum_{n=0}^{\infty} \tilde{d}_n(\nu_0; \kappa) \tilde{a}_{\nu_0+n}(\kappa Q^2). \quad (2)$$

Here, $Q^2 \equiv -q^2 > 0$ is spacelike; ν_0 is the power index of the leading term ($0 < \nu_0 \leq 1$); $\kappa \equiv \mu^2/Q^2 > 0$ is the renormalisation scale parameter.

The (generalised) logarithmic derivatives \tilde{a}_{ν_0+n} are related to the powers a^{ν_0+m}

$$\tilde{a}_{\nu} = \sum_{m=0}^{\infty} k_m(\nu) a^{\nu+m} \quad (k_0(\nu) = 1), \quad (3)$$

$$a^{\nu} = \sum_{m=0}^{\infty} \tilde{k}_m(\nu) \tilde{a}_{\nu+m} \quad (\tilde{k}_0(\nu) = 1). \quad (4)$$

Spacelike $\mathcal{D}(Q^2)$

When $\nu = n$ is integer, then:

$$\tilde{a}_{n+1}(Q^2) \equiv \frac{(-1)^n}{n! \beta_0^n} \left(\frac{d}{d \ln Q^2} \right)^n a(Q^2). \quad (5)$$

We have $\tilde{a}_\nu = a^\nu + \mathcal{O}(a^{\nu+1})$.

Explicit expressions for $k_m(\nu)$ and $\tilde{k}_m(\nu)$ were obtained by (Kotikov & G.C., JPG (2012)) for $m \leq 4$. When a holomorphic coupling $\mathcal{A}(Q^2)$ is used as a basis instead of $a(Q^2)$, the corresponding (exact) $\tilde{\mathcal{A}}_\nu(Q^2)$ was constructed in (Kotikov & G.C., JPG (2012)) as an integral involving the spectral function $\rho_{\mathcal{A}}(\sigma) = \text{Im} \mathcal{A}(-\sigma - i\varepsilon)$ (see later).

The coefficients d_n and d_m are then related

$$\tilde{d}_n(\nu_0, \kappa) = \sum_{s=0}^n \tilde{k}_{n-s}(\nu_0 + s) d_s(\nu_0; \kappa), \quad (6)$$

$$d_n(\nu_0, \kappa) = \sum_{s=0}^n k_{n-s}(\nu_0 + s) \tilde{d}_s(\nu_0; \kappa). \quad (7)$$

Spacelike $\mathcal{D}(Q^2)$

We now construct an **associated auxiliary** quantity $\mathcal{D}^{(1)}(Q^2)$

$$\mathcal{D}^{(1)}(Q^2) \equiv \sum_{n=0}^{\infty} \tilde{d}_n(\mathbf{1}; \kappa) \tilde{a}_{n+1}(\kappa Q^2), \quad (8)$$

where

$$\tilde{d}_n(\mathbf{1}; \kappa) \equiv \frac{\Gamma(\nu_0) \Gamma(1+n)}{\Gamma(\nu_0 + n)} \tilde{d}_n(\nu_0; \kappa). \quad (9)$$

$\mathcal{D}^{(1)}(Q^2)$ can be shown to be κ -independent.

We will apply to the evaluation of $\mathcal{D}^{(1)}(Q^2)$ the **renormalon-motivated** formalism that was developed for the observables with $\nu_0 = \mathbf{1}$ (G.C., 2019 [PRD]):

Spacelike $\mathcal{D}(Q^2)$

The **modified Borel** transform \tilde{B} of $\mathcal{D}^{(1)}(Q^2)$ is defined as

$$\tilde{B}[\mathcal{D}^{(1)}](u; \kappa) \equiv \sum_{n=0}^{\infty} \frac{\tilde{d}_n(1; \kappa)}{n! \beta_0^n} u^n. \quad (10)$$

In practice we need to know the **renormalon (singularity) structure** of $\tilde{B}[\mathcal{D}^{(1)}](u)$. Then the quantity $\mathcal{D}^{(1)}(Q^2)$ is evaluated as (G.C., 2019 [PRD])

$$\mathcal{D}^{(1)}(Q^2)_{\text{res.}} = \int_0^{\infty} \frac{dt}{t} F_{\mathcal{D}^{(1)}}(t) a(tQ^2), \quad (11)$$

where the **characteristic function** $F_{\mathcal{D}^{(1)}}(t)$ is the **inverse Mellin** transformation of the **modified Borel** $\tilde{B}[\mathcal{D}^{(1)}](u)$

$$F_{\mathcal{D}^{(1)}}(t) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} du \tilde{B}[\mathcal{D}^{(1)}](u) t^u. \quad (12)$$

Spacelike $\mathcal{D}(Q^2)$

Theor. 1: Then it can be proved that the **original** spacelike observable $\mathcal{D}(Q^2)$ has the form

$$\mathcal{D}(Q^2)_{\text{res.}} = \int_0^\infty \frac{dt}{t} F_{\mathcal{D}^{(1)}}(t) \tilde{a}_{\nu_0}(tQ^2), \quad (13)$$

In order to prove this, we must perform Taylor expansion of $\tilde{a}_{\nu_0}(tQ^2)$ around $(\ln)\kappa Q^2$, using recursive relations for $\tilde{a}_{\nu_0+n}(\kappa Q^2)$'s.

