

Investigating the properties of exotic hadrons

Luciano Melo Abreu

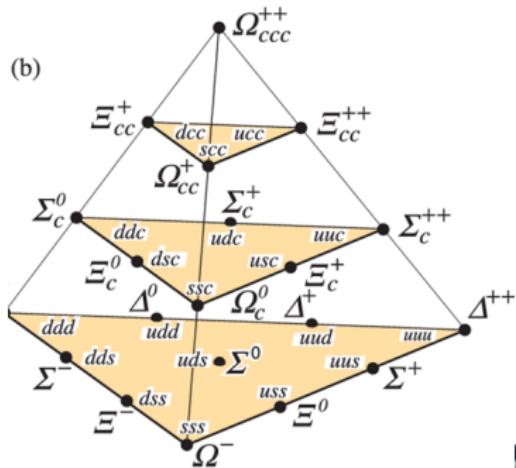
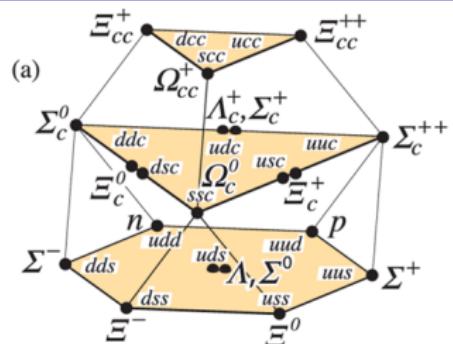
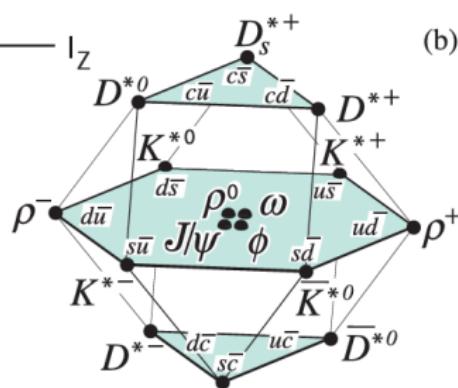
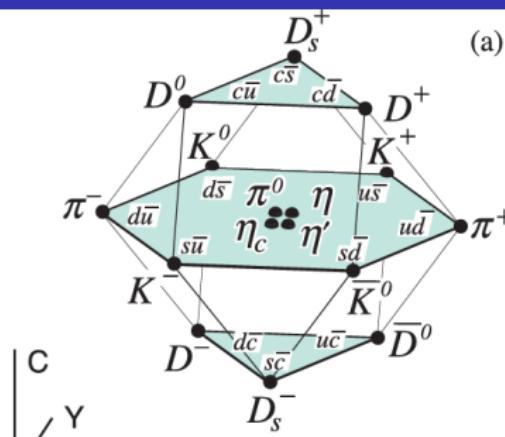
Universidade Federal da Bahia (Brazil)

6th International Workshop on Non-Perturbative Aspects of QCD
(WONPAQCD 2025)

- A brief overview on the state-of-the-art of exotic hadron spectroscopy
- Discussion about the underlying structure of exotic states and the most promising approaches
- Case study of some of the most famous exotic states
- Summary of some of our recent contributions

Table of Contents

1 Motivation





2 Case study: $X(3872)$

3 Our contributions

4 Summary

The simple quark model (1964-1981): hadrons

(Charm: 1974; D mesons: 1976; Bottom: 1977; B mesons: 1981) [Wang, <https://doi.org/10.22323/1.385.0026>]

Unconventional Hadrons?

QCD-inspired quark models: description of conventional hadrons $qqq, q\bar{q}$

What about distinct hadronic structures?

QCD does not forbid more complicated combinations!!!

Tetraquarks $\Rightarrow qq\bar{q}\bar{q} (3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Pentaquarks $\Rightarrow qqqq\bar{q} (3 \otimes 3 \otimes 3 \otimes 3 \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Glueballs $\Rightarrow gg \dots g (8 \otimes 8 \dots \otimes 8 = \mathbf{1} \oplus \dots)$

Hybrids $\Rightarrow q\bar{q}g (3 \otimes \bar{3} \otimes 8 = \mathbf{1} \oplus \dots)$

If exist: new objects to study confinement mechanism;

If not exist: theory should explain why not!!!

Unconventional Hadrons?

QCD-inspired quark models: description of conventional hadrons $qqq, q\bar{q}$

What about distinct hadronic structures?

QCD does not forbid more complicated combinations!!!

Tetraquarks $\Rightarrow qq\bar{q}\bar{q} (3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Pentaquarks $\Rightarrow qqqq\bar{q} (3 \otimes 3 \otimes 3 \otimes 3 \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Glueballs $\Rightarrow gg \dots g (8 \otimes 8 \dots \otimes 8 = \mathbf{1} \oplus \dots)$

Hybrids $\Rightarrow q\bar{q}g (3 \otimes \bar{3} \otimes 8 = \mathbf{1} \oplus \dots)$

If exist: new objects to study confinement mechanism;

If not exist: theory should explain why not!!!

Unconventional Hadrons?

QCD-inspired quark models: description of conventional hadrons $qqq, q\bar{q}$

What about distinct hadronic structures?

QCD does not forbid more complicated combinations!!!

