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Magnetic fields everywhere

Log-scale comparison of magnetic field strengths
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Figure 1: Magnetic fields in the universe.



Fermions in Magnetic fields

Dirac equation
(ip—m)y =0, D, =0, — ieA,.

Fermion propagator
In the proper-time representation,

Sr(x—y) = (i @+eB F+m)/ooods47rsiri18(eBs)
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with F = %fy“fy"Fm,, and F,, is the electromagnetic field strength
tensor.



Fermions in Magnetic fields

For a uniform magnetic field in the z-direction,

eB e—im25

Sr0) = [ ds G gmpags) (™ 17O 0@ L, 9]

where the Lagrangian is:

B
Lix.yis) = — coth(eBs)[(x — 1) + (2~ y2)]
_s=ys)® | (0= y0)?
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ieB
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Fermions in Magnetic fields

In the Ritus representation,

dpod e~ iPo(x ip3(x
SF(X,_)/) = / (/;()71-)'03 ipo(x0—Yy0)+ip3(x3—ys) ZE” Py XJ_)SF(p)En Py(.yl_)
n,py

with pﬁ = p2 — p3, P2 = %[(p1)? + (p2)?] and the Ritus matrices
are such that
(iD)2]E’77Py = p2]E’7aPy'

and verify completeness and orthogonality relations.



Fermions in Magnetic fields

For a uniform magnetic field,

Enp, (x1) = \/Tjeipyy¢n(§)un7
where
6n(6) = ————e"CLH (), &= VeB(x— p,/eB).
\/2"nl\/7
Here,

o VE, + mxs
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and E, = \/m2 + 2neB + p3.




Fermions in Magnetic fields

» [E, are the states of fermions in the presence of the
background field.

» The propagator is diagonal in momentum space

» Generalizations to non-uniform magnetic fields (n-th order
SUSY-QM)



Strained graphene

Straintronics

Electric, thermal and mechanical
properties of materials can be
modified by strain. }_
In graphene, pseudomagnetic et
fields can be described in terms
of a Dirac equation minimally
coupled to an external field,

¥ Electron Motion

(iD—m)p =0, D, = d,—ieA,.



Fullerenes

Fullerenes

» Provide analogs for
confinement in
QCD-inspired models.

» Their response under strong
EM fields allows to probe
matter under extreme
conditions.

» Their intrinsic curvature
provides an analogy of QFT
on curved manifolds.

» Exhibit strong couplings
parallel to interactions in
dense QCD matter.




Dirac equation on a sphere

We begin from the metric of a sphere S?
gw=1_20 —R? 0

and introduce the dreibein
A 1 0 0
eﬁ‘ = 0 R 0

0 0 Rsin(6)

The Dirac equation in curved spacetime is
(kv vep, + mv) W =0, (1)

with p, = —ih (0, + Q) where Q,, is the spin connection.



Dirac equation on a sphere

We represent these matrices in terms of the Pauli matrices as

70 = o%, At =ig?, 72 = —ic*. (2)
The spin connection
g =L,  sap zdézl[ 557, wl, = —esD, [ef]
n=5%appu ) —4’77’7 Bu = au S |

. . . A1 A A & . A
where the covariant derivative D, [eﬁ} = Ouey) — I, €5 with T,
are the Christoffel's symbols.
The stationary Dirac equation is therefore

) 1 cot (6) 1 y 9 )
— —o* 21V =EV.
( ihve |:R0' (89 + > ) + Ron (H)U 84 + mvgo



Dirac equation on a sphere

For the spinor,
, ft () . 1
= Ikgo k = Ik(p = —
v (0, p) Ek e ( £ (6) ) Ek e (0), k 2+n, n e Z.

Decoupling the components

1 _ k cos (6) ( k )2 1 1
- 0, 6) o z— - - —
lsin (0) osin (0) 9o + sin () 7 sin (6) 4sin? () 4 Y
= Xk
with the notation
x? = E? — i?, ﬁvEmVFR Ezﬁ
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Dirac equation on a sphere
Upon performing the change of variables x = cos (6), each of the
components of the spinor, it can be written as

d d kKFhkx+1 1
Bl T I A AL ST R =y
[dx( X>dx 1—x2 TX 4|k 0

We propose a solution of the form
fE () = (1+x)° (1= x)° g5 (%),

where

d? k d 1
A ~_ a 2 L o+
[(1 x)dx2+<ik| 2(|ky+1)x> Ik (kI +1)+x 4] g =0.

