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Magnetic fields everywhere

Figure 1: Magnetic fields in the universe.



Fermions in Magnetic fields

Dirac equation

(i ̸D − m)ψ = 0, Dµ = ∂µ − ieAµ.

Fermion propagator
In the proper-time representation,

SF (x − y) = (i ̸∂ + eB ̸F + m)
∫ ∞

0
ds eB

4π sinh(eBs)

exp
[
−is

(
m2 − (x − y)2

4s2 − eB
2 σµνFµν

)]
,

with ̸F = 1
2γ

µγνFµν , and Fµν is the electromagnetic field strength
tensor.



Fermions in Magnetic fields

For a uniform magnetic field in the z-direction,

SF (x , y) =
∫ ∞

0
ds eB

(4πs)3/2
e−im2s

sinh(eBs) (m + iγµ∂µ) exp [iL(x , y ; s)]

where the Lagrangian is:

L(x , y ; s) = −eB
2 coth(eBs)[(x1 − y1)2 + (x2 − y2)2]

−(x3 − y3)2

4s + (x0 − y0)2

4s

+ ieB
2 [(x1 − y1)(x2 + y2) − (x2 − y2)(x1 + y1)].



Fermions in Magnetic fields

In the Ritus representation,

SF (x , y) =
∫ dp0dp3

(2π)2 e−ip0(x0−y0)+ip3(x3−y3) ∑
n,py

En,py (x⊥)Sn
F (p)Ēn,py (y⊥),

with p2
∥ = p2

0 − p2
3 , p2

⊥ = 1
2 [(p1)2 + (p2)2] and the Ritus matrices

are such that
(i ̸D)2En,py = p2En,py .

and verify completeness and orthogonality relations.



Fermions in Magnetic fields

For a uniform magnetic field,

En,py (x⊥) = 1√
Ly

eipy yϕn(ξ)un,

where

ϕn(ξ) = 1√
2nn!

√
π

e−ξ2/2Hn(ξ), ξ =
√

eB(x − py/eB).

Here,

un =
( √

En + mχσ

σ3p3
√

En − mχσ

)

and En =
√

m2 + 2neB + p2
3 .



Fermions in Magnetic fields

▶ Ep are the states of fermions in the presence of the
background field.

▶ The propagator is diagonal in momentum space

▶ Generalizations to non-uniform magnetic fields (n-th order
SUSY-QM)



Strained graphene

Straintronics
Electric, thermal and mechanical
properties of materials can be
modified by strain.
In graphene, pseudomagnetic
fields can be described in terms
of a Dirac equation minimally
coupled to an external field,

(i ̸D−m)ψ = 0, Dµ = ∂µ−ieAµ.



Fullerenes

Fullerenes
▶ Provide analogs for

confinement in
QCD-inspired models.

▶ Their response under strong
EM fields allows to probe
matter under extreme
conditions.

▶ Their intrinsic curvature
provides an analogy of QFT
on curved manifolds.

▶ Exhibit strong couplings
parallel to interactions in
dense QCD matter.



Dirac equation on a sphere

We begin from the metric of a sphere S2

gµν =

 1 0 0
0 −R2 0
0 0 −R2 sin2 (θ)


and introduce the dreibein

eα̂
µ =

 1 0 0
0 R 0
0 0 R sin (θ)

 .
The Dirac equation in curved spacetime is(

eµ
α̂γ

α̂vF pµ + mv2
F

)
Ψ = 0, (1)

with pµ = −iℏ (∂µ + Ωµ) where Ωµ is the spin connection.



Dirac equation on a sphere

We represent these matrices in terms of the Pauli matrices as

γ0 = σz , γ1 = iσy , γ2 = −iσx . (2)

The spin connection

Ωµ ≡ 1
2ωα̂β̂µΣα̂β̂, Σα̂β̂ ≡ 1

4
[
γα̂, γβ̂

]
, ωα̂

β̂µ
≡ −eν

β̂
Dµ

[
eα̂

ν

]
,

(3)
where the covariant derivative Dµ

[
eα̂

ν

]
≡ ∂µeα̂

ν − Γλ
µνeα̂

λ with Γλ
µν

are the Christoffel’s symbols.
The stationary Dirac equation is therefore(

−iℏvF

[ 1
R σ

x
(
∂θ + cot (θ)

2

)
+ 1

R sin (θ)σ
y∂φ

]
+ mv2

Fσ
z
)

Ψ = EΨ.



Dirac equation on a sphere
For the spinor,

Ψ (θ, φ) =
∑

k
eikφ

(
f +
k (θ)

f −
k (θ)

)
=
∑

k
eikφψk(θ), k = 1

2+n, n ∈ Z.

Decoupling the components

−
[

1
sin (θ)∂θ sin (θ) ∂θ + k cos (θ)

sin2 (θ)
σz −

( k
sin (θ)

)2
− 1

4 sin2 (θ)
− 1

4

]
ψk

= χ2ψk .

with the notation

χ2 ≡ Ẽ 2 − m̃2, m̃ ≡ mvF R
ℏ

, Ẽ ≡ ER
ℏvF

.



Dirac equation on a sphere
Upon performing the change of variables x = cos (θ) , each of the
components of the spinor, it can be written as[

d
dx
(
1 − x2

) d
dx −

k2 ∓ kx + 1
4

1 − x2 + χ2 − 1
4

]
f ±
k = 0.