Tetraquarks $\Rightarrow qq\bar{q}\bar{q} (3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Pentaquarks $\Rightarrow qqqq\bar{q} (3 \otimes 3 \otimes 3 \otimes 3 \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Glueballs $\Rightarrow gg \dots g (8 \otimes 8 \dots \otimes 8 = \mathbf{1} \oplus \dots)$

Hybrids $\Rightarrow q\bar{q}g (3 \otimes \bar{3} \otimes 8 = \mathbf{1} \oplus \dots)$

If exist: new objects to study confinement mechanism;

If not exist: theory should explain why not!!!

Unconventional Hadrons?

QCD-inspired quark models: description of conventional hadrons $qqq, q\bar{q}$

What about distinct hadronic structures?

QCD does not forbid more complicated combinations!!!

Tetraquarks $\Rightarrow qq\bar{q}\bar{q} (3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Pentaquarks $\Rightarrow qqqq\bar{q} (3 \otimes 3 \otimes 3 \otimes 3 \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Glueballs $\Rightarrow gg \dots g (8 \otimes 8 \dots \otimes 8 = \mathbf{1} \oplus \dots)$

Hybrids $\Rightarrow q\bar{q}g (3 \otimes \bar{3} \otimes 8 = \mathbf{1} \oplus \dots)$

If exist: new objects to study confinement mechanism;

If not exist: theory should explain why not!!!

Unconventional Hadrons?

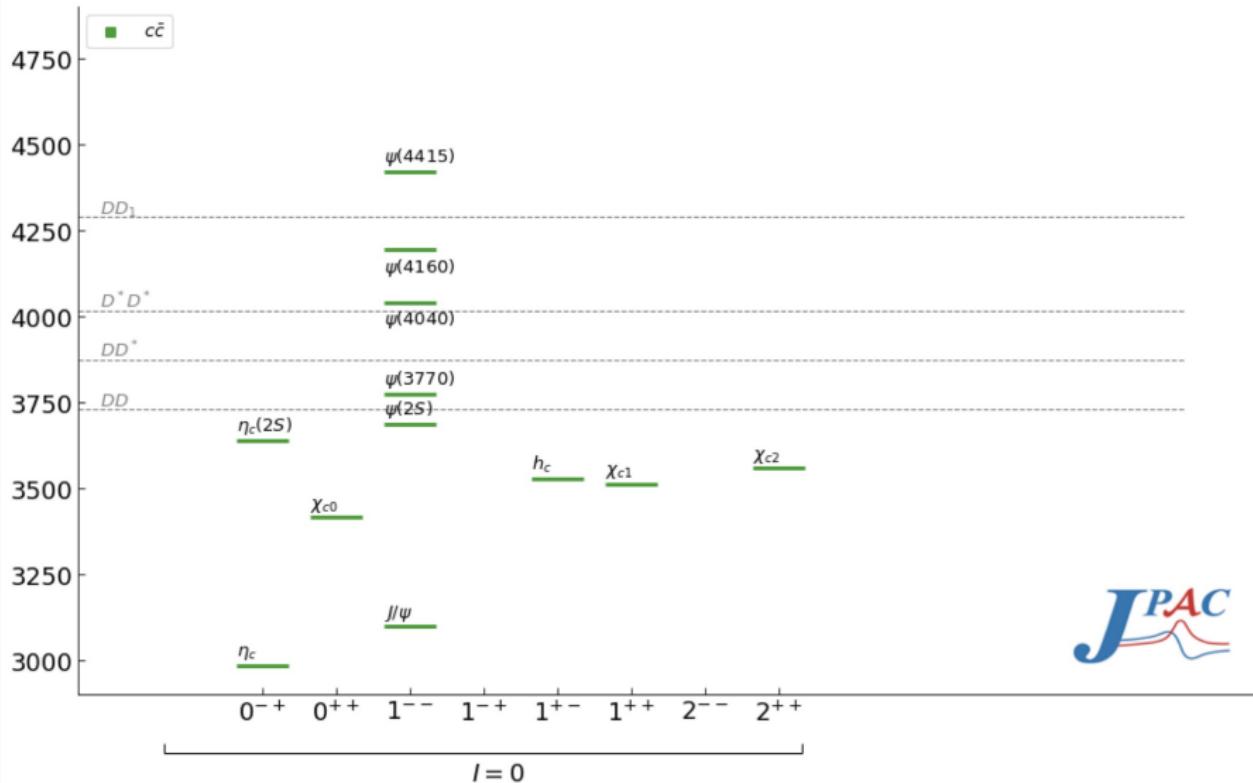
QCD-inspired quark models: description of conventional hadrons $qqq, q\bar{q}$

What about distinct hadronic structures?

QCD does not forbid more complicated combinations!!!

