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2Universidad Técnica Federico Santa Maŕıa
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Matrix S

To understand the transitions between one particle state (at time t = tA and 4-momentum pA) and another (at
t = tB and 4-momentum pB), we need an object that describes this time evolution, namely the S-matrix. If both
states coincide, S must be equal to the identity matrix, so it is commonly defined as

S = 1 + iT , donde ⟨bfin; tB |T |ain; tA⟩ = (2π)4δ4(pA − pB)A(a → b), (1)

where T is the transition matrix that encodes the deviations from the trivial case, and A is the probability
amplitude for the process.
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Before the advent of quantum chromodynamics (QCD), processes were studied imposing certain properties that
the S-matrix must satisfy:
-S must be Lorentz invariant
-S must be analytic ⇒ Aa+c̄→b̄+d(s, t, u) = Aa+b→c+d(t, s, u)
-S must be unitary ⇒ the optical theorem. A special case of this theorem is that of an elastic, forward process
(i.e. θ = t = 0), which is given by

2Im[A(s, 0)] = −i(2π)4
∑
X

∫
d
∏
X

δ4(pin − pX )|A(in → X )| ≈ Φ · σt , (2)

where σt =
∑

X σ(in → X ) is the total sum of all possible cross sections for the initial state, and Φ is the
incident flux.
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Regge theory

Sommerfeld rewrote partial-wave expansion series as complex integrals with poles at integer values of l
associated with sin(πl)

A(s, t) ≈
∮

dl
(2l + 1)a(l , t)

sin(πl)
P

(
l , 1 +

2s

t

)
, (3)

where P are the Legendre polynomials, a the partial-wave amplitude, and 1 + 2s
t
≡ θ is the scattering angle

generated by the collision.

Integrating over the complex plane and taking the limit s ≫ |t|, the amplitude of these particles, which we
call reggeons in the t-channel, takes the form

A(s, t) ≈ β(t)(η + e−iπα(t))sα(t) ≈ sα(t), (4)

where α(t) is the Regge trajectory.
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Using the optical theorem, we obtain for the cross section and its derivative

σt ≈ sα(0)−1 ;
dσ

dt
≈ s2α(t)−2. (5)

If we expand the Regge trajectory around t = 0, for small values of t we have

αR(t) = αR(0) + α′
Rt, (6)

where αR(0) is the intercept and α′
R the slope of the trajectory of a reggeon R.
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Soft-Pomeron

In 1973, Jaroszkiewicz and Landshoff proposed a model for p − p collisions at high energies and small t, in
which the pomeron is exchanged from the quark sea. In this work, they compute that the differential cross
section must be

dσ

dt
=

(3βFp(t))
4

4π sin2(0.5παSP(t))

(
s

mp

)2αSP (t)−2

, (7)

where mp is the proton mass, β the coupling between pomeron and quarks, Fp(t) the proton form factor,
and αSP(t) the Regge trajectory of the Soft-Pomeron. They compare the model with data from the
Intersecting Storage Rings (ISR) at CERN, obtaining for the slope of the Soft-Pomeron the value

α′
SP = 0.25± 0.02 GeV−2, (8)

and this value of the slope is used by subsequent models and data for the Soft-Pomeron case.

In 1992, Donnachie and Landshoff performed a phenomenological analysis comparing experimental data
with their own Regge model, where the total cross section can be written as

σ = Xsε + Ys−η, (9)

where ε = αSP(0)− 1 (as in (5)) and η has the same physical interpretation, but associated with reggeized
mesons.
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Pomerons

Since the 1970s, different theoretical models including Reggeons have been compared with experimental
data; the table summarizes the parameters of the Pomerons.
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Hard-Pomeron in perturbative QCD

Using QCD, the pomeron is a bound state of gluons, described by the BFKL evolution equation, which
allows one to compute the pomeron contribution as a sum over states corresponding to gluon ladders

The intercept appears as eigenvalues of the BFKL kernel. In the limit t → 0, the intercept is

ωn(ν) = −2Ncαs

π
Re[γ((|n|+ 1)/2− iν)− γ(1)], (10)

where γ(x) is the digamma function.
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The function has a maximum given by the first order (i.e. n = ν = 0). This is related to the pomeron
intercept, so approximately the intercept is

ω0(0) = −2Ncαs

π
Re[γ(1/2)− γ(1)] = −2Ncαs

π
(−ln(4)) = αs · 2.6476... , (11)

where they find that if αs ≈ 0.2 the intercept should be ω0(0) ≈ 0.5.

