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Matrix S

To understand the transitions between one particle state (at time t = ta and 4-momentum pa) and another (at
t = tg and 4-momentum pg), we need an object that describes this time evolution, namely the S-matrix. If both
states coincide, S must be equal to the identity matrix, so it is commonly defined as

S=1+iT, donde (bs;tg|T|am; ta) = (27)*6*(pa — ps)A(a — b), (1)

where T is the transition matrix that encodes the deviations from the trivial case, and A is the probability
amplitude for the process.

Py Py

Py Py
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Before the advent of quantum chromodynamics (QCD), processes were studied imposing certain properties that
the S-matrix must satisfy:

-S must be Lorentz invariant

-S must be analytic = A, - ,5.4(5,t, U) = Asrbscrd(t, s, u)

-S must be unitary = the optical theorem. A special case of this theorem is that of an elastic, forward process
(i.e. 8 =t =0), which is given by

20mlA(s, 0)] = —i(2m)* / d T 5P — px)IA(in = X)| = & - o, )

where 0; = 3, o(in — X) is the total sum of all possible cross sections for the initial state, and @ is the
incident flux.

Luis Cancino Arancibia, Dr. Carlos Contreras Hidalgo ( UniversideParameters Evolution of the Pomeron Using the Functional Renormz December 4, 2025



Regge theory

o Sommerfeld rewrote partial-wave expansion series as complex integrals with poles at integer values of /

associated with sin(7/)
Q1+ (i, t) 25
st)~7{d sin( ) P l,1+t , (3)

where P are the Legendre polynomials, a the partial-wave amplitude, and 1 + 2—: = 0 is the scattering angle
generated by the collision.

o Integrating over the complex plane and taking the limit s >> |t|, the amplitude of these particles, which we
call reggeons in the t-channel, takes the form

A(s, t) &~ B(t)(n + e~ ™ 1)s) o) @

where «(t) is the Regge trajectory.
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Using the optical theorem, we obtain for the cross section and its derivative

~ ca(0)-1 . Ez 2a(t)—2 5
s I : (5)

Ot
If we expand the Regge trajectory around t = 0, for small values of t we have
ar(t) = ar(0) + agt, (6)

where ag(0) is the intercept and aj; the slope of the trajectory of a reggeon R.

N N
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@ In 1973, Jaroszkiewicz and Landshoff proposed a model for p — p collisions at high energies and small ¢, in
which the pomeron is exchanged from the quark sea. In this work, they compute that the differential cross
section must be

do __ (3BF(1)’ ()“ (7)

dt — 4rxsin®(0.5masp(t)) \ mp

where mj, is the proton mass, 8 the coupling between pomeron and quarks, F,(t) the proton form factor,
and asp(t) the Regge trajectory of the Soft-Pomeron. They compare the model with data from the
Intersecting Storage Rings (ISR) at CERN, obtaining for the slope of the Soft-Pomeron the value

osp = 0.25 £ 0.02 GeV 2, (8)

and this value of the slope is used by subsequent models and data for the Soft-Pomeron case.

@ In 1992, Donnachie and Landshoff performed a phenomenological analysis comparing experimental data
with their own Regge model, where the total cross section can be written as

o= Xs* + YS_n, (9)

where € = asp(0) — 1 (as in (5)) and 7 has the same physical interpretation, but associated with reggeized
mesons.
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Pomerons

@ Since the 1970s, different theoretical models including Reggeons have been compared with experimental
data; the table summarizes the parameters of the Pomerons.

Intercept (Z~1uz) Slope (aj )

SOFT POMERON 0.0808-0.114 ~ 0.25
HARD POMERON 0.3-0.5 ~0.1
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70 |- pBARp: 21.70s%%%+98.39s704%% 28 T p 1363579427 565 045% ) . pn 21.70500808 4 54 7-04525
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Hard-Pomeron in perturbative QCD

@ Using QCD, the pomeron is a bound state of gluons, described by the BFKL evolution equation, which
allows one to compute the pomeron contribution as a sum over states corresponding to gluon ladders

ky ki—q ky ki—q

@ The intercept appears as eigenvalues of the BFKL kernel. In the limit t — 0, the intercept is

2N
™

w(v) = = Re[y((In] +1)/2 — iv) = (1)), (10)

where y(x) is the digamma function.
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@ The function has a maximum given by the first order (i.e. n =v = 0). This is related to the pomeron
intercept, so approximately the intercept is

2N
wo(0) = ~ 21 Refr (1/2) — 5(1)] =
where they find that if as &~ 0.2 the intercept should be w(0) ~ 0.5.