To obtain the needed $F_{\mathcal{D}^{(1)}}(t)$, the (leading) renormalon (singularity) structure of $\tilde{B}[\mathcal{D}^{(1)}](u)$ [cf. Eq. (12)] should be known. However, in practice, we may know the renormalon structure of $B^{(\nu_0)}[\mathcal{D}](u)$.

The question then: how to get from

$B^{(\nu_0)}[\mathcal{D}](u) \mapsto \tilde{B}^{(\nu_0)}[\mathcal{D}](u) \mapsto \tilde{B}[\mathcal{D}^{(1)}](u)$? We recall:

$$B^{(\nu_0)}[\mathcal{D}](u; \kappa) \equiv \sum_{n=0}^{\infty} \frac{d_n(\nu_0; \kappa)}{n! \beta_0^n} u^n, \quad (14)$$

$$\tilde{B}^{(\nu_0)}[\mathcal{D}](u; \kappa) \equiv \sum_{n=0}^{\infty} \frac{\tilde{d}_n(\nu_0; \kappa)}{n! \beta_0^n} u^n, \quad (15)$$

Spacelike $\mathcal{D}(Q^2)$

The following two Theorems can be proved:

Theor. 2: If

$$B^{(\nu_0)}[\mathcal{D}](u; \kappa) = \frac{\mathcal{K}(\kappa)}{(p-u)^{s_0}} [1 + \mathcal{O}((p-u))] \Rightarrow \quad (16)$$

$$\tilde{B}^{(\nu_0)}[\mathcal{D}](u; \kappa) = \frac{\tilde{\mathcal{K}}(\kappa)}{(p-u)^{\tilde{s}_0}} [1 + \mathcal{O}((p-u))] , \quad (17)$$

where $\tilde{s}_0 = s_0 - p\beta_1/\beta_0^2$. We recall the RGE:

$$da(\mu^2)/d \ln \mu^2 = -\beta_0 a(\mu^2)^2 - \beta_1 a(\mu^2)^3 - \dots$$

For UV renormalons, the substitutions $(p-u) \mapsto (p+u)$ and $\tilde{s}_0 = s_0 + p\beta_1/\beta_0^2$ are made. The theorem is valid even for timelike observable (see later).

Theor. 3: If $\tilde{B}^{(\nu_0)}[\mathcal{D}](u; \kappa)$ is as in Theor. 2, then

$$\tilde{B}[\mathcal{D}^{(1)}](u; \kappa) = \frac{\tilde{\mathcal{K}}^{(1)}(\kappa)}{(p-u)^{\tilde{s}_0 - \nu_0 + 1}} [1 + \mathcal{O}((p-u))] , \quad (18)$$

Spacelike $\mathcal{D}(Q^2)$

When knowing the renormalon structure Eq. (18) of $\tilde{B}[\mathcal{D}^{(1)}](u)$, the needed characteristic function $F_{\mathcal{D}^{(1)}}(t)$ is obtained then via inverse Mellin Eq. (12).

Theor. 4: If $\tilde{B}[\mathcal{D}^{(1)}](u)$ has the renormalon form as in Theor. 3, i.e., $\tilde{B}[\mathcal{D}^{(1)}](u) = \tilde{\mathcal{K}}^{(1)}/(p - u)^{\tilde{s}}$ then

$$F_{\mathcal{D}^{(1)}}(t) = \Theta(1 - t) \tilde{\mathcal{K}}^{(1)} \frac{t^p}{\Gamma(\tilde{s})(- \ln t)^{1 - \tilde{s}}} \quad \text{with: } \tilde{s} = s_0 - p \frac{\beta_1}{\beta_0^2} - \nu_0 + 1. \quad (19)$$

This is then applied in the resummation Eq. (13) for $\mathcal{D}(Q^2)$.

This then concludes the case of resummation of spacelike observables $\mathcal{D}(Q^2)$.

Timelike $\mathcal{F}(\sigma)$

A typical **timelike** observable $\mathcal{F}(\sigma)$ is a function of positive squared energy $\sigma > 0$. It has the related spacelike quantity (observable) $\mathcal{D}(Q^2)$.