On the other hand, in 1986 Lipatov found a lower bound for the intercept (at first order) of the bare
pomeron. This bound is

αHP(0)− 1 ≳ 0.3, (12)

where αHP(0) is the intercept of the Hard-Pomeron.
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The Odderon

In 2021, the collaboration between the DØ and TOTEM experiments published the discovery of the
exchange of a gluonic bound state, colorless and C -odd (i.e. it couples differently to pp than to pp̄
collisions and therefore contributes with opposite sign to one of the amplitudes).

After this slide, t will no longer be the Mandelstam variable, but we will define it as a function depending on
the momentum and the scale, t ≡ ln(k/k0).
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Renormalization group

We have seen that in different energy regions different pomerons dominate with different observables. To
study how the observables evolve, we need to use the renormalization group, which tells us how the
parameters vary through the β functions

βi = Λ
∂λi

∂Λ
. (13)

The IR limit (i.e. k → 0), which gives us the full effective action Γ = Γk=0, shows two extreme cases of the
theory that we would like to connect. As shown in Fig. 12, if we start at the scale k = Λ, we can find in
theory space (i.e. in the space of the parameters of the action) trajectories that connect these points.
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Wetterich equation

In order to investigate the IR region of the strong interaction, we need non-perturbative methods. For this
reason we use the functional renormalization group, since this method allows the study of non-perturbative
sectors.

The β functions are obtained by solving the Wetterich equation

∂tΓk =
1

2
Tr [

(
Γ
(2)
k + Rk

)−1

∂tRk ]. (14)

where

Γ
(2)
k = Γ

(2)
k,0 − Vk ; Tr [ ... ] ≡

∫ ∫
dqD

(2π)D
dω

(2π)
Tr [ ... ].

We perform an expansion of the form (A− B)−1 = −A−1(1 + BA−1 + B2A−2 + ...) around the interaction
matrix

(Γ
(2)
k,0 + Rk − Vk)

−1 = −Gk,0(1 + VkGk,0 + VkGk,0VkGk,0 + ...). (15)

The free Green function Gk,0 is

Gk,0 =
1

Γ
(2)
k,0 + Rk

, (16)

where Rk is the regulator matrix.
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Effective action

We start with M different reggeons represented by scalar fields ψi , and the effective action has the form

Γk [ψ
†
i , ψi ] =

∫
dDxdτ [Zi (

1

2
ψ†

i ∂̂τψi − α′
iψ

†
i ∇

2ψi ) +mi,l(ψiψ
†
l + ψ†

i ψl)− µiψ
†
i ψi − Vk [ψ

†
i , ψi ;λj ] ], (17)

where τ is the rapidity ; D is the transverse space dimension (in this thesis we use D = 2); l ̸= i ≡ 1, ..,M;
j ≡ 1, ...,N, where N is the number of couplings appearing in the potential; Zi is the wave function
renormalization; α′

i is the slope of the Regge trajectory of the corresponding reggeons; λj are the couplings
associated with the potential; and µi and m are denoted as the ’mass’ parameters of the fields, which are related
to the intercepts of the Regge trajectories via Z−1µi = αi (0)− 1.
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Regulator

In this work we use the Litim regulator, which suppresses modes larger than the scale k, achieved via the
Heaviside function Θ(x). The explicit form of the regulator that we use is

R1 = Z1α
′
1(k

2 − q2)Θ(k2 − q2) (18)

R2 = Z2α
′
2(k

2 − q2)Θ(k2 − q2) = rZ2α
′
1(k

2 − q2)Θ(k2 − q2), (19)

and its derivatives

Ṙ1 = −Z1α
′
1(k

2 − q2)Θ(k2 − q2) (ζ1 + η1) + 2k2Z1α
′
1Θ(k2 − q2)

= 2k2Z1α
′
1Θ

(
k2 − q2

)(
1− 1

2

(
1− q2

k2

)
(ζ1 + η1)

)
(20)

Ṙ2 = 2k2rZ2α
′
1Θ

(
k2 − q2

)(
1− 1

2

(
1− q2

k2

)
(ζ2 + η2)