@ On the other hand, in 1986 Lipatov found a lower bound for the intercept (at first order) of the bare
pomeron. This bound is

_2Neas _14)) = a - 2.6476... | (11)
™

aHp(O) —-12>0.3, (12)

where ayp(0) is the intercept of the Hard-Pomeron.
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The Odderon

@ In 2021, the collaboration between the D@ and TOTEM experiments published the discovery of the
exchange of a gluonic bound state, colorless and C-odd (i.e. it couples differently to pp than to pp
collisions and therefore contributes with opposite sign to one of the amplitudes).

1071 T T T T T T T T
N V3 = 1.96 TeV TOTEM-DO | [ TOTEM - DO s ppTOTEM
L I ppISR
L\ pp measurement by DO: Y  TOTEM extrapolated
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o L W * e central values with error bars I PP ISR
> \ ) T pp UM
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2 R W\ R=R;+2, exp(b, - Vs)
S N — —band width (+1 o) Ry =177 +001
W\ a,=40 £24
3 \t —-=- by=(-67 £16) -10°GeV™"
T \ + - A*\ ~
< 102 \\+ //1“ ~Oa vy o
L \\ AN /£ -7 h \+\ ! !
N \ { .7 N X
i L B
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o After this slide, t will no longer be the Mandelstam variable, but we will define it as a function depending on
the momentum and the scale, t = In(k/ko).
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Renormalization group

@ We have seen that in different energy regions different pomerons dominate with different observables. To
study how the observables evolve, we need to use the renormalization group, which tells us how the
parameters vary through the 3 functions

O\
ON’
@ The IR limit (i.e. k — 0), which gives us the full effective action I' = 'k, shows two extreme cases of the

theory that we would like to connect. As shown in Fig. 12, if we start at the scale k = A, we can find in
theory space (i.e. in the space of the parameters of the action) trajectories that connect these points.

Bi =N

(13)

Tk=A = Sbare
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Wetterich equation

o In order to investigate the IR region of the strong interaction, we need non-perturbative methods. For this
reason we use the functional renormalization group, since this method allows the study of non-perturbative
sectors.

@ The [ functions are obtained by solving the Wetterich equation

1 -1
o= 3 Tr[(r(f) T Rk) 9:Ry]. (14)
where
r@_r@ _y, . 7// L]
kT ke T T - (2m)P ( 27r -
@ We perform an expansion of the form (A — B)™' = —A7}(1 + BA™* + B2A~2 4 ...) around the interaction
matrix
(I' + Re — Vi)t = —Gro(1 + ViGro + ViGroViGro + -..). (15)
@ The free Green function Gy is
1
Gro=——, (16)
M)+ Re

where Ry is the regulator matrix.
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Effective action

We start with M different reggeons represented by scalar fields v;, and the effective action has the form
Pl vl = [ dOxdr(ZiGuel b — alp! V2) + mo (] + 0l) — pites — Viloh v Ml (47)
i Wi 12i7'l i¥i i LINYiY il,u'I,'I k(Wi Wiy Ajl s

where 7 is the rapidity; D is the transverse space dimension (in this thesis we use D =2); I #i=1,..,M;
j=1,...,N, where N is the number of couplings appearing in the potential; Z; is the wave function
renormalization; ] is the slope of the Regge trajectory of the corresponding reggeons; ); are the couplings
associated with the potential; and pj and m are denoted as the 'mass’ parameters of the fields, which are related
to the intercepts of the Regge trajectories via Z~'u; = ;(0) — 1.
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Regulator

In this work we use the Litim regulator, which suppresses modes larger than the scale k, achieved via the
Heaviside function ©(x). The explicit form of the regulator that we use is

Ri = Zioy (K> — ¢*)O(K* — ¢°) (18)
Ry = Zyah(k* — ¢*)O(K* — q°) = rZaai (K — ¢°)O(K* — q°), (19)
and its derivatives
Ri = —Zioy(K* — ¢)O(K* — ¢°) (G +m) + 2K 211 ©(K* - ¢°)
:2k22a’e(k2— 2) R PR (G +m) (20)
1 q 2 k2 1 m

2
R> = 2k*rZ,a,© (k2 - qz) <1 - % <1 - %) (& + 7]2)) , (21)
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Potential

The potential, depending only on dimensionless parameters, is
VI, &', %, 811 =an kP liAd T (07 + )i + iR (17 + )% + i%ad (7 + )+
XX (DT + D)%+ iXs((X1)*D + 207) + ide((97)°% + 978 (22)

with which we construct the interaction matrix, whose elements are the second derivatives of the potential with
respect to the fields.