Tetraquarks $\Rightarrow qq\bar{q}\bar{q} (3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = \mathbf{1} \oplus \dots)$

Pentaquarks $\Rightarrow qqqq\bar{q} (3 \otimes 3 \otimes 3 \otimes 3 \otimes \bar{3} = \mathbf{1} \oplus \dots)$


Glueballs $\Rightarrow gg \dots g (8 \otimes 8 \dots \otimes 8 = \mathbf{1} \oplus \dots)$

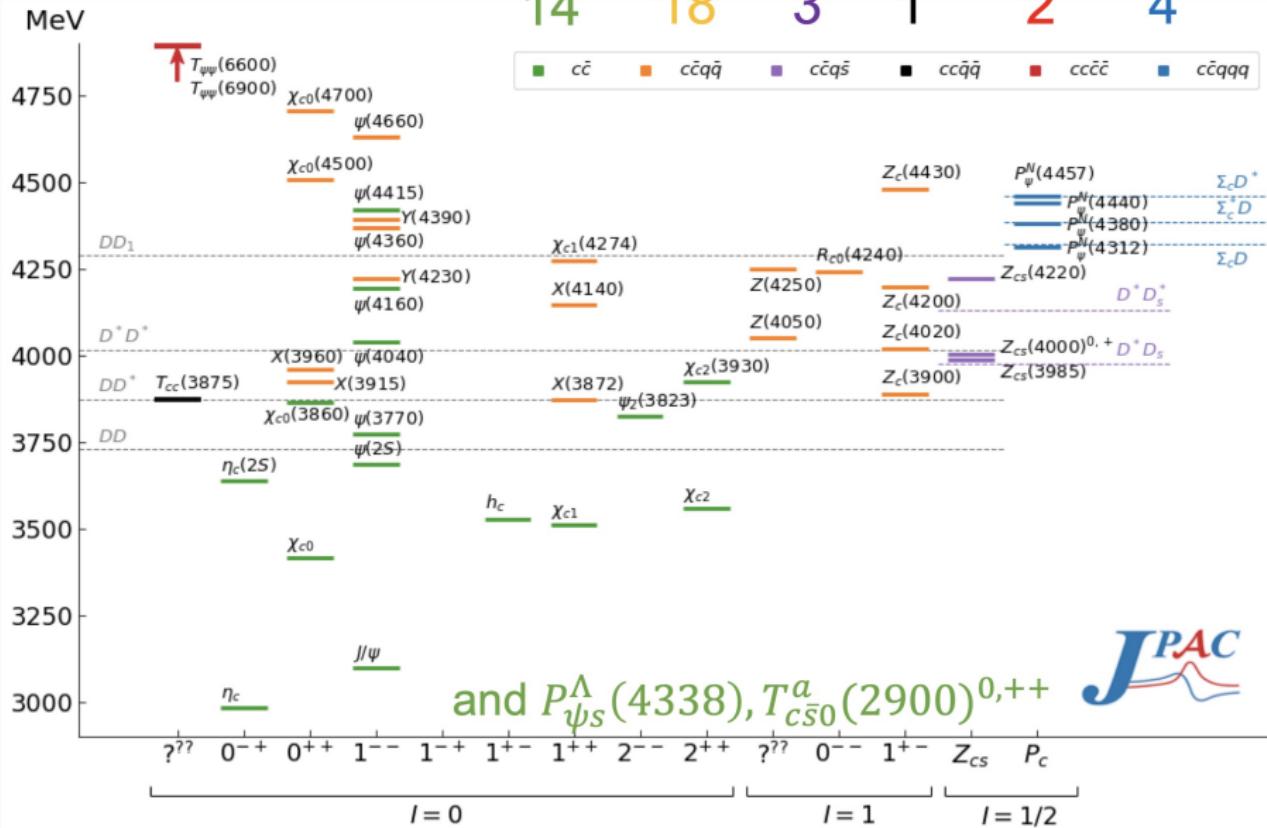
Hybrids $\Rightarrow q\bar{q}g (3 \otimes \bar{3} \otimes 8 = \mathbf{1} \oplus \dots)$

If exist: new objects to study confinement mechanism;

If not exist: theory should explain why not!!!

12

14


18

3

1

2

4

Why exotic hadron states?

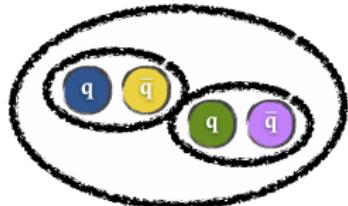
- Properties do not match standard quark-model predictions
- Decays require > 3 valence quarks
- Production/decay properties incompatible with mesons/baryons

Ex.1: Unconventional quantum numbers

- Z 's: manifestly 4-quark states:

$$Z_c^+(3900) \rightarrow J/\psi \pi^+$$

- $T_{cs0}^*(2900)$: $Q = +2, S = 1$ ($c\bar{s}u\bar{d}$)

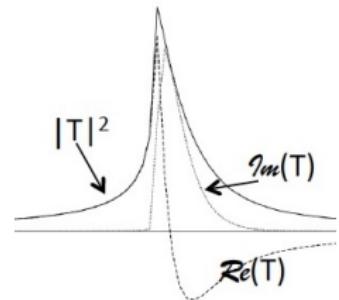

Ex.2: Production/decay properties incompatible with mesons/baryons

- isospin violation (if $X(3872) \sim c\bar{c}$: decay highly suppressed)

$$X(3872) \rightarrow \rho^0 J/\psi \rightarrow \pi^+ \pi^- J/\psi$$

Theory: composition and binding mechanisms?

