

Fermions in external fields, the state of the art

Alfredo Raya and David Valenzuela

FIE-UMSNH, CCE-UBB, LFJ

Nov. 2025

Contents

Motivation

Fermions in Magnetic Fields

Magnetic Fields Everywhere
Fermions in Magnetic fields

Curvature effects

Curvature and Magnetic Fields
Fullerenes

Summary and conclusions

Summary

Magnetic fields everywhere

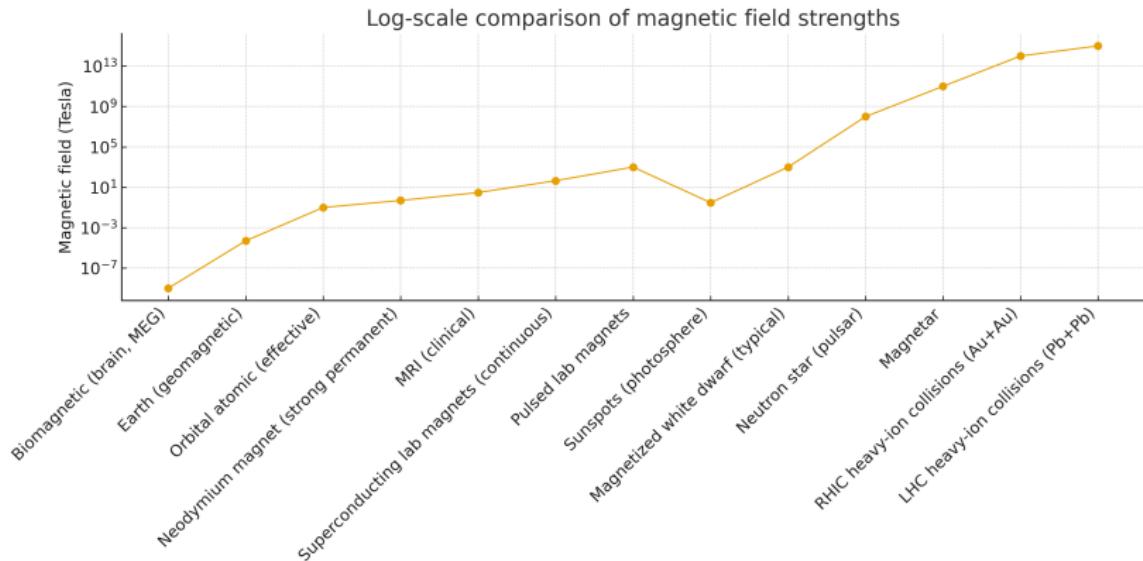


Figure 1: Magnetic fields in the universe.

Fermions in Magnetic fields

Dirac equation

$$(i \not{D} - m)\psi = 0, \quad D_\mu = \partial_\mu - ieA_\mu.$$

Fermion propagator

In the proper-time representation,

$$\begin{aligned} S_F(x - y) &= (i \not{\partial} + eB \not{F} + m) \int_0^\infty ds \frac{eB}{4\pi \sinh(eBs)} \\ &\quad \exp \left[-is \left(m^2 - \frac{(x - y)^2}{4s^2} - \frac{eB}{2} \sigma^{\mu\nu} F_{\mu\nu} \right) \right], \end{aligned}$$

with $\not{F} = \frac{1}{2} \gamma^\mu \gamma^\nu F_{\mu\nu}$, and $F_{\mu\nu}$ is the electromagnetic field strength tensor.

Fermions in Magnetic fields

For a uniform magnetic field in the z -direction,

$$S_F(x, y) = \int_0^\infty ds \frac{eB}{(4\pi s)^{3/2}} \frac{e^{-im^2s}}{\sinh(eBs)} (m + i\gamma^\mu \partial_\mu) \exp[i\mathcal{L}(x, y; s)]$$

where the Lagrangian is:

$$\begin{aligned} \mathcal{L}(x, y; s) = & -\frac{eB}{2} \coth(eBs) [(x_1 - y_1)^2 + (x_2 - y_2)^2] \\ & -\frac{(x_3 - y_3)^2}{4s} + \frac{(x_0 - y_0)^2}{4s} \\ & + \frac{ieB}{2} [(x_1 - y_1)(x_2 + y_2) - (x_2 - y_2)(x_1 + y_1)]. \end{aligned}$$