055V OggtV 8%2 4 61/;27 4
8"1"\/ 8"1—“1\/ 8"1—~V 8"1—~1—V
Vi = YT YT YT vTx (23)
OypV OtV OsxV gV
8-#1;\/ 8~mjf 14 8>~(T>~(V 85(1)21 4
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Free Green matrix

For the free case (without interactions), we perform a Fourier transform of the action, obtaining
Meold’, 0, %", 11 = / d°qdw[d Zy(iw + ai g} + X' Za(iw + abg®)X + mEX" +9'R) — md ' — pax'x 1,

where 9,1, X1, X are the Fourier transforms of their respective fields, and we reorder the terms in the action to

obtain the second functional derivative (Fgf))k/ = N‘i';‘iur
1
1 _
nng/ﬁﬂmwwﬁfpa where vi=( 9" % i)
0 (—iw + alq® — K2 fin) 0 ko4 m
r@:kDuw+m&—H¢m) 0 k*aim % .
k,0 0 (—iw + a5q® — K2l iz)

k2aim
0

k2ol (iw + abg® — K2alfia) 0
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Integration over g

o Only R contains a dependence on g in the case g° < k2, and all the terms in the integral will be multiplied
by one of the elements of R (i.e. we will only have integrals of the type [ dg”(1 + ¢°)...). Therefore, after
performing the integration, we can redefine this matrix so that it contains the factors arising from the g

integration
0 ZiNpAp(C1,m) 0 0
S 2D ZlNDAD(Clam) 0 0 0
Re = k™ oy 0 0 0 rZaNpAp(&,m2) |’
0 0 rZoNpAp(C2,m2) 0

where Np = er(Dﬂ) and Ap(Cx,mx) = %(1 — CX;TZX)

o With the g integration done, the right-hand side of the Wetterich equation becomes

1 1p . dz/ :
5 Tr[(rs(z) + Rk) le] = 7IkDa'1 / i Tr[Rka,o(l + Vi Gi,o + Vi Gi,o VieGio + )] (24)
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Integration over z

@ We find that the poles in the z integral can be defined as

z=x=y, (25)

where x = (L +r—p1 — p2)/2and y = /(1 — r — po + 1) + (2m)2/2.

@ Out of the 4 poles, only two contribute because they lie inside the integration contour. The integrals to be
computed are

—:/ dz' (z+r— o)’ (—z+r— ) (z+1—m)(—z+1—px1)
2r (—z+x+y)(—z+x—y)(z+x+y)s(z+x—y)
where the function Res(r,s, a, b, ¢, d) is defined as

= Res(r,s,a,b,c,d),

s—1 . af . b o cf o d
S Res(r,s,a,b,c,d) = lim 1d (z4r—p)(cztr—p)(z+1—m)(cz+1—m)")
2~ (xty) s! dzs—1 (—z+x+y)(—z+x—y)(z+x—y)°
im L4 ((Z+f—uz)( z+r—p2)’(z+1—m) (- Z+1—M1)>
25— (x—y) S dz5~1 (—z4+x+y)(—z+x—y)(z+x+y)s
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@ The left-hand side of the Wetterich equation is
0T =m(ox" +97x) = " — pax"x + M (07 + )+
Pax" O+ x0)x + At (X + )¢ + idax (0 + ¥)x+
As((X)*0 + 70" + ide((0 1) x + 92X )], (26)
@ The right-hand side of the Wetterich equation, up to third order in the matrix V/, is
%Tr[(rf) L R) TR = 4K (Tr[RGVGVG] + Tr[RGVGVGVG]) , (27)
where we perform the following replacement, derived in the previous subsection,

(z+r—p)(—z+r—p)(z+1—m)(-z+1—m)

YR b, c,dl. 28
(z4+x+y)y(—z+x—y)y+tx+y)(z+x—y) eslr,s,a, b, c,d] (28)
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After collecting and filtering our results, we obtain the /3 functions.

1 =(—2+& +m)u + Z AiNfLi 0 e =(=24+& +m)ue + Z Aidjf i
i isj
. 1
m=(—-2+4+& + 5(7]1 +m2))m+ Z AijTm,ij
i

: D 3 , D 3
M=(=24 5 &+ oM D AN N s de = (=24 5 &+ Sm)de D MM

igok igk

: D 1 : D 1

Az =(—2+ > +& +m+ 57]2))\3 + Z AN ATk 3 da = (—2+ > +&+m+ 5771))\4 + Z AN Ak faijk
ik igk

: D 1 : D 1

As =(—2+ >t S+mt+ 5771))\5 + Z ANk ik 3 A6 = (=2 + >t S+m+ 5772))\6 + Z Aidj AxcTo,jic-
idk iJk

Here fi i = fi,ij(p1, p2, m, ry Np, Ap(Ci,m), Ap(C2,12)) denotes a certain function with poles at (14 r — p> — 1)
and ((1 — pa)(r — p2) — m?).
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Algorithm to find fixed points

@ Since we have 10 nonlinear differential equations, studying the flow in this space becomes complicated.
Therefore, we will compute the fixed points (3;=0) and study the evolution around these points.