Furthermore, the auxiliary spacelike quantity $\mathcal{D}^{(1)}(Q^2)$ has the corresponding auxiliary timelike quantity $\mathcal{F}^{(1)}(\sigma)$. The two pairs are related via

$$\mathcal{F}(\sigma) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \, \mathcal{D}(\sigma e^{i\phi}), \quad (20)$$

$$\mathcal{F}^{(1)}(\sigma) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \, \mathcal{D}^{(1)}(\sigma e^{i\phi}). \quad (21)$$

$$\mathcal{D}(Q^2) = Q^2 \int_0^\infty \frac{d\sigma \mathcal{F}(\sigma)}{(\sigma + Q^2)^2}, \quad (22)$$

$$\mathcal{D}^{(1)}(Q^2) = Q^2 \int_0^\infty \frac{d\sigma \mathcal{F}^{(1)}(\sigma)}{(\sigma + Q^2)^2} \quad (23)$$

Timelike $\mathcal{F}(\sigma)$

If the expansion of $\mathcal{D}(Q^2)$ in powers of $a(\kappa Q^2)$ has powers $a(\kappa Q^2)^{\nu_0+n}$ [cf. Eqs. (1)-(2)], then the expansion of $\mathcal{F}(\sigma)$ has powers $a(\kappa\sigma)^{\nu_0+n}$.

$$\mathcal{F}(\sigma) = \sum_{n=0}^{\infty} f_n(\nu_0; \kappa) a(\kappa\sigma)^{\nu_0+n} \quad (24)$$

$$= \sum_{n=0}^{\infty} \tilde{f}_n(\nu_0; \kappa) \tilde{a}_{\nu_0+n}(\kappa\sigma), \quad (25)$$

and for $\mathcal{F}^{(1)}(\sigma)$ (that is obtained via Eq. (21)):

$$\mathcal{F}^{(1)}(\sigma) = \sum_{n=0}^{\infty} \tilde{f}_n(1; \kappa) \tilde{a}_{1+n}(\kappa\sigma). \quad (26)$$

We recall that the coefficients $\tilde{d}_n(1; \kappa)$ of $\mathcal{D}^{(1)}$ were defined via a simple **rescaling** of the coefficients $\tilde{d}_n(\nu_0; \kappa)$ of \mathcal{D} :

$$\tilde{d}_n(1; \kappa) \equiv \frac{\Gamma(\nu_0)\Gamma(1+n)}{\Gamma(\nu_0+n)} \tilde{d}_n(\nu_0; \kappa).$$

Timelike $\mathcal{F}(\sigma)$

When applying the resummation of $\mathcal{D}(Q^2)$ Eq. (13) to the integration form (20) and exchanging the order of integration, we obtain the resummed form for $\mathcal{F}(\sigma)$:

$$\mathcal{F}(\sigma)_{\text{res.}} = \int_0^\infty \frac{dt}{t} F_{\mathcal{D}^{(1)}}(t) \tilde{h}_{\nu_0}(t\sigma), \quad (27)$$

where $\tilde{h}_{\nu}(\sigma)$ is the **timelike analog** of the spacelike (generalised logarithmic derivative) $\tilde{a}_{\nu}(Q^2)$, defined and investigated in (Kotikov and G.C., 2012 [JPG])

$$\tilde{h}_{\nu}(\kappa\sigma) \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \, \tilde{a}_{\nu}(\kappa\sigma e^{i\phi}). \quad (28)$$

Timelike $\mathcal{F}(\sigma)$

We can then show the following relation between modified Borel of $\mathcal{D}^{(1)}$ and $\mathcal{F}^{(1)}$:

Theor. 5:

$$\tilde{B}[\mathcal{D}^{(1)}](u; \kappa) \frac{\sin(\pi u)}{\pi u} = \tilde{B}[\mathcal{F}^{(1)}](u; \kappa), \quad (29)$$

and the similar version for the modified Borel transforms of \mathcal{D} and \mathcal{F} :

Theor. 6: If

$$\begin{aligned} \tilde{B}^{(\nu_0)}[\mathcal{D}](u; \kappa) &= \frac{\tilde{\mathcal{K}}(\kappa)}{(p-u)^{\tilde{s}_0}} \Rightarrow \\ \tilde{B}^{(\nu_0)}[\mathcal{F}](u; \kappa) &= \frac{\sin(\pi p)}{\pi p} \frac{\tilde{\mathcal{K}}(\kappa)}{(p-u)^{\tilde{s}_0}} [1 + \mathcal{O}((p-u))]. \end{aligned} \quad (30)$$

We recall that $\tilde{B}^{(\nu_0)}[\mathcal{D}](u; \kappa) = \sum \tilde{d}_n(\nu_0; \kappa) u^n / (n! \beta_0^n)$ and $\tilde{B}^{(\nu_0)}[\mathcal{F}](u; \kappa) = \sum \tilde{f}_n(\nu_0; \kappa) u^n / (n! \beta_0^n)$.

Timelike $\mathcal{F}(\sigma)$

One of the consequences of Theor. 5 and 6 the following **Lemma**:

$$\tilde{f}_n(\mathbf{1}; \kappa) = \frac{\Gamma(\nu_0) \Gamma(1+n)}{\Gamma(\nu_0 + n)} \tilde{f}_n(\nu_0; \kappa) (1 + \mathcal{O}(1/n)), \quad (31)$$

i.e., the relation between $\tilde{f}_n(\mathbf{1}; \kappa)$ and $\tilde{f}_n(\nu_0; \kappa)$ is in the leading order in $1/n$ equal to that between the coefficients $d_n(\mathbf{1}; \kappa)$ and $\tilde{d}_n(\nu_0; \kappa)$.