- Hadron Molecules


- Tetraquarks

- Hybrids

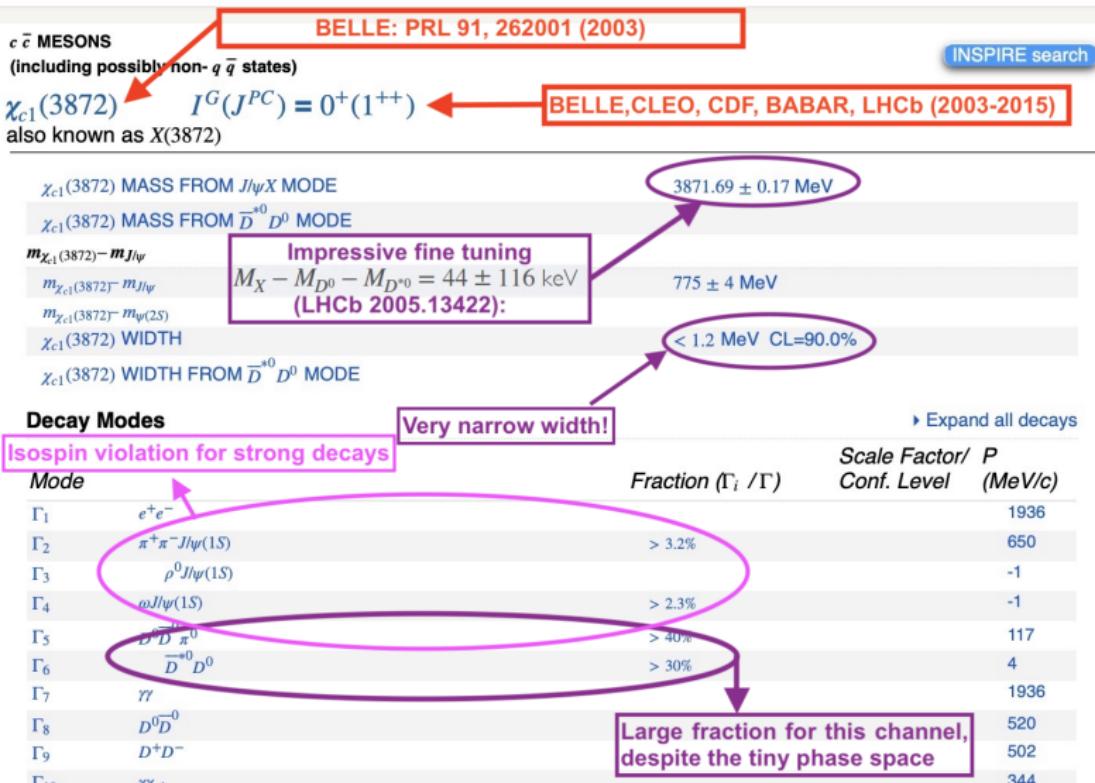
- Cusp effects (TS's)

- Glueballs

Table of Contents

1 Motivation

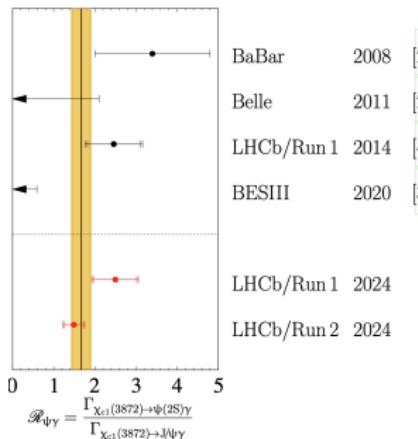
2 Case study: $X(3872)$


3 Our contributions

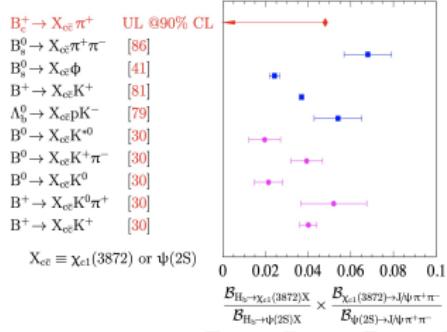
4 Summary

$\chi(3872)$: features

2020 Review of Particle Physics.


P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. **2020**, 083C01 (2020)

Debate on the $X(3872)$: $|c\bar{c}\rangle$, $|c\bar{c}q\bar{q}\rangle$ or $|D\bar{D}^*\rangle$?


LHCb: JHEP **11**, 121 (2024)

- Run 1 + Run 2: $\mathcal{R}_{\psi(2S)\gamma/\psi\gamma}$ non-compatible with the pure $|D\bar{D}^*\rangle$
- It agrees with $|c\bar{c}\rangle(X_{c1}(2^3P_1))$, $|c\bar{c}q\bar{q}\rangle$, $|D\bar{D}^*\rangle + |c\bar{c}q\bar{q}\rangle$

LHCb: JHEP **06**, 013 (2025)

- LHCb: No enhancement for $X(3872)$ production in $B_c \rightarrow X(3872)\pi$
- Maiani et al., PRD **94**, 3 (2016): $B_c \rightarrow X(3872)\pi$ as a source with the $|c\bar{c}q\bar{q}\rangle$

$X(3872)$ story

A superposition $|X(3872)\rangle \propto |c\bar{c}\rangle, |c\bar{c}q\bar{q}\rangle, |D\bar{D}^*\rangle$?