@ The most standard methods to find fixed points (e.g. Newton—Raphson) require starting close to the point
to obtain high precision. In a 10-dimensional space these algorithms fail. For this reason we use the 'neural
network’ algorithm of Li and Zhen, which has very good convergence to find fixed points for random initial
values.

o After this algorithm brings us close to the fixed points, we apply Newton—Raphson to achieve higher
precision (3; < 107).

@ This yields a collection of fixed points, among which we are interested in those that are predominantly IR
attractors.
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Analysis of the fixed points

@ The behaviour near the FPs is described (at first order) through the stability matrix, which is defined from
the expansion of the 3 functions around a FP. The first order of this expansion is

9B;
A

AN+ ... (29)
N=Bx

api=|

where A; — with 7, j = 10 — are all the parameters on which the 5 functions depend.

@ The matrix associated with the derivatives of the parameters is called the stability matrix

9B;
aA;

My = ’ (30)

A=pBx*

o In the IR (UV) case, if the eigenvalue associated with the direction defined by an eigenvector is positive
(negative), this direction is attractive; otherwise it is repulsive.
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The IR-attractor fixed point with n; # 0 that we analyse is

[ [ o m X1 X X X X5 g r
[ 01384 [ 01384 | -0.0056 | 1.0118 | 1.0118 | 0.8150 | 0.8150 | -0.1967 | -0.1967 | 1. |

@ which has the following eigenvalues
[2.50 | 2.23 [ -2.09 [ -2.03 [ 1.94 | 1.41 [ 0.36 | -0.11 | 0.10 [ 0.03 |

@ We also compute the case ; = 0, where the fixed point is

[ T wp T m T N T X T A T X T X T X [ r]
[ 01084 | 01084 | -0.0042 | 0.8631 | 0.8631 | 0.6967 | 0.6967 | -0.1664 | -0.1664 | 1. |

@ which has the eigenvalues
[425 337 [1.95]-1.89 [ -1.74 [ -1.69 | 0.89 [ 0.62 | 0.53 [ -0.03 ]
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Evolution around the fixed points

o With the selected points, we focus on the change of the parameters in the subspace of the intercepts (i.e.
the subspace of the 'mass’ parameters p1, p2 and m),

@ This 3-dimensional subspace has 2° regions. Therefore, to sample each region of this subspace, we generate
8 points located at the vertices of a cube, with the FP at the centre of the cube and semi-edge length a.

@ Each flow associated with each point exhibits different behaviours for the intercepts and m. We choose the
point associated with the following transformation

M1 — p1 — a, M2 — p2 + a, m— m— a,

@ We then analyse the behaviour of the parameters as each coupling A is varied. For this purpose, 6 different
trajectories are generated, in each of which a is added to a different A\. The colour representing each
trajectory is determined by the A that has been modified.
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evolution of the parameters for the case n; = 0, with

a=0.001 and At =0.001
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3D projection of the intercept subspace. The arrows indicate the direction in which the system evolves in the IR
limit (i.e. negative t). On the left n; # 0 and on the right n; = 0.
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@ The new diagonalized masses are given by

Cancino Ar:

1 1
My = 3 (e + pa + /(1 = p2)? + 4m?) My = 5 (i + pi2 = /(1 = pi2)? + 4m?)

A
2 T 3 T F)
t=inloko)
M2
2 a 3 i 2
teintkiko)

r. Carlos Contreras Hidalgo
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Conclusion

@ In this work, we developed a method to obtain the 5 functions by solving the Wetterich equation. Therefore,
extending the analysis to higher orders in the potential or to more fields becomes more straightforward.

@ We found different flows that exhibit the evolution from a state with decoupled fields in the UV to the fixed
point in the IR. These represent two different states of the pomeron.

@ In future work, we aim to further develop methods to connect two different states in theory space. This can
be achieved by finding the connection between a UV fixed point and the IR fixed point studied in this thesis.

o We find that the values of p; that fall within the range of phenomenological models are those given by the
fixed point with 1; = 0. Likewise, for the case 1; # 0, at the fixed point all the couplings increase their
values, but the properties of the point remain unchanged.

@ With this pomeron model, we would like to study how it couples to the proton. Thus, we plan to investigate
these processes and compute observables that can be compared with experimental values.
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