Fermions in Magnetic fields

In the Ritus representation,

$$S_F(x, y) = \int \frac{dp_0 dp_3}{(2\pi)^2} e^{-ip_0(x_0 - y_0) + ip_3(x_3 - y_3)} \sum_{n, p_y} \mathbb{E}_{n, p_y}(x_\perp) S_F^n(p) \bar{\mathbb{E}}_{n, p_y}(y_\perp),$$

with $p_\parallel^2 = p_0^2 - p_3^2$, $p_\perp^2 = \frac{1}{2}[(p_1)^2 + (p_2)^2]$ and the Ritus matrices are such that

$$(i \not{D})^2 \mathbb{E}_{n, p_y} = p^2 \mathbb{E}_{n, p_y}.$$

and verify completeness and orthogonality relations.

Fermions in Magnetic fields

For a uniform magnetic field,

$$\mathbb{E}_{n,p_y}(x_\perp) = \frac{1}{\sqrt{L_y}} e^{ip_y y} \phi_n(\xi) u_n,$$

where

$$\phi_n(\xi) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} e^{-\xi^2/2} H_n(\xi), \quad \xi = \sqrt{eB}(x - p_y/eB).$$

Here,

$$u_n = \begin{pmatrix} \sqrt{E_n + m} \chi_\sigma \\ \sigma^3 p_3 \sqrt{E_n - m} \chi_\sigma \end{pmatrix}$$

$$\text{and } E_n = \sqrt{m^2 + 2neB + p_3^2}.$$

Fermions in Magnetic fields

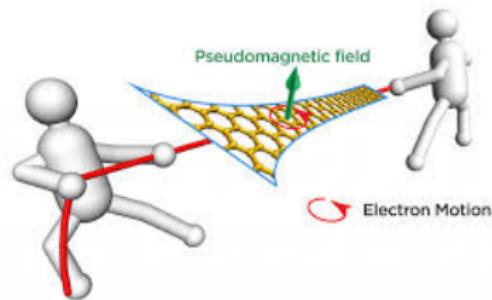
- ▶ \mathbb{E}_p are the states of fermions in the presence of the background field.
- ▶ The propagator is diagonal in momentum space
- ▶ Generalizations to non-uniform magnetic fields (n -th order SUSY-QM)

Strained graphene

Straintronics

Electric, thermal and mechanical properties of materials can be modified by strain.

In graphene, pseudomagnetic fields can be described in terms of a Dirac equation minimally coupled to an external field,

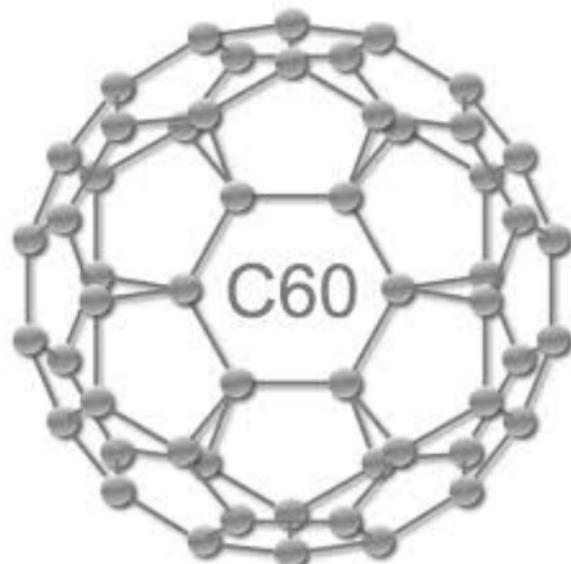


$$(i\not{\!D} - m)\psi = 0, \quad D_\mu = \partial_\mu - ieA_\mu.$$

Fullerenes

Fullerenes

- ▶ Provide analogs for confinement in QCD-inspired models.
- ▶ Their response under strong EM fields allows to probe matter under extreme conditions.
- ▶ Their intrinsic curvature provides an analogy of QFT on curved manifolds.
- ▶ Exhibit strong couplings parallel to interactions in dense QCD matter.