By **Lemma** Eq. (31), **Theor. 3** can be applied also to $\tilde{B}^{(\nu_0)}[\mathcal{F}](u)$:

If $\tilde{B}^{(\nu_0)}[\mathcal{F}](u) \sim 1/(p-u)^{\tilde{s}_0}$, then $\tilde{B}[\mathcal{F}^{(1)}](u) \sim 1/(p-u)^{\tilde{s}_0 - \nu_0 + 1}$.

From here, $\tilde{B}[\mathcal{D}^{(1)}](u)$ is obtained by **Theor. 5**.

We note that **Theor. 2** is valid also for timelike observables, i.e., we can replace there $B^{(\nu_0)}[\mathcal{D}](u) \mapsto B^{(\nu_0)}[\mathcal{F}](u)$ and $\tilde{B}^{(\nu_0)}[\mathcal{D}](u) \mapsto \tilde{B}^{(\nu_0)}[\mathcal{F}](u)$.

So: $B^{(\nu_0)}[\mathcal{F}](u) \mapsto \tilde{B}^{(\nu_0)}[\mathcal{F}](u) \mapsto \tilde{B}[\mathcal{F}^{(1)}](u) \mapsto \tilde{B}[\mathcal{D}^{(1)}](u)$.

Holomorphic QCD

In order to apply the described resummations formally consistently, i.e., without ambiguities due to Landau singularities of pQCD coupling $a(tQ^2)$ (at $0 < tQ^2 \lesssim 1 \text{ GeV}^2$), we should use a spacelike coupling $a(Q^2) \mapsto \mathcal{A}(Q^2)$ that is **free from Landau singularities**. In principle, we can use any such coupling that is defined via its spectral (discontinuity) function $\rho_{\mathcal{A}}(\sigma) \equiv \text{Im} \mathcal{A}(-\sigma - i\varepsilon)$. For example, one choice of such spectral function can be (3δAQCD, $0 < M_1^2 < M_2^2 < M_3^2 < M_0^2$)

$$\rho_{\mathcal{A}}(\sigma) = \pi \sum_{j=1}^3 \mathcal{F}_j \delta(\sigma - M_j^2) + \Theta(\sigma - M_0^2) \rho_a(\sigma), \quad (32)$$

where: $\mathcal{A}(Q^2) = (1/\pi) \int_{M_1^2}^{\infty} d\sigma \rho_{\mathcal{A}}(\sigma) / (\sigma + Q^2)$.

The generalised logarithmic derivative $\tilde{\mathcal{A}}_{\nu}(Q^2)$ (the analog of $\tilde{a}_{\nu}(Q^2)$) is then (Kotikov and G.C., 2021 [JPG])

$$\tilde{\mathcal{A}}_{\nu}(Q^2) = \frac{1}{\pi} \frac{(-1)}{\beta_0^{\nu-1} \Gamma(\nu)} \int_0^{\infty} \frac{d\sigma}{\sigma} \rho_{\mathcal{A}}(\sigma) \text{Li}_{-\nu+1} \left(-\frac{\sigma}{Q^2} \right) \quad (\nu > 0) \quad (33)$$

Holomorphic QCD

The timelike coupling $\tilde{\mathfrak{H}}_\nu$ (the analog of $\tilde{\mathfrak{h}}_\nu$) is then

$$\tilde{\mathfrak{H}}_\nu(\kappa\sigma) \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \tilde{\mathcal{A}}_\nu(\kappa\sigma e^{i\phi}). \quad (34)$$

$$= -\frac{\sin(\pi\nu)}{\pi^2(\nu-1)\beta_0^{\nu-1}} \int_0^\infty \frac{dw}{w^{\nu-1}} \rho_{\mathcal{A}}(\sigma e^w) \quad (0 < \nu < 2), \quad (35)$$

The resummations of the quantities $\mathcal{D}^{(1)}$, \mathcal{D} and \mathcal{F} in this formulation are

$$\mathcal{D}^{(1)}(Q^2)_{\text{res.}} = \int_0^\infty \frac{dt}{t} F_{\mathcal{D}^{(1)}}(t) \mathcal{A}(te^{-\tilde{K}_e} Q^2), \quad (36)$$

$$\mathcal{D}(Q^2)_{\text{res.}} = \int_0^\infty \frac{dt}{t} F_{\mathcal{D}^{(1)}}(t) \tilde{\mathcal{A}}_{\nu_0}(te^{-\tilde{K}_e} Q^2), \quad (37)$$

$$\mathcal{F}(\sigma)_{\text{res.}} = \int_0^\infty \frac{dt}{t} F_{\mathcal{D}^{(1)}}(t) \tilde{\mathfrak{H}}_{\nu_0}(te^{-\tilde{K}_e} \sigma). \quad (38)$$