We propose a solution of the form

f ±
k (x) = (1 + x)a (1 − x)b q±

k (x) ,

where[(
1−x2

) d2

dx2 +
(

± k
|k|

−2 (|k|+1) x
) d

dx −|k| (|k|+1)+χ2− 1
4

]
q±

k = 0.

This differential equation has a square integrable solution if only if

χ2 −
(

|k| + 1
2

)2
= w (w + 2ak + 2bk + 1) , w ∈ N0,



Dirac equation on a sphere

which yields the quantization rule

Ẽwk =

√(
w + |k| + 1

2

)2
+ m̃2,

whereas the eigenstates are

ψk (x) ≡

 C1w (1 + x)
1
2 |k+ 1

2 | (1 − x)
1
2 |k− 1

2 | P|k− 1
2 |,|k+ 1

2 |
w (x)

C2w (1 + x)
1
2 |k− 1

2 | (1 − x)
1
2 |k+ 1

2 | P|k+ 1
2 |,|k− 1

2 |
w (x)

 ,
where Pα,β

w (x) are the Jacobi polynomials and x ∈ [−1, 1],
whereas C1w and C2w are constants.



Dirac equation a la Ritus
The Dirac equation in curved spacetime can be conveniently recast
in the form (

ei
ȷ̂γ

ȷ̂vF pi + mv2
F

)
Ψ = −σzvF p0Ψ,

or, assuming that the potentials are time independent,

−ei
ȷ̂γ

ȷ̂piΨ =
( E

vF
σz + mvF

)
Ψ.

Acting with
(

E
vF
σz − mvF

)
on the left hand side,

−ei
ȷ̂γ

ȷ̂piea
k̂γ

k̂paΨ = χ2Ψ,

which might suggestively be expressed as

−1
2
({

ei
ȷ̂γ

ȷ̂pi , ea
k̂γ

k̂pa
}

+
[
ei

ȷ̂γ
ȷ̂pi , ea

k̂γ
k̂pa
])

Ψ = χ2Ψ.



Dirac equation a la Ritus
After lengthy but straightforward algebra, we can prove that{

ei
ȷ̂γ

ȷ̂pi , ea
k̂γ

k̂pa
}

= ηk̂ l̂ei
k̂piea

l̂ pa + 2Σk̂ l̂Fk̂ l̂

= D2 + 2Σk̂ l̂Fk̂ l̂

where we define the electromagnetic and spin tensors as

Fk̂ l̂ ≡
[
ei

k̂pi , ea
l̂ pa
]
, Σk̂ l̂ ≡ 1

4
[
γk̂ , γ l̂

]
Notice that the only nonvanishing component of the field tensor is

F12 = ℏ2 cot (θ)
R

∂φ

R sin (θ) ,

which, of course, gives(
−iℏvF

[ 1
R σ

x
(
∂θ + cot (θ)

2

)
+ 1

R sin (θ)σ
y∂φ

]
+ mv2

Fσ
z
)

Ψ = EΨ.



Dirac equation a la Ritus
From the solutions

ψk (x) =

 C1w (1 + x)
1
2 |k+ 1

2 | (1 − x)
1
2 |k− 1

2 | P|k− 1
2 |,|k+ 1

2 |
w (x)

C2w (1 + x)
1
2 |k− 1

2 | (1 − x)
1
2 |k+ 1

2 | P|k+ 1
2 |,|k− 1

2 |
w (x)


=

(
f +

f −

)
,

which we can write as

ψk (x) = A
(

C1w

(
1
0

)
+ C2w

(
0
1

))
,

we define

A ≡
(

f + 0
0 f −

)
.



Dirac equation a la Ritus

Interestingly∫ 1

−1
dx(A)mk (x) (A)nk (x) ≡ Imnk = I2×2δmn

and
I2×2δ (x − y) =

∑
w∈N0

(Awk (y) (A)wk (x) .

Thus, the A matrices correspond to the Ritus matrices on curved
space.



Fermion propagator in curved space
We write the fermion propagator as

S (x , y) =
∫

dpApk (y) SF (p)Apk (x)

=
∑

w∈N0

Awk (y) SF (p (w))Awk (x) .

Then, the current density

jµ (x , y) = lim Tr [γµS (x , y)]

becomes

jµ (x , y) = Tr

γµ
∑

w∈N0

1
Ewk

Awk (y)Awk (x)


=

∑
w∈N0

1
Ewk

Tr [γµAwk (y)Awk (x)] ,

with Ẽwk =
√(

w + |k| + 1
2

)2
+ m̃2.



Fermion propagator in curved space
The charge density

j0 (x , y) = 1
mv2

F

∑
w∈N0

1(
∆
R

)2 (
w + |k| + 1

2

)2
+ 1

ψkw (y) · ψkw (x)

with

ψkw (x) =

 f |k− 1
2 |,|k+ 1

2 |
1w (x)

f |k+ 1
2 |,|k− 1

2 |
2w (x)


and ∆ ≡ ℏ

mvF
.

Notice that when R → ∞,

j0 (x , y ; r) = 2
mv2

F
δ (x − y) ,

namely, we recover the flat space charge density.



In summary

▶ We have solved the Dirac equation on a sphere
▶ We factorize the solution as a free flat-space spinor multiplied

by a matrix that contains all the information of the curvature
of space

▶ Such matrix correspond to the Ritus matrix of curved space
▶ The propagator and current density have been obtained

explicitly
▶ We recover the behavior of the charge density of flat space as

R → ∞



Outlook

▶ Article on the way!
▶ Explore other systems with curvature
▶ Explore other external fields (vorticity)

Thank you!
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