Dirac equation on a sphere

We begin from the metric of a sphere S^2

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -R^2 & 0 \\ 0 & 0 & -R^2 \sin^2(\theta) \end{pmatrix}$$

and introduce the *dreibein*

$$e_{\hat{\mu}}^{\hat{\alpha}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \sin(\theta) \end{pmatrix}.$$

The Dirac equation in curved spacetime is

$$\left(e_{\hat{\alpha}}^{\mu} \gamma^{\hat{\alpha}} v_F p_{\mu} + m v_F^2 \right) \Psi = 0, \quad (1)$$

with $p_{\mu} = -i\hbar(\partial_{\mu} + \Omega_{\mu})$ where Ω_{μ} is the spin connection.

Dirac equation on a sphere

We represent these matrices in terms of the Pauli matrices as

$$\gamma^0 = \sigma^z, \quad \gamma^1 = i\sigma^y, \quad \gamma^2 = -i\sigma^x. \quad (2)$$

The spin connection

$$\Omega_\mu \equiv \frac{1}{2} \omega_{\hat{\alpha}\hat{\beta}\mu} \Sigma^{\hat{\alpha}\hat{\beta}}, \quad \Sigma^{\hat{\alpha}\hat{\beta}} \equiv \frac{1}{4} [\gamma^{\hat{\alpha}}, \gamma^{\hat{\beta}}], \quad \omega_{\hat{\beta}\mu}^{\hat{\alpha}} \equiv -e_\mu^\nu D_\mu [e_\nu^{\hat{\alpha}}], \quad (3)$$

where the covariant derivative $D_\mu [e_\nu^{\hat{\alpha}}] \equiv \partial_\mu e_\nu^{\hat{\alpha}} - \Gamma_{\mu\nu}^\lambda e_\lambda^{\hat{\alpha}}$ with $\Gamma_{\mu\nu}^\lambda$ are the Christoffel's symbols.

The stationary Dirac equation is therefore

$$\left(-i\hbar v_F \left[\frac{1}{R} \sigma^x \left(\partial_\theta + \frac{\cot(\theta)}{2} \right) + \frac{1}{R \sin(\theta)} \sigma^y \partial_\varphi \right] + mv_F^2 \sigma^z \right) \Psi = E \Psi.$$

Dirac equation on a sphere

For the spinor,

$$\Psi(\theta, \varphi) = \sum_k e^{ik\varphi} \begin{pmatrix} f_k^+(\theta) \\ f_k^-(\theta) \end{pmatrix} = \sum_k e^{ik\varphi} \psi_k(\theta), \quad k = \frac{1}{2} + n, \quad n \in \mathbb{Z}.$$

Decoupling the components

$$-\left[\frac{1}{\sin(\theta)} \partial_\theta \sin(\theta) \partial_\theta + \frac{k \cos(\theta)}{\sin^2(\theta)} \sigma^z - \left(\frac{k}{\sin(\theta)} \right)^2 - \frac{1}{4 \sin^2(\theta)} - \frac{1}{4} \right] \psi_k \\ = \chi^2 \psi_k.$$

with the notation

$$\chi^2 \equiv \tilde{E}^2 - \tilde{m}^2, \quad \tilde{m} \equiv \frac{mv_F R}{\hbar}, \quad \tilde{E} \equiv \frac{ER}{\hbar v_F}.$$

Dirac equation on a sphere

Upon performing the change of variables $x = \cos(\theta)$, each of the components of the spinor, it can be written as

$$\left[\frac{d}{dx} (1-x^2) \frac{d}{dx} - \frac{k^2 \mp kx + \frac{1}{4}}{1-x^2} + \chi^2 - \frac{1}{4} \right] f_k^\pm = 0.$$

We propose a solution of the form

$$f_k^\pm(x) = (1+x)^a (1-x)^b q_k^\pm(x),$$

where

$$\left[(1-x^2) \frac{d^2}{dx^2} + \left(\pm \frac{k}{|k|} - 2(|k|+1)x \right) \frac{d}{dx} - |k|(|k|+1) + \chi^2 - \frac{1}{4} \right] q_k^\pm = 0.$$