Holomorphic QCD

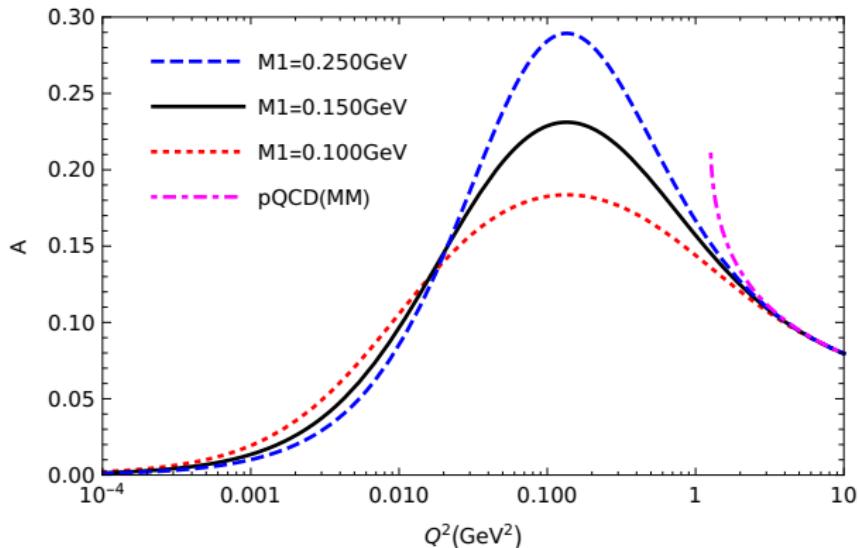


Figure: The specific 3δ -parametrised choice of $\rho_A(\sigma)$ gives: $A(Q^2)$ for positive Q^2 , in 3δ AQCD, with $n_f = 3$, $\alpha_s^{\overline{\text{MS}}}(M_Z^2) = 0.1180$, and three different values of the IR-threshold scale parameter M_1 (C. Ayala, G.C. et al., 2017 [JPG]); cf. also (Pelaez et al., 2017 [PRD]). Based on lattice calculations (Bogolubsky et al., 2009 [PLB]). The underlying pQCD coupling is included, all in (Lambert) MiniMOM scheme (LMM).

Holomorphic QCD

The specific 3δ -parametrised choice of $\rho_A(\sigma)$ then gives

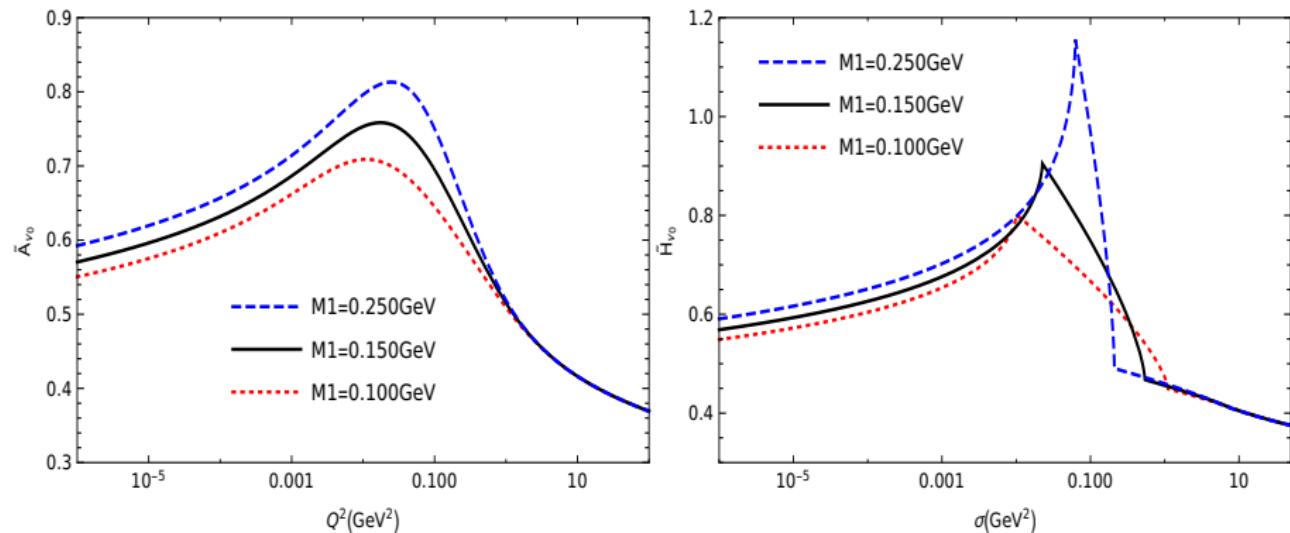


Figure: The spacelike running coupling $\tilde{A}_{\nu_0}(Q^2)$ for positive Q^2 (left-hand figure), and the timelike running coupling $\tilde{H}_{\nu_0}(\sigma)$ (right-hand figure), in 3δ AQCD, with $\nu_0 = 1/3$ and $n_f = 3$, $\alpha_s^{\overline{\text{MS}}}(M_Z^2) = 0.1180$, and three different values of the IR-threshold scale parameter M_1 .