)
, (21)
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Potential

The potential, depending only on dimensionless parameters, is

V [ψ̃, ψ̃†, χ̃, χ̃†] =α′
1k

2D [i λ̃1ψ̃
†(ψ̃† + ψ̃)ψ̃ + i λ̃2χ̃

†(χ̃† + χ̃)χ̃+ i λ̃3ψ̃
†(χ̃† + χ̃)ψ̃+

i λ̃4χ̃
†(ψ̃† + ψ̃)χ̃+ i λ̃5((χ̃

†)2ψ̃ + χ̃2ψ̃†) + i λ̃6((ψ̃
†)2χ̃+ ψ̃2χ̃†)] (22)

with which we construct the interaction matrix, whose elements are the second derivatives of the potential with
respect to the fields.

Vk =


∂ψ̃ψ̃V ∂ψ̃ψ̃†V ∂ψ̃χ̃V ∂ψ̃χ̃†V
∂ψ̃†ψ̃V ∂ψ̃†ψ̃†V ∂ψ̃†χ̃V ∂ψ̃†χ̃†V
∂χ̃ψ̃V ∂χ̃ψ̃†V ∂χ̃χ̃V ∂χ̃χ̃†V
∂χ̃†ψ̃V ∂χ̃†ψ̃†V ∂χ̃†χ̃V ∂χ̃†χ̃†V

 . (23)
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Free Green matrix

For the free case (without interactions), we perform a Fourier transform of the action, obtaining

Γk,0[ψ̄
†, ψ̄, χ̄†, χ̄] =

∫
dDqdω[ψ̄†Z1(iω + α′

1q
2)ψ̄ + χ̄†Z2(iω + α′

2q
2)χ̄+m(ψ̄χ̄† + ψ̄†χ̄)− µ1ψ̄

†ψ̄ − µ2χ̄
†χ̄ ],

where ψ̄†, ψ̄, χ̄†, χ̄ are the Fourier transforms of their respective fields, and we reorder the terms in the action to
obtain the second functional derivative (Γ

(2)
0 )kl ≡ δΓ0

δΨkδΨ
T
l

Γk,0 =
1

2

∫
dDqdω ΨTΓ

(2)
k,0Ψ, where ΨT =

(
ψ̄ ψ̄† χ̄ χ̄†)

Γ
(2)
k,0 = kD


0 (−iω + α′

1q
2 − k2α′

1µ̃1) 0 k2α′
1m̃

(iω + α′
1q

2 − k2α′
1µ̃1) 0 k2α′

1m̃ 0
0 k2α′

1m̃ 0 (−iω + α′
2q

2 − k2α′
1µ̃2)

k2α′
1m̃ 0 (iω + α′

2q
2 − k2α′

1µ̃2) 0


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Integration over q

Only Ṙ contains a dependence on q in the case q2 < k2, and all the terms in the integral will be multiplied
by one of the elements of R (i.e. we will only have integrals of the type

∫
dqD(1 + q2)...). Therefore, after

performing the integration, we can redefine this matrix so that it contains the factors arising from the q
integration

Ṙk = k2Dα′
1


0 Z1NDAD(ζ1, η1) 0 0

Z1NDAD(ζ1, η1) 0 0 0
0 0 0 rZ2NDAD(ζ2, η2)
0 0 rZ2NDAD(ζ2, η2) 0

 ,

where ND = 1
(2
√
π)DΓ(D/2)

and AD(ζx , ηx) =
2
D
(1− ζx+ηx

D+2
).

With the q integration done, the right-hand side of the Wetterich equation becomes

1

2
Tr [(Γ

(2)
k + Rk)

−1Ṙk ] = −ikDα′
1

∫
dz ′

2π
Tr [ṘkGk,0(1 + VkGk,0 + VkGk,0VkGk,0 + ...)] (24)
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Integration over z

We find that the poles in the z integral can be defined as

z = x ± y , (25)

where x ≡ (1 + r − µ1 − µ2)/2 and y ≡
√

(1− r − µ2 + µ1)2 + (2m)2/2.