This differential equation has a square integrable solution if only if

$$\chi^2 - \left(|k| + \frac{1}{2} \right)^2 = w(w+2a_k+2b_k+1), \quad w \in \mathbb{N}^0,$$

Dirac equation on a sphere

which yields the quantization rule

$$\tilde{E}_{wk} = \sqrt{\left(w + |k| + \frac{1}{2}\right)^2 + \tilde{m}^2},$$

whereas the eigenstates are

$$\psi_k(x) \equiv \begin{pmatrix} C_{1w} (1+x)^{\frac{1}{2}|k+\frac{1}{2}|} (1-x)^{\frac{1}{2}|k-\frac{1}{2}|} P_w^{|k-\frac{1}{2}|, |k+\frac{1}{2}|}(x) \\ C_{2w} (1+x)^{\frac{1}{2}|k-\frac{1}{2}|} (1-x)^{\frac{1}{2}|k+\frac{1}{2}|} P_w^{|k+\frac{1}{2}|, |k-\frac{1}{2}|}(x) \end{pmatrix},$$

where $P_w^{\alpha, \beta}(x)$ are the Jacobi polynomials and $x \in [-1, 1]$,
whereas C_{1w} and C_{2w} are constants.

Dirac equation a la Ritus

The Dirac equation in curved spacetime can be conveniently recast in the form

$$\left(e_j^i \gamma^j v_F p_i + m v_F^2 \right) \Psi = -\sigma^z v_F p_0 \Psi,$$

or, assuming that the potentials are time independent,

$$-e_j^i \gamma^j p_i \Psi = \left(\frac{E}{v_F} \sigma^z + m v_F \right) \Psi.$$

Acting with $\left(\frac{E}{v_F} \sigma^z - m v_F \right)$ on the left hand side,

$$-e_j^i \gamma^j p_i e_k^a \gamma^k p_a \Psi = \chi^2 \Psi,$$

which might suggestively be expressed as

$$-\frac{1}{2} \left(\left\{ e_j^i \gamma^j p_i, e_k^a \gamma^k p_a \right\} + \left[e_j^i \gamma^j p_i, e_k^a \gamma^k p_a \right] \right) \Psi = \chi^2 \Psi.$$

Dirac equation a la Ritus

After lengthy but straightforward algebra, we can prove that

$$\begin{aligned}\left\{e_j^i \gamma^j p_i, e_k^a \gamma^k p_a\right\} &= \eta^{\hat{k}\hat{l}} e_{\hat{k}}^i p_i e_{\hat{l}}^a p_a + 2 \Sigma^{\hat{k}\hat{l}} \mathfrak{F}_{\hat{k}\hat{l}} \\ &= D^2 + 2 \Sigma^{\hat{k}\hat{l}} \mathfrak{F}_{\hat{k}\hat{l}}\end{aligned}$$

where we define the *electromagnetic* and *spin* tensors as

$$\mathfrak{F}_{\hat{k}\hat{l}} \equiv \left[e_{\hat{k}}^i p_i, e_{\hat{l}}^a p_a \right], \quad \Sigma^{\hat{k}\hat{l}} \equiv \frac{1}{4} \left[\gamma^{\hat{k}}, \gamma^{\hat{l}} \right]$$

Notice that the only nonvanishing component of the field tensor is

$$\mathfrak{F}_{12} = \hbar^2 \frac{\cot(\theta)}{R} \frac{\partial_\varphi}{R \sin(\theta)},$$

which, of course, gives

$$\left(-i \hbar v_F \left[\frac{1}{R} \sigma^x \left(\partial_\theta + \frac{\cot(\theta)}{2} \right) + \frac{1}{R \sin(\theta)} \sigma^y \partial_\varphi \right] + m v_F^2 \sigma^z \right) \Psi = E \Psi.$$