Brambilla et al. PRL 135, 13 (2025)

"The $X(3872)$ and $T_{cc}^+(3875)$ are neither simple molecules nor compact tetraquarks but result from a conspiracy between the short- and long-range behavior of potentials—constrained by symmetry and by lattice QCD near the string-breaking region."

78 years ago

K-mesons
discovered -- associated production – strangeness – $SU(3)$ -- quark
model
Dec. 1947 $\xleftarrow{16 \text{ years}}$ Jan 1964

22 years ago

$X(3872)$ discovered -- molecule? charmonium? molecule? – charmonium?
– diquark? – molecule? charmonium? molecule? – ????
Aug. 2003 $\xleftarrow{22 \text{ years}}$ today

(Adapted from S. Olsen, SCGP Workshop on Exotic Hadrons and Flavor Physics, May 2018)

Theoretical perspective

A compelling and unified understanding has not yet emerged

- No single theoretical framework explains the exotics collection
- Candidates: different interpretations (hadron molecule, diquark-antidiquark, kinematic effects, ...)
- (m, Γ) can be explained by different models or even superposition of them

- Necessity of more observables to distinguish their internal structure
- Let us focus on some of our contributions

Table of Contents

1 Motivation

2 Case study: $X(3872)$

3 Our contributions

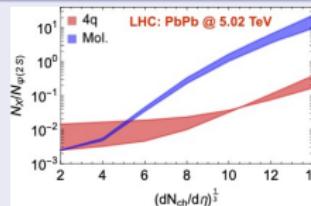
4 Summary

Strategy 1 \Rightarrow Exotics in Heavy-Ion Collisions

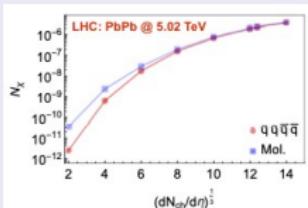
Hadronic Interactions \Rightarrow Effective Lagrangians

Amplitudes \Rightarrow Cross Sections \Rightarrow Therm. Av. Cross Sections

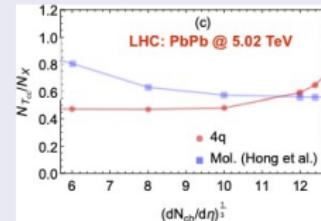
Coalescence Model, Bjorken picture \Rightarrow Kinetic (rate) equation


Time Evolution and system size dependence of $N^{(4q)}$ and $N^{(Mol)}$

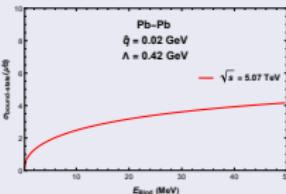
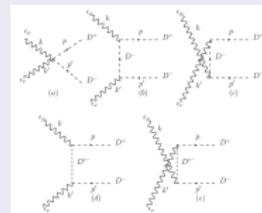
Diff. spatial conf. \Rightarrow diff. hadron interactions $\Rightarrow N^{(4q)} \neq N^{(Mol)}$


Strategy 1 \Rightarrow Exotics in Heavy-Ion Collisions

$X(3872)$ $[(cq\bar{c}\bar{q}); 0(1^{++})]$

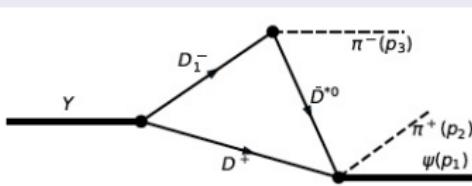

[PRD 90, 114023 (2014); 105, 116029 (2022); 110, 014011 (2024); PTEP 2016, 103B01 (2016), PLB 761, 303 (2016); EPJC (2022); ...] $(N^{(4q)} \ll N^{(Mol)})$; $R \sim \text{Data}$)

$\chi_{c1}(4274)$ $[(c\bar{s}\bar{c}\bar{s}); 0^+(1^{++})]$

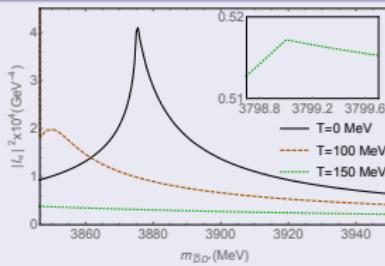


[PRD 108, 096028 (2023); PRD 109, 014041 (2024)]

$T_{cc}^+(3875)$ $[(cc\bar{q}\bar{q}); 0(1^+)]$

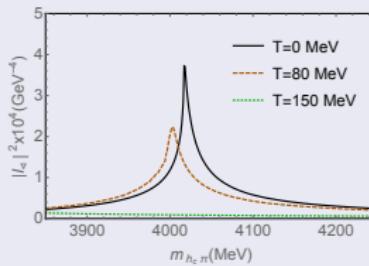
[EPJC 82, 296 (2022); PRD 105, 116029 (2022); NPB 985, 115994 (2022)]


$X(3700)^-$ $[(c\bar{c}q\bar{q})0^+(0^{++})]$

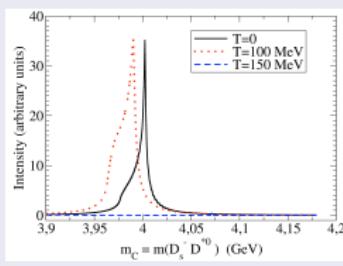
[PRD 110, 034037 (2024)]


[Collaboration USP-UNIFESP-UFBA: Navarra, Nielsen, Torres, Kamchandani, LMA, Bertunlani (Texas), Britto (UFRB), ...]