Implementation: an example

We consider $\mathcal{F}(\sigma) \propto \hat{C}(m)$ of (Grozin and Neubert, 1997 [NPB]), which is proportional to the factor of the Wilson coefficient of the chromomagnetic operator in the heavy-quark effective theory (HQET) for hadronic bound states containing one heavy quark (c or b). Strictly speaking,

$\mathcal{F}(\sigma) = \pi^{-\nu_0} \hat{C}(m)$, where $\sigma = m$ is the (pole) mass of the heavy quark.

In this case, the first four expansion coefficients $f_j(\nu_0; \kappa)$ ($j = 0, \dots, 3$) are known, and $\nu_0 = 1/3, 9/25$ (for $n_f = 3, 4$) Further, the (leading) renormalon structure of the Borel $B^{(\nu_0)}[\mathcal{F}](u)$ is known (Grozin and Neubert, 1997 [NPB])

$$B^{(\nu_0)}[\mathcal{F}](u; 1) = \left\{ \frac{S_+}{\left(\frac{1}{2} - u\right)^{+\nu_0 + \beta_1/(2\beta_0^2)}} + \frac{S_0}{\left(\frac{1}{2} - u\right)^{+\beta_1/(2\beta_0^2)}} \right. \\ \left. + \frac{S_-}{\left(\frac{1}{2} - u\right)^{-\nu_0 + \beta_1/(2\beta_0^2)}} \right\} [1 + \mathcal{O}(1/2 - u)]. \quad (39)$$

Implementation: an example

Application of **Theor. 2** then gives

$$\widetilde{B}^{(\nu_0)}[\mathcal{F}](u; 1) = \left\{ \frac{\widetilde{S}_+}{\left(\frac{1}{2} - u\right)^{\nu_0}} + \widetilde{S}_0 \ln \left(\frac{1}{2} - u \right) + \frac{\widetilde{S}_-}{\left(\frac{1}{2} - u\right)^{-\nu_0}} \right\} [1 + \mathcal{O}(1/2 - u)]. \quad (40)$$

Since **Lemma** is valid (relating $\widetilde{f}_n(1)$ with $\widetilde{f}_n(\nu_0)$), **Theor. 3** can be applied, giving

$$\widetilde{B}[\mathcal{F}^{(1)}](u; \kappa) = \left\{ \frac{\widetilde{S}_+^{(1)}}{\left(\frac{1}{2} - u\right)^1} + \frac{\widetilde{S}_0^{(1)}}{\left(\frac{1}{2} - u\right)^{-\nu_0+1}} + \frac{\widetilde{S}_-^{(1)}}{\left(\frac{1}{2} - u\right)^{-2\nu_0+1}} \right\} [1 + \mathcal{O}(1/2 - u)]. \quad (41)$$

Implementation: an example

The use of **Theor. 5** then gives

$$\widetilde{B}[\mathcal{D}^{(1)}](u; \kappa) = \left\{ \frac{\widetilde{K}_+^{(1)}(\kappa)}{\left(\frac{1}{2} - u\right)^1} + \frac{\widetilde{K}_{+0}^{(1)}(\kappa)}{\left(\frac{1}{2} - u\right)^{-\nu_0+1}} + \frac{\widetilde{K}_-^{(1)}(\kappa)}{\left(\frac{1}{2} - u\right)^{-2\nu_0+1}} \right\} [1 + \mathcal{O}(1/2 - u)], \quad (42)$$

where $\widetilde{K}_q^{(1)} = (\pi/2) \widetilde{S}_q^{(1)}$. We have the κ -dependence

$$\widetilde{K}_q^{(1)}(\kappa) = \exp(\ln(\kappa)u) \widetilde{K}_q^{(1)} \quad (q = +, 0, -). \quad (43)$$

Therefore, we include in our ansatz for $\widetilde{B}[\mathcal{D}^{(1)}](u; \kappa)$ this factor. This then gives us our ansatz ("the point of departure"):

$$\widetilde{B}[\mathcal{D}^{(1)}](u) = \exp(\widetilde{K}_e^{(1)}u) \left\{ \frac{\widetilde{K}_+^{(1)}}{\left(\frac{1}{2} - u\right)^1} + \frac{\widetilde{K}_0^{(1)}}{\left(\frac{1}{2} - u\right)^{-\nu_0+1}} + \frac{\widetilde{K}_-^{(1)}}{\left(\frac{1}{2} - u\right)^{-2\nu_0+1}} \right\}. \quad (44)$$

The four parameters here are determined by the knowledge of the first four coefficients $f_n(\nu_0; \kappa)$ ($n = 0, \dots, 3$; $\kappa = 1$).

