

A renormalon-motivated resummation for low-energy QCD observables

Thursday, 4 December 2025 09:00 (0:30)

Content

A generalisation of our previous approach of a renormalon-motivated resummation of the QCD observables is presented. Previously, it was constructed for those spacelike observables whose perturbation expansion is $\text{cal}D(Q^2) = a(Q^2) + \text{cal}O(a^2)$, where $a(Q^2) \equiv \alpha_s(Q^2)/\pi$ is the running QCD coupling. Now the resummation is generalised to spacelike quantities $\text{cal}D(Q^2) = a(Q^2)^{\nu_0} + \text{cal}O(a^{\nu_0+1})$ and timelike quantities $\text{cal}F(\sigma) = a(\sigma)^{\nu_0} + \text{cal}O(a^{\nu_0+1})$, where ν_0 is in general a noninteger number ($0 < \nu_0 \leq 1$). With this method, a timelike quantity is evaluated, namely the scheme-invariant factor of the Wilson coefficient of the chromomagnetic operator in the heavy-quark effective Lagrangian, and related quantities.

Primary author(s) : CVETIČ, Gorazd (Universidad Técnica Federico Santa María)

Co-author(s) : AYALA, César (Universidad de Tarapacá); KÖGERLER, Reinhart (Universität Bielefeld)

Presenter(s) : CVETIČ, Gorazd (Universidad Técnica Federico Santa María)