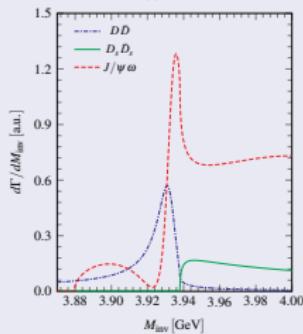
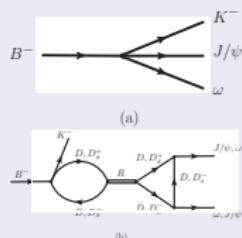
Strategy 2 → exotic states as kinematical effects



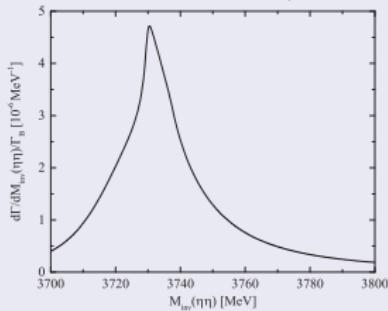
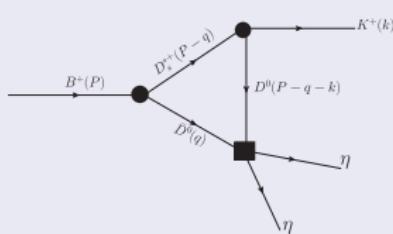
[Collaboration U.Complutense Madrid-UFBA (F. Llanes-Estrada, ...); EPJ C **81**, 430 (2021); PoS EPS-HEP2021 (2022) 278];
Nucl.Part.Phys.Proc. **318**, 32 (2022)]


$Z_c(3900)$ $[(cq\bar{c}\bar{q}); 1(1^-)]$

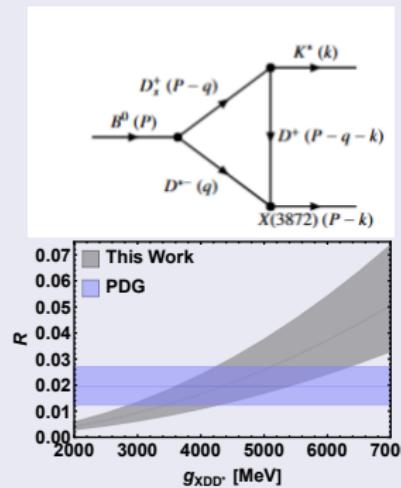
$Z_c(4020)$ $[(cq\bar{c}\bar{q}); 1(?)]$



$Z_{cs}(3985)^-$ $[(cs\bar{c}\bar{u})\frac{1}{2}(1^+)]$

- Singularity disappears at temperatures just below T_H
- Medium: spectroscopic filter to distinguish actual hadrons from TSs

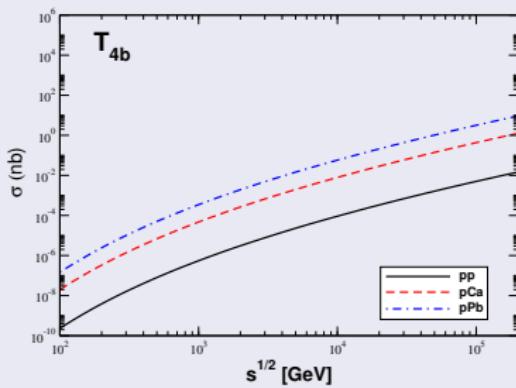
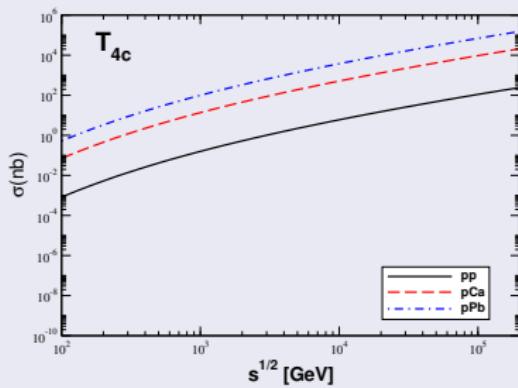
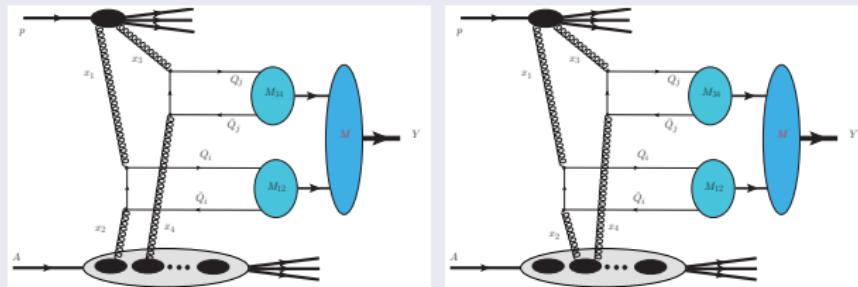


Strategy 3 → Production of exotics in hadron decays

$X(3930, 3960)$ in
 $B \rightarrow KJ/\psi\omega$


[Collaboration Valencia-UFBA (Abreu, Albaladejo, Feijoo, Oset, Nieves); EPJC 83, 309 (2023)]