This differential equation has a square integrable solution if only if

1 2
X2—<|ky+2> =w(w+2a +2b+1), weN°



Dirac equation on a sphere

which yields the quantization rule

- 1\ 2
E, _\/<W+yk\+2) + M2,

whereas the eigenstates are

C1W (1 —|—X)%|k+%| (]_ —X)%|k_%| P‘Lf(7%|’|k+%‘ (X)
wk(X)E 1)1 1yl |k+1||k—l‘ s
Czw(l—i-x)?’ _5|(1—x)§’ +3| pletzllk—z (x)

where PS"” (x) are the Jacobi polynomials and x € [—1,1],
whereas Cy,, and G, are constants.



Dirac equation a la Ritus

The Dirac equation in curved spacetime can be conveniently recast
in the form

(eji’}/jVFpi + mv,%—) V= —0*vepV,

or, assuming that the potentials are time independent,

- E
-y piV = (az + va> V.
VF

Acting with (Eaz — va) on the left hand side,

vr
—efyipiedy p,W = 2V,
which might suggestively be expressed as

_% ({er7p ei’ykpa} + [P, e}:’Yi(PaD V= v



Dirac equation a la Ritus
After lengthy but straightforward algebra, we can prove that

{eévjpi7e57kpa} = n ekple pa+ 2Zk13’k/
— D2 + 22/(/3/}7

where we define the electromagnetic and spin tensors as

. P T P
= el p: e? ki 2 [k o]
%k/— |:ekpluelpa:|7 z —4 [7 7’Yj|
Notice that the only nonvanishing component of the field tensor is
S — 12 cot(9) 9,
R Rsin(0)’

which, of course, gives

(—ith [;ax <39 + COt2(9)> t ran 0

ayaw} + mv£02> V=EV.



Dirac equation a la Ritus

From the solutions

(Gotisttia ol i)

1

1
Gw (1 —i—x)%’k_%’ (1-— x)%’”%’ Pif+§”|k_2 (x)

(1)

which we can write as

wk(x)=A<clw<é>+czw<‘1)>>,

Yk (x)

we define



Dirac equation a la Ritus

Interestingly
1
[, @A) () (B () = L = Tz

and

I2x26 (x = y) = > (Auk (y) (A)wk (x).

weNO

Thus, the A matrices correspond to the Ritus matrices on curved
space.



Fermion propagator in curved space
We write the fermion propagator as

Soy) = [ oo (y) S (p) Aok ()
= > Aw(¥) S (p(W)) Auk (x).

weND
Then, the current density
J* (% y) = lim Tr[y*S (x, y)]
becomes

ju (va) = 1TIr [’Y“ Z EiAwk (y)Awk (X)

weN° wk

1
= Z Ei Tr [V#Awk (y) Awk (X)] )
WENO wk

with E, = \/(w+ |k| + %)2+ 2.



Fermion propagator in curved space

The charge density
0 1

i (xy) = 2 Z .

mvg (%)2 (w -+ |kl + %)2 +1

wkw (Y) ' wkw (X)

with

Jier3]

()
e

2
J oy =_—50(x-y),

k-1
Vrow (%) = ( o

k41
i

and A = -1

mvg*

Notice that when R — oo,

namely, we recover the flat space charge density.



In summary

> We have solved the Dirac equation on a sphere

» We factorize the solution as a free flat-space spinor multiplied
by a matrix that contains all the information of the curvature
of space

» Such matrix correspond to the Ritus matrix of curved space

» The propagator and current density have been obtained
explicitly

> We recover the behavior of the charge density of flat space as
R —



Outlook

> Article on the way!
» Explore other systems with curvature

» Explore other external fields (vorticity)

Thank you!
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