Out of the 4 poles, only two contribute because they lie inside the integration contour. The integrals to be
computed are

− i

∫
dz′

2π

(z + r − µ2)
a(−z + r − µ2)

b(z + 1 − µ1)
c (−z + 1 − µ ∗ 1)d

(−z + x + y)r (−z + x − y)r (z + x + y)s (z + x − y)s
=

∑
Res(r , s, a, b, c, d),

where the function Res(r , s, a, b, c, d) is defined as∑
Res(r , s, a, b, c, d) = lim

z→−(x+y)

1

s!

d s−1

dz s−1

(
(z + r − µ2)

a(−z + r − µ2)
b(z + 1− µ1)

c(−z + 1− µ1)
d

(−z + x + y)r (−z + x − y)r (z + x − y)s

)
+

lim
z→−(x−y)

1

s!

d s−1

dz s−1

(
(z + r − µ2)

a(−z + r − µ2)
b(z + 1− µ1)

c(−z + 1− µ1)
d

(−z + x + y)r (−z + x − y)r (z + x + y)s

)
.
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Solution

The left-hand side of the Wetterich equation is

∂tΓk =ṁ(ψχ† + ψ†χ)− µ̇1ψ
†ψ − µ2χ

†χ+ i λ̇1ψ
†(ψ† + ψ)ψ+

i λ̇2χ
†(χ† + χ)χ+ i λ̇3ψ

†(χ† + χ)ψ + i λ̇4χ
†(ψ† + ψ)χ+

i λ̇5((χ
†)2ψ + χ2ψ†) + i λ̇6((ψ

†)2χ+ ψ2χ†)], (26)

The right-hand side of the Wetterich equation, up to third order in the matrix V , is

1

2
Tr [(Γ

(2)
k + Rk)

−1Ṙk ] = α′
1k

D
(
Tr [ṘGVGVG ] + Tr [ṘGVGVGVG ]

)
, (27)

where we perform the following replacement, derived in the previous subsection,

(z + r − µ2)
a(−z + r − µ2)

b(z + 1− µ1)
c(−z + 1− µ1)

d

(−z + x + y)s(−z + x − y)s(z + x + y)r (z + x − y)r
→ ΣRes[r , s, a, b, c, d ]. (28)
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β functions

After collecting and filtering our results, we obtain the β functions.

µ̇1 =(−2 + ξ1 + η1)µ1 +
∑
i,j

λiλj f1,ij ; µ̇2 = (−2 + ξ1 + η2)µ2 +
∑
i,j

λiλj f2,ij

ṁ =(−2 + ξ1 +
1

2
(η1 + η2))m +

∑
i,j

λiλj fm,ij

λ̇1 =(−2 +
D

2
+ ξ1 +

3

2
η1)λ1 +

∑
i,j,k

λiλjλk f1,ijk ; λ̇2 = (−2 +
D

2
+ ξ1 +

3

2
η2)λ2 +

∑
i,j,k

λiλjλk f2,ijk

λ̇3 =(−2 +
D

2
+ ξ1 + η1 +

1

2
η2)λ3 +

∑
i,j,k

λiλjλk f3,ijk ; λ̇4 = (−2 +
D

2
+ ξ1 + η2 +

1

2
η1)λ4 +

∑
i,j,k

λiλjλk f4,ijk

λ̇5 =(−2 +
D

2
+ ξ1 + η2 +

1

2
η1)λ5 +

∑
i,j,k

λiλjλk f5,ijk ; λ̇6 = (−2 +
D

2
+ ξ1 + η1 +

1

2
η2)λ6 +

∑
i,j,k

λiλjλk f6,ijk .

Here fk,ij ≡ fk,ij(µ1, µ2,m, r ,ND ,AD(ζ1, η1),AD(ζ2, η2)) denotes a certain function with poles at (1 + r − µ2 − µ1)
and ((1− µ1)(r − µ2)−m2).
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Algorithm to find fixed points

Since we have 10 nonlinear differential equations, studying the flow in this space becomes complicated.
Therefore, we will compute the fixed points (βi=0) and study the evolution around these points.

The most standard methods to find fixed points (e.g. Newton–Raphson) require starting close to the point
to obtain high precision. In a 10-dimensional space these algorithms fail. For this reason we use the ’neural
network’ algorithm of Li and Zhen, which has very good convergence to find fixed points for random initial
values.

After this algorithm brings us close to the fixed points, we apply Newton–Raphson to achieve higher
precision (βi < 10−16).