Implementation: an example

The relevant characteristic function for the resummations of $\mathcal{D}^{(1)}$, \mathcal{D} and \mathcal{F} is then, according to Theorem 4

$$F_{\mathcal{D}^{(1)}}(t) = \Theta(1-t)t^{1/2} \left\{ \tilde{K}_+^{(1)} + \frac{\tilde{K}_0^{(1)}}{\Gamma(-\nu_0 + 1)(-\ln t)^{\nu_0}} \right. \\ \left. + \frac{\tilde{K}_-^{(1)}}{\Gamma(-2\nu_0 + 1)(-\ln t)^{2\nu_0}} \right\}. \quad (45)$$

This then gives us the final result for the evaluation (resummation) of $\mathcal{F}(\sigma)$:

$$\mathcal{F}(\sigma)_{\text{res.}} = \int_0^1 \frac{dt}{t} F_{\mathcal{D}^{(1)}}(t) \tilde{\mathfrak{H}}_{\nu_0}(te^{-\tilde{K}_e}\sigma), \quad (46)$$

Implementation: an example

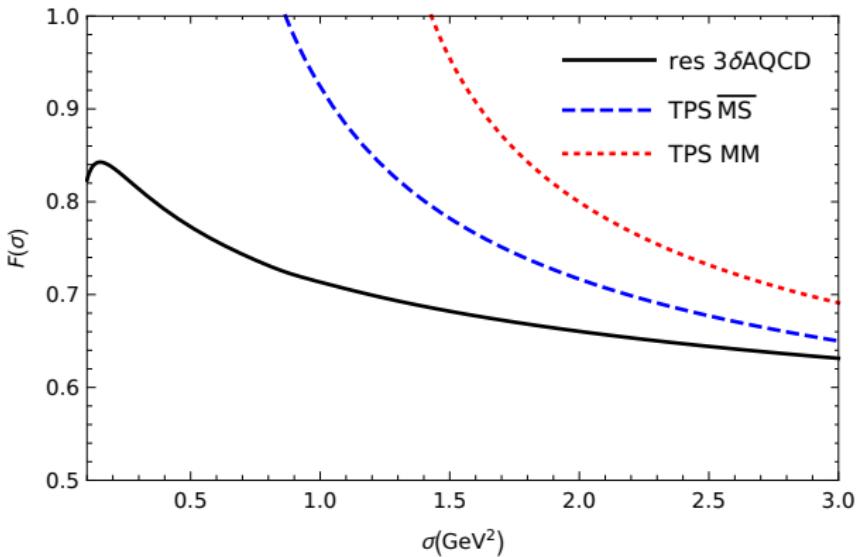


Figure: The renormalon-resummed $\mathcal{F}(\sigma)$, as a function of the squared timelike momentum (squared mass) σ , in 3 δ AQCD, for $n_f = 3$, $M_1 = 0.150$ GeV and $\alpha_s^{\overline{\text{MS}}}(M_Z^2) = 0.1180$. For comparison, we include also the corresponding pQCD TPS in the $\overline{\text{MS}}$ and LMM schemes, with three terms included ($N = 3$).

Implementation: an example

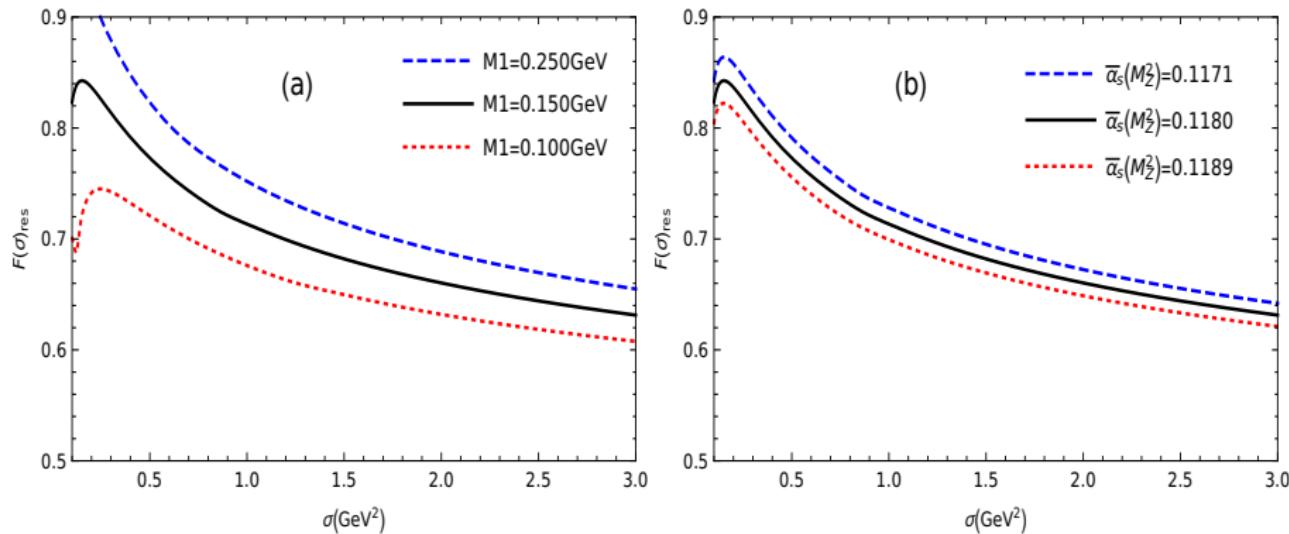


Figure: The resummed values of $F(\sigma)$ as in the previous Figure, but now when (a) the IR-threshold scale M_1 is varied and $\bar{\alpha}_s^{\overline{\text{MS}}}(M_Z^2) = 0.1180$; (b) when $\bar{\alpha}_s^{\overline{\text{MS}}}(M_Z^2)$ value is varied and $M_1 = 0.150 \text{ GeV}$.