Dirac equation a la Ritus

From the solutions

$$\begin{aligned}\psi_k(x) &= \begin{pmatrix} C_{1w} (1+x)^{\frac{1}{2}|k+\frac{1}{2}|} (1-x)^{\frac{1}{2}|k-\frac{1}{2}|} P_w^{|k-\frac{1}{2}|, |k+\frac{1}{2}|}(x) \\ C_{2w} (1+x)^{\frac{1}{2}|k-\frac{1}{2}|} (1-x)^{\frac{1}{2}|k+\frac{1}{2}|} P_w^{|k+\frac{1}{2}|, |k-\frac{1}{2}|}(x) \end{pmatrix} \\ &= \begin{pmatrix} f^+ \\ f^- \end{pmatrix},\end{aligned}$$

which we can write as

$$\psi_k(x) = \mathbb{A} \left(C_{1w} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_{2w} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right),$$

we define

$$\mathbb{A} \equiv \begin{pmatrix} f^+ & 0 \\ 0 & f^- \end{pmatrix}.$$

Dirac equation a la Ritus

Interestingly

$$\int_{-1}^1 dx (\mathbb{A})_{mk}(x) (\mathbb{A})_{nk}(x) \equiv \mathbb{I}_{mnk} = \mathbb{I}_{2 \times 2} \delta_{mn}$$

and

$$\mathbb{I}_{2 \times 2} \delta(x - y) = \sum_{w \in \mathbb{N}^0} (\mathbb{A}_{wk}(y) (\mathbb{A})_{wk}(x)).$$

Thus, the \mathbb{A} matrices correspond to the Ritus matrices on curved space.

Fermion propagator in curved space

We write the fermion propagator as

$$\begin{aligned} S(x, y) &= \int dp \mathbb{A}_{pk}(y) S_F(p) \mathbb{A}_{pk}(x) \\ &= \sum_{w \in \mathbb{N}^0} \mathbb{A}_{wk}(y) S_F(p(w)) \mathbb{A}_{wk}(x). \end{aligned}$$

Then, the current density

$$j^\mu(x, y) = \lim Tr [\gamma^\mu S(x, y)]$$

becomes

$$\begin{aligned} j^\mu(x, y) &= Tr \left[\gamma^\mu \sum_{w \in \mathbb{N}^0} \frac{1}{E_{wk}} \mathbb{A}_{wk}(y) \mathbb{A}_{wk}(x) \right] \\ &= \sum_{w \in \mathbb{N}^0} \frac{1}{E_{wk}} Tr [\gamma^\mu \mathbb{A}_{wk}(y) \mathbb{A}_{wk}(x)], \end{aligned}$$

with $\tilde{E}_{wk} = \sqrt{\left(w + |k| + \frac{1}{2}\right)^2 + \tilde{m}^2}.$

Fermion propagator in curved space

The charge density

$$j^0(x, y) = \frac{1}{mv_F^2} \sum_{w \in \mathbb{N}^0} \frac{1}{\left(\frac{\Delta}{R}\right)^2 \left(w + |k| + \frac{1}{2}\right)^2 + 1} \psi_{kw}(y) \cdot \psi_{kw}(x)$$

with

$$\psi_{kw}(x) = \begin{pmatrix} f_{1w}^{|k-\frac{1}{2}|, |k+\frac{1}{2}|}(x) \\ f_{2w}^{|k+\frac{1}{2}|, |k-\frac{1}{2}|}(x) \end{pmatrix}$$

$$\text{and } \Delta \equiv \frac{\hbar}{mv_F}.$$

Notice that when $R \rightarrow \infty$,

$$j^0(x, y; r) = \frac{2}{mv_F^2} \delta(x - y),$$

namely, we recover the flat space charge density.

In summary

- ▶ We have solved the Dirac equation on a sphere
- ▶ We factorize the solution as a free flat-space spinor multiplied by a matrix that contains all the information of the curvature of space
- ▶ Such matrix correspond to the Ritus matrix of curved space
- ▶ The propagator and current density have been obtained explicitly
- ▶ We recover the behavior of the charge density of flat space as $R \rightarrow \infty$

Outlook

- ▶ Article on the way!
- ▶ Explore other systems with curvature
- ▶ Explore other external fields (vorticity)

Thank you!