$D\bar{D}(3720)$ in
 $B^+ \rightarrow K^+\eta\eta$

[Collaboration Valencia-Beihang-UFBA (Brandão, Song, Abreu, Oset); PRD 108, 054004 (2023)]




$X(3872)$ in
 $B^0 \rightarrow K^{*0} X(3872)$

$$R = \frac{\mathcal{B}(X(3872))}{\mathcal{B}(\psi(2S))} \sim 1.5 \times 10^{-2}.$$

[Abreu; PRD 112, 096002 (2025)]

Strategy 4 → Production of T_{4c} and T_{4b} states through DPS in pp and pA collisions

[Coll. UNIFESP-UFPEL-UFBA: LMA, Cerqueira, Carvalho, Gonçalves; EPJC 84, 470 (2024)]

Strategy 5 → Femtoscopy

Generalized coupled-channel CF for a specific channel i

$$\begin{aligned} C_i(k) &= \frac{N_i(\vec{k}_1, \vec{k}_2)}{N(\vec{k}_1)N(\vec{k}_2)} \simeq \int d^3\vec{r} S_{12}(\vec{r}) |\Psi_i(\vec{r}, \vec{k})|^2 \\ &= 1 + 4\pi \int_0^\infty dr r^2 S_{12}(\vec{r}) \left(\sum_j w_j |j_0(kr)\delta_{ji} + T_{ji}(\sqrt{s})\tilde{G}_j(r; s)|^2 - j_0^2(kr) \right), \end{aligned}$$

\vec{k} : relative momentum;

w_j : weight of the observed channel j (common choice: $w_j = 1$);

$E = \sqrt{s}$: the CM energy;

T_{ji} : elements of the scattering matrix encoding the meson–meson interactions;

$$\tilde{G}_j(r; s) = \int_{|\vec{q}| < \Lambda} \frac{d^3q}{(2\pi)^3} \frac{\omega_1^{(j)} + \omega_2^{(j)}}{2\omega_1^{(j)}\omega_2^{(j)}} \frac{j_0(qr)}{s - (\omega_1^{(j)} + \omega_2^{(j)})^2 + i\varepsilon},$$

$$\omega_a^{(j)} \equiv \omega_a^{(j)}(k) = \sqrt{k^2 + m_a^2}; \Lambda = 700 \text{ MeV};$$

$S_{12}(\vec{r})$: source function,

$$S_{12}(\vec{r}) = \frac{1}{(4\pi)^{\frac{3}{2}} R^3} \exp\left(-\frac{r^2}{4R^2}\right),$$

R : source size parameter (larger R : larger system size $pp \rightarrow pA \rightarrow AA$ collisions)

Searching for the $X(3700)$ signature

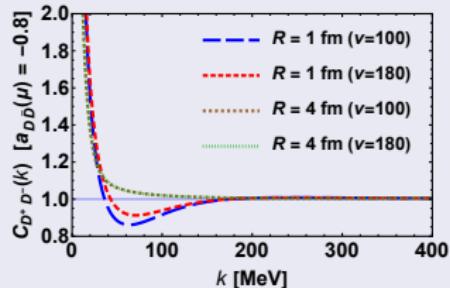
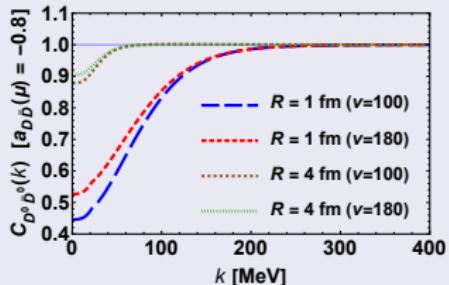
- Controversy: $X(3700)$ not yet listed in the RPP
- Femtoscopic $D\bar{D}$ correlations can carry the signature of $X(3700)$
- $X(3700)$: bound state dynamically generated by solving the BSE

$$|D\bar{D}, I=0\rangle = \sqrt{\frac{1}{2}} \left[|D^0\bar{D}^0\rangle + |D^+\bar{D}^-\rangle \right]$$

Experimentally accessible CFs:

$$C_{D^0\bar{D}^0}(k) = C_{D^0\bar{D}^0}^{(S)}(k),$$

$$C_{D^+D^-}(k) = C_{D^+D^-}^{(S)}(k) + C_{D^+D^-}^{(C)}(k),$$

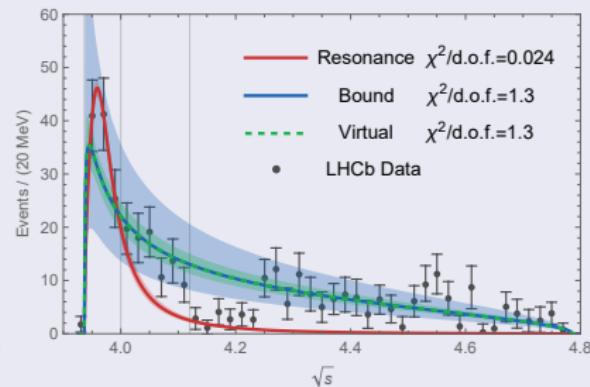
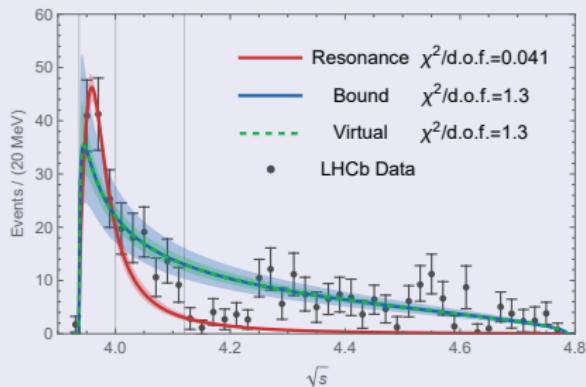