Implementation: an example

Results:

$$\begin{aligned}\mathcal{F}(m_c^2)_{\text{res.}} &= 0.6365_{+0.0060}^{-0.0058}(m_c)_{-0.0105}^{+0.0108}(\alpha_s)_{-0.0245}^{+0.0243}(M_1) \\ &= 0.6365 \pm 0.0273.\end{aligned}\quad (47)$$

$$\begin{aligned}\mathcal{F}(m_b^2)_{\text{res.}} &= 0.4792 \mp 0.0010(m_b)_{-0.0053}^{+0.0055}(\alpha_s)_{-0.0065}^{+0.0061}(M_1) \\ &= 0.4792_{-0.0083}^{+0.0084}.\end{aligned}\quad (48)$$

pQCD TPS approach gives:

$$\begin{aligned}\mathcal{F}(m_c^2)^{\text{TPS[3]}} &= 0.6604_{+0.0130}^{-0.0116}(m_c)_{-0.0115}^{+0.0120}(\alpha_s) \pm 0.0854(\text{TPS}) \\ &= 0.6604_{-0.0869}^{+0.0872},\end{aligned}\quad (49)$$

$$\begin{aligned}\mathcal{F}(m_b^2)^{\text{TPS[4]}} &= 0.4807 \mp 0.0014(m_b) \pm 0.0049(\alpha_s) \pm 0.0184(\text{TPS}) \\ &= 0.4807 \pm 0.0191.\end{aligned}\quad (50)$$

Implementation: an example

The ratio $\mathcal{F}(m_b^2)/\mathcal{F}(m_c^2)$ is related to the following ratio of mass splitting between the ground-state pseudoscalar and vector mesons, in the bottom and charm quark systems:

$$\frac{M_{B^*}^2 - M_B^2}{M_{D^*}^2 - M_D^2} = \pi^{\nu_0(4) - \nu_0(3)} \frac{\mathcal{F}(m_b^2)}{\mathcal{F}(m_c^2)} \left[1 + \Lambda_{\text{eff}} \left(\frac{1}{m_c} - \frac{1}{m_b} \right) + \dots \right]. \quad (51)$$

Here, hadronic parameter Λ_{eff} in the subleading terms is a combination of the hadronic parameters. The ratio of mass splitting is 0.8776, using the data PDG2024. We now use in this relation the results (47)-(50) and we extract the value of this hadronic parameter

$$\begin{aligned} \text{res : } \Lambda_{\text{eff}} &= (0.335_{+0.005}^{-0.006}(m_c) \mp 0.004(m_b)_{-0.074}^{+0.075}(\text{M}_1 \& \alpha_s)) \text{ GeV} \\ &= (0.335 \pm 0.075) \text{ GeV}, \end{aligned} \quad (52)$$

$$\begin{aligned} \text{TPS : } \Lambda_{\text{eff}} &= (0.435_{+0.028}^{-0.027}(m_c) \pm 0.006(m_b)_{-0.285}^{+0.265}(\text{TPS} \& \alpha_s)) \text{ GeV} \\ &= (0.435_{-0.286}^{+0.266}) \text{ GeV}. \end{aligned} \quad (53)$$

Conclusions

- We presented a **renormalon-motivated evaluation (resummation)** for general **spacelike** QCD observables $\mathcal{D}(Q^2)$ whose perturbation expansion in powers of couplings is $\mathcal{D}(Q^2) - a(\kappa Q^2)^{\nu_0} + \mathcal{O}(a^{\nu_0+1})$ with ν_0 in general noninteger. This approach is an extension of a previous approach that had been constructed for the case of ν_0 integer ($\nu_0 = 1$).
- The resummation involved a **characteristic function** $F_{\mathcal{D}^{(1)}}(t)$ that can be obtained if the renormalon structure of $\mathcal{D}(Q^2)$ is known.
- In order to have the correct **holomorphic** behaviour of the evaluated (resummed) $\mathcal{D}(Q^2)_{\text{res.}}$, it was necessary to replace in the integration the pQCD generalised logarithmic derivative $\tilde{a}_{\nu_0}(tQ^2)$ by a holomorphic analog $\tilde{\mathcal{A}}_{\nu_0}(tQ^2)$.
- We then extended this approach to the evaluation of **timelike** QCD observables $\mathcal{F}(\sigma)$ (with ν_0 in general noninteger).
- We **applied** this approach to a **timelike low energy** QCD quantity, the scheme invariant factor of the Wilson coefficient of the chromomagnetic factor of the heavy-quark effective Lagrangian, and compared the obtained results with those of a naive pQCD evaluation.