This yields a collection of fixed points, among which we are interested in those that are predominantly IR
attractors.
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Analysis of the fixed points

The behaviour near the FPs is described (at first order) through the stability matrix, which is defined from
the expansion of the β functions around a FP. The first order of this expansion is

∆βi =

∣∣∣∣ ∂βi∂Λj

∣∣∣∣
Λ=β∗

∆Λj + ... (29)

where Λj – with i , j = 10 – are all the parameters on which the β functions depend.

The matrix associated with the derivatives of the parameters is called the stability matrix

Mij ≡
∣∣∣∣ ∂βi∂Λj

∣∣∣∣
Λ=β∗

(30)

In the IR (UV) case, if the eigenvalue associated with the direction defined by an eigenvector is positive
(negative), this direction is attractive; otherwise it is repulsive.
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The IR-attractor fixed point with ηi ̸= 0 that we analyse is
µ1 µ2 m λ1 λ2 λ3 λ4 λ5 λ6 r

0.1384 0.1384 -0.0056 1.0118 1.0118 0.8150 0.8150 -0.1967 -0.1967 1.

which has the following eigenvalues

2.50 -2.23 -2.09 -2.03 1.94 1.41 0.36 -0.11 0.10 0.03

We also compute the case ηi = 0, where the fixed point is
µ1 µ2 m λ1 λ2 λ3 λ4 λ5 λ6 r

0.1084 0.1084 -0.0042 0.8631 0.8631 0.6967 0.6967 -0.1664 -0.1664 1.

which has the eigenvalues

4.25 3.37 1.95 -1.89 -1.74 -1.69 0.89 0.62 0.53 -0.03

Luis Cancino Arancibia, Dr. Carlos Contreras Hidalgo ( Universidad San Sebastián Universidad Técnica Federico Santa Maŕıa )Parameters Evolution of the Pomeron Using the Functional Renormalisation Group December 4, 2025 26 / 32



Evolution around the fixed points

With the selected points, we focus on the change of the parameters in the subspace of the intercepts (i.e.
the subspace of the ’mass’ parameters µ1, µ2 and m),

This 3-dimensional subspace has 23 regions. Therefore, to sample each region of this subspace, we generate
8 points located at the vertices of a cube, with the FP at the centre of the cube and semi-edge length a.

Each flow associated with each point exhibits different behaviours for the intercepts and m. We choose the
point associated with the following transformation

µ1 → µ1 − a, µ2 → µ2 + a, m → m − a,

We then analyse the behaviour of the parameters as each coupling λ is varied. For this purpose, 6 different
trajectories are generated, in each of which a is added to a different λ. The colour representing each
trajectory is determined by the λ that has been modified.

λ1 λ2 λ3 λ4 λ5 λ6
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The evolution of the parameters for the case ηi = 0, with a = 0.001 and ∆t = 0.001
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3D projection of the intercept subspace. The arrows indicate the direction in which the system evolves in the IR
limit (i.e. negative t). On the left ηi ̸= 0 and on the right ηi = 0.
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The new diagonalized masses are given by

M1 ≡
1

2
(µ1 + µ2 +

√
(µ1 − µ2)2 + 4m2) M2 ≡

1

2
(µ1 + µ2 −

√
(µ1 − µ2)2 + 4m2) (31)
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Conclusion

In this work, we developed a method to obtain the β functions by solving the Wetterich equation. Therefore,
extending the analysis to higher orders in the potential or to more fields becomes more straightforward.

We found different flows that exhibit the evolution from a state with decoupled fields in the UV to the fixed
point in the IR. These represent two different states of the pomeron.

In future work, we aim to further develop methods to connect two different states in theory space. This can
be achieved by finding the connection between a UV fixed point and the IR fixed point studied in this thesis.

We find that the values of µi that fall within the range of phenomenological models are those given by the
fixed point with ηi = 0. Likewise, for the case ηi ̸= 0, at the fixed point all the couplings increase their
values, but the properties of the point remain unchanged.

With this pomeron model, we would like to study how it couples to the proton. Thus, we plan to investigate
these processes and compute observables that can be compared with experimental values.
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Acknowledgements

This work was carried out thanks to the support of the ’Programa de Incentivo a la Iniciación Cient́ıfica’
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