$C_i^{(S)}(k)$: the pure strong contribution

$C_{D^+D^-}^{(C)}(k)$: Coulomb contribution

(Calculated with the complete Coulomb wavefunction: $\Phi^C(r, z; k) = e^{-\pi\gamma/2} \Gamma(1 + i\gamma) e^{ikz} {}_1F_1(-i\gamma; 1; ik(r - z))$,

${}_1F_1(x, y; z)$ confluent hypergeometrical function ; γ : Sommerfeld factor: $\gamma = Z_1 Z_2 \frac{\mu \alpha}{k}$)

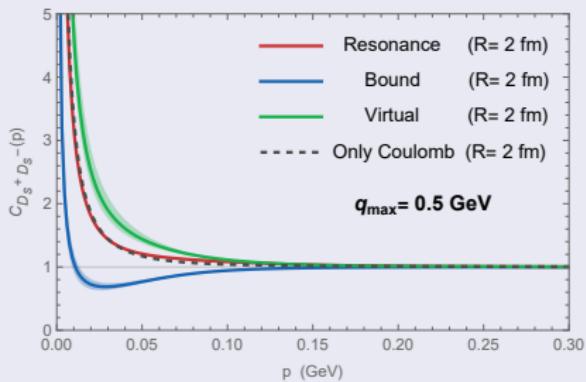
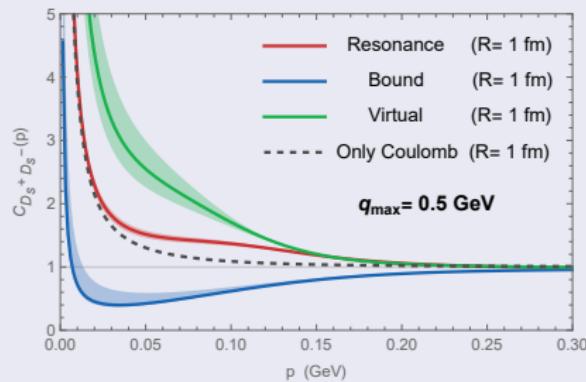
CFs of the $D^0\bar{D}^0$, D^+D^- pairs



- Low k : dip and increase with the augmentation of $R \rightarrow$ **bound state** (Bound state: $\tilde{a}_{D\bar{D}}/R \sim 1$: CF with a stronger dip at $k \sim 0$;)
- Measurements in pp , pA , and AA : help us to elucidate if is a bound state
- Larger width (larger v) \rightarrow weaker dip
- Pole nearer the $D\bar{D}$ threshold (higher $a_{D\bar{D}}(\mu)$) \rightarrow more intense correlations

- Low $k \rightarrow$ the attractive Coulomb interaction yields a sizable enhancement
- Strong contribution \rightarrow appears only at moderate values of k by means of a dip only for smaller sources
- D^+D^- CF \rightarrow more sensitive to the signature of the $X(3700)$ if it is a narrow and weakly bound structure, produced in a smaller source environment

[Collaboration Barcelona-UFBA (Torres-Rincón, LMA); PRD 112, 016003 (2025)]

Traces of the $X(3960)$ state



- LHCb (2022):
 $m_{X(3960)} = 3956 \pm 5 \pm 10$ MeV, $\Gamma_{X(3960)} = 43 \pm 13 \pm 8$ MeV
- Controversy: resonance? Enhancement due to the $X(3930)$?
- Amplitudes encoding the distinct interpretations of the $X(3960)$ state calculated using Bethe-Salpeter formalism

- IMD: insufficient to distinguish between these interpretations
- Femtoscopic $D_s^+ D_s^-$ correlations can carry the signature of $X(3960)$

CFs of the $D_s^+ D_s^-$ pair

[Collaboration Beihang (China)-UFBA (H.N. Liu, Z.W. Liu, L.S. Geng, LMA); arXiv:2511.19098]

- Virtual-state scenario: strong enhancement
- Bound-state: clear suppression
- Resonant configuration: moderate augmentation relative to the pure Coulomb CF
- Measurements in small collision systems: the contrast between the interpretations is most pronounced

Table of Contents

1 Motivation

2 Case study: $X(3872)$

3 Our contributions

4 Summary

Summary

- Hadron Spectrum: richer than what we expected
- New particle zoo near $D^{(*)}\bar{D}^*$, $B^{(*)}\bar{B}^*$ thresholds: not $(\bar{q}q, qqq)$

Can we develop a comprehensive understanding of hadron structure?

- It remains a great challenge!!!
- More experimental and theoretical investigations are necessary to shed light on their dynamics

Thank You!!!

Financial support:

