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Resummations in QCD

■ Some observables can be written, in pQCD, as a power series in αs

=⇒ in these series the coupling constant is accompanied by large
logarithms, which need to be resummed

=⇒ according to the type and to the powers of logarithms that are
effectively resummed one gets different evolution equations

■ The solution of the DGLAP equation sums over all orders in αs the
contributions from leading, single, collinear logarithms of the form
αs ln

(
Q2/Q2

0
)

=⇒ it does not include leading, single, soft singularities of the form
αs ln (1/x), which are treated instead by the BFKL equation

■ The BFKL equation describes the x-evolution of PDFs at fixed Q2
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Resummations in QCD
■ The phase space regions which contribute these logarithms
enhancements are associated with configurations in which successive
partons have strongly ordered transverse, kT , or longitudinal, kL ≡ x ,
momenta:

⇒ αsLQ ∼ 1, αsLx ≪ 1: Q2 ≫ k2
T ,n ≫ · · · ≫ k2

T ,1 ≫ Q2
0

⇒ αsLx ∼ 1, αsLQ ≪ 1: x ≪ xn ≪ · · · ≪ x1 ≪ x0

■ At small-x and low Q2 (where gluons are dominant) we do not have
strongly ordered kT

⇒ we have to integrate over the full range of kT

⇒ this leads us to work with the unintegrated gluon PDF
g̃(x , k2

T ):

xg(x ,Q2) =

∫ Q2
dk2

T

k2
T

g̃(x , k2
T )
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Resummations in QCD

■ The result of resumming these leading terms is sensitive to the
infrared kT region and it is found that

g̃(x , k2
T ) ∼ C(k2

T ) x−λ

where λ ∼ 0.5 and g̃(x , k2
T ) is the unintegrated gluon distribution

=⇒ the relation between g̃(x , k2
T ) and g(x ,Q2), the standard gluon

distribution reads

g̃(x , k2
T ) =

∂(xg(x ,Q2))

∂ lnQ2

∣∣∣∣
Q2=k2

T
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Nonperturbative contributions

■ At this point it is clear that nonperturbative contributions are needed:

=⇒ first, the resummation program requires knowledge of the gluon for
all k2

T including the deep infrared region

=⇒ second, the data in the small-x region show that F2 tend to a flat
shape with decreasing Q2, particularly for low Q2

=⇒ this indicates that the singular behavior x−λ predicted
by BFKL must be suppressed by nonperturbative effects

■ Hence approaching the low Q2 region from the QCD theory makes
evident the problem of how to incorporate in an effective way
nonperturbative corrections into the description of some observables
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Question: How to address this question?
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QCD effective charges

■ The nonperturbative dynamics of QCD may generate an effective
momentum-dependent mass m(q2) for the gluons

□ Numerical simulations indicate that such a dynamical mass does
arise when the nonperturbative regime of QCD is probed

=⇒ large-volume lattice QCD simulations, both for SU(2)
and SU(3), reveal that the gluon propagator is finite in
the deep infrared region

□ In the continuum, it turns out that the nonperturbative dynamics of
the gluon propagator is governed by the corresponding
Schwinger-Dyson equations (SDEs)

=⇒ according to the SDEs a finite gluon propagator
corresponds to a massive gluon
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QCD effective charges

■ The QCD effective charge ᾱ(q2) is a nonperturbative generalization
of the canonical perturbative coupling αs(q2)

⇒ it is intimately related to the phenomenon of dynamical gluon mass
generation

■ The charge ᾱ(q2) provides the bridge leading from the deep
ultraviolet regime to the deep infrared one

⇒ the definition of ᾱ(q2) is not unique: may be obtained in two ways

=⇒ despite the distinct theoretical origins of ᾱ(q2), they
coincide exactly in the deep infrared.

=⇒ the ultimate reason for this is the existence of a
nonperturbative identity relating various of the Green
functions appearing in their respective definitions
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QCD effective charges

■ For example, ᾱ(q2) can be obtained from the Schwinger-Dyson
solutions for the gluon self-energy ∆̂(q2)

⇒ in this definition the solutions for ∆̂(q2) are used to form a
renormalization-group invariant quantity: d̂(q2) = g2∆̂(q2)

⇒ the inverse of d̂(q2) quantity may be written

d̂−1(q2) =

[
q2 + m2(q2)

]
ᾱ(q2)

where now

1
ᾱ(q2)

= b0 ln

(
q2 + m2(q2)

Λ2

)
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QCD effective charges

■ Note that here b0 is precisely the first coefficient of the QCD β
function and Λ is the QCD mass scale

⇒ thus ᾱ(q2) has exactly the same form of the leading order (LO)
perturbative QCD coupling:

1
αLO

s (p2)
= b0 ln

(
p2

Λ2

)

if q2 + m2(q2) → p2 in the argument of the logarithm

⇒ this will effectively ensure that, in practice, the QCD effective charge
can be successfully obtained by saturating the perturbative strong
coupling αLO

s (q2)
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QCD effective charges

■ That is to say,

ᾱLO(q2) = αLO
s (q2)

∣∣∣
q2→q2+m2(q2)

=
1

b0 ln
(

q2+m2(q2)
Λ2

) ,

where b0 = β0/4π = (11CA − 2nf )/12π
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QCD effective charges

■ A next-to-leading order (NLO) effective charge can be built through
the same procedure

ᾱNLO(q2) =
1

b0 ln
(

q2+4m2(q2)
Λ2

)
1 − b1

b2
0

ln
(
ln
(

q2+4m2(q2)
Λ2

))
ln
(

q2+4m2(q2)
Λ2

)
 ,

where b1 = β1/16π2 = [34C2
A − nf (10CA + 6CF )]/48π2
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QCD effective charges

■ We investigate three different types of QCD effective charge
ᾱNLO(q2)

⇒ they can be constructed from two independent dynamical gluon
masses having distinct asymptotic behaviors:

m2
log(q

2) = m2
g

 ln
(

q2+ρm2
g

Λ2

)
ln
(
ρm2

g
Λ2

)

−1−γ1

and

m2
pl(q

2) =
m4

g

q2 + m2
g

 ln
(

q2+ρm2
g

Λ2

)
ln
(
ρm2

g
Λ2

)

γ2−1
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Curci-Ferrari effective charge

■ The first two QCD effective charges can be constructed simply by
combining the above equations

■ The third effective charge vanishes logarithmically in the infrared, in
agreement with some recent lattice results using a renormalization
group invariant coupling resulting from a particular combination of the
gluon and ghost propagators

ᾱCF (q
2) =

1

1 + c0 ln

(
1 +

4m2
log(q

2)

q2

) ᾱlog(q2)
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Canonical coupling and QCD effective charges at NLO
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Nucleon structure function

■ The nucleon structure function F2(x ,Q2) at low Q2 has been
measured in the previously unexplored small-x regime at the HERA
collider

⇒ a long-standing question is the extent to which the nonperturbative
properties of QCD affect the behavior of F2

⇒ the low Q2 and small-x regions bring us into a kinematical region
where nonperturbative QCD effects becomes essential

These regions are very interesting kinematical domains for testing new
QCD theoretical ideas
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Leading-twist expansion of F2

■ Our task of calculating infrared contributions to the QCD description
of data on F2 can succeed in a consistent way by analyzing exclusively
the small-x region

⇒ in this limit some of the existing analytical solutions of the DGLAP
equation can be directly used

⇒ in this approach the HERA data at small-x is interpreted in terms of
the double-asymptotic-scaling (DAS) phenomenon

⇒ The analytical solutions can be extended in order to include the
subasymptotic part of the Q2 evolution

=⇒ generalized DAS approximation

=⇒ parton distributions evolved from flat x distributions at
some starting point Q0 for the DGLAP evolution
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Leading-twist expansion of F2

■ The twist-two term of F2(x ,Q2) at NLO is given by [1,2]

1
e

F τ2
2 (x ,Q2) = f τ2

q (x ,Q2) +
4TRnf

3
αs(Q2)

4π
f τ2
g (x ,Q2)

⇒ It may be worth emphasizing that this expression is valid only for
x ≪ 1

⇒ The distributions f τ2
a are written using a representation which

follows from the solution of the DGLAP equation in the Mellin moment
space (see [2])

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[1]A.Y.Illarionov, A.V.Kotikov, G.Parente, Phys.Part.Nucl.39(2008)307;
[2] EGSL, A.L.dos Santos, A.A.Natale, Phys. Lett. B 698 (2011) 52.
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Higher-twist corrections

■ In pQCD we make approximations that use the leading power of an
expansion in small variables like masses relative to a hard scale Q

⇒ It is natural to ask about the role of non-leading powers

⇒ higher twist corrections to DIS processes have been studied
systematically in the framework of the OPE

■ In this scenario the structure functions have higher-twist power
corrections:

F (x ,Q2) = F τ=2(x ,Q2) +
F τ=4(x ,Q2)

Q2 +
F τ=6(x ,Q2)

Q4 + ...
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Some technical difficulties

■ There are theoretical difficulties of controlling power corrections in
effective theories...

=⇒ ... the calculation of power corrections requires the evaluation of
the matrix elements of higher-twist operators...

=⇒ ... but in order to cancel certain ambiguities it is also necessary to
compute the Wilson coefficient functions to sufficiently high orders of
the perturbation series

=⇒ these ‘renormalon’ ambiguities are of the same order as the power
corrections

■ Fortunately, the twist-4 ambiguity cancels the corresponding
ambiguity in the definition of the twist-2 contribution.
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The infrared renormalon model

■ Unfortunately, it is not clear if the ambiguity of higher twist
contributions can also be canceled

=⇒ in general only a few terms of the perturbative series are known

=⇒ these series are plagued by similar renormalon ambiguities

■ However, the subtle relation between the twist-two and the twist-four
contributions has inspired the hypothesis that the main contributions to
the matrix elements of the twist-four operators are proportional to their
divergent parts

=⇒ this means that in practice we can obtain information about power
corrections from the large-order behavior of the corresponding series

=⇒ this approach is called infrared renormalon model.
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■ The twist-four (τ4) correction to F2(x ,Q2) in the [R]enormalon
formalism is given by [3]

F [R]τ4
2 (x ,Q2) = e

∑
a=q,g

Aτ4
a µ̃τ4

a (x ,Q2)⊗ f τ2
a (x ,Q2)

=
∑

a=q,g

F [R]τ4
2,a (x ,Q2)

⇒ the functions µ̃τ4
a (x ,Q2) are obtained by means of the infrared

renormalon model, and

F [R]
2 (x ,Q2) = F τ2

2 (x ,Q2) +
1

Q2 F [R]τ4
2 (x ,Q2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3] D.Hadjimichef, EGSL, M.Peláez, Phys. Lett. B 804 (2020) 135350.
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■ Similarly the twist-six (τ6) correction to F2(x ,Q2) reads [3]

F [R]τ6
2 (x ,Q2) = e

∑
a=q,g

Aτ6
a µ̃τ6

a (x ,Q2)⊗ f τ2
a (x ,Q2)

=
∑

a=q,g

F [R]τ6
2,a (x ,Q2)

⇒ the functions µ̃τ6
a (x ,Q2) are also obtained by means of the infrared

renormalon model

⇒ now, taking into account all higher twist corrections, we have

F [R]
2 (x ,Q2) = F τ2

2 (x ,Q2) +
1

Q2 F [R]τ4
2 (x ,Q2) +

1
Q4 F [R]τ6

2 (x ,Q2)
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■ If F [R]hτ
2 (x ,Q2) denotes the higher-twist operators, we have

F [R]
2 (x ,Q2) = F τ2

2 (x ,Q2) + F [R]hτ
2 (x ,Q2),

where the “+” and the “-” representations of F [R]hτ
2 (x ,Q2) can each be

put into a compact form [3]:

1
e

F [R]hτ,+
2 (x ,Q2) =

32TRnf

15β2
0

f τ2,+
g (x ,Q2)

∑
m=4,6

km

{
Aτm

g

Q(m−2)

(
2
ρ

Ĩ1(ρ)

Ĩ0(ρ)
+ ln

(
Q2

|Aτm
g |lm

))

+
4CF TRnf

3CA

Aτm
q

Q(m−2)

[(
1 − d̄q

+−(1)
αs(Q2)

4π

)(
2
ρ

Ĩ1(ρ)

Ĩ0(ρ)
+ ln

(
Q2

|Aτm
q |lm

))

+
20CA

3
αs(Q2)

4π

(
2
ρ2

Ĩ2(ρ)

Ĩ0(ρ)
+ ln

(
Q2

|Aτm
q |lm

)
1
ρ

Ĩ1(ρ)

Ĩ0(ρ)

)]}
,

1
e

F [R]hτ,−
2 (x ,Q2) =

32TRnf

15β2
0

f τ2,−
g (x ,Q2)

∑
m=4,6

km

{
Aτm

g

Q(m−2)
ln

(
Q2

x2
g |Aτm

g |lm

)

− 2CA
Aτm

q

Q(m−2)

[
ln

(
1
xq

)
ln

(
Q2

xq |Aτm
q |lm

)
− p′(νq)

]}
,

with k4 = 1, k6 = −8/7, l4 = 1, and l6 = 1/2.
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Results

■ The nucleon structure function F2(x ,Q2) has been measured in DIS
of leptons off nucleons at the HERA collider

⇒ we carry out global fits to small-x F2(x ,Q2) data at low and
moderate Q2 values

⇒ we use HERA data from the ZEUS and H1 Collaborations, with the
statistic and systematic errors added in quadrature

⇒ specifically, we fit to the structure function at Q2 = 0.2, 0.25, 0.3,
0.5, 0.65, 0.85, 1.2, 1.3, 1.5, 1.9, 2.0, 2.5, 3.5, 5.0, 6.5 and 10 GeV2

■ The global fits were performed using a χ2 fitting procedure, adopting
an interval χ2 − χ2

min corresponding to the projection of the χ2

hypersurface enclosing 90% of probability
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Table: The values of the fitting parameters from the global fit to F2 data.
Results obtained using the logarithmic effective charge.

τ2 τ2 + τ4 τ2 + τ4 + τ6
mg [MeV] 340±17 284±17 310±53
Q2

0 [GeV2] 0.080±0.048 0.54±0.17 0.99±0.16
Ag 0.091±0.070 0.42±0.24 1.19±0.26
Aq 0.727±0.054 0.60±0.12 0.422±0.086
Aτ4

g - 0.59±0.26 0.58±0.19
Aτ4

q - 0.020±0.018 0.232±0.081
Aτ6

g - - 0.139±0.076
Aτ6

q - - 0.0203±0.0082

ν 246 244 242
χ̃ 2.41 2.08 1.21
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Table: The values of the fitting parameters from the global fit to F2 data.
Results obtained using the power-law effective charge.

τ2 τ2 + τ4 τ2 + τ4 + τ6
mg [MeV] 360±9 282±24 415±67
Q2

0 [GeV2] 0.11±0.15 0.929±0.073 1.17±0.19
Ag -0.090±0.031 0.856±0.080 1.37±0.34
Aq 0.857±0.017 0.488±0.042 0.403±0.081
Aτ4

g - 0.69±0.14 0.39±0.30
Aτ4

q - 0.132±0.013 0.38±0.16
Aτ6

g - - 0.135±0.073
Aτ6

q - - 0.040±0.014

ν 246 244 242
χ̃ 2.88 1.38 1.19
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Table: The values of the fitting parameters from the global fit to F2 data.
Results obtained using the Curci-Ferrari effective charge.

τ2 τ2 + τ4 τ2 + τ4 + τ6
mg [MeV] 326±72 234±14 302±53
Q2

0 [GeV2] 0.05±1.35 0.883±0.071 0.97±0.16
Ag 0.09±0.30 0.846±0.075 1.19±0.28
Aq 0.73±0.31 0.491±0.041 0.420±0.091
Aτ4

g - 0.65±0.13 0.55±0.19
Aτ4

q - 0.1179±0.0090 0.224±0.082
Aτ6

g - - 0.131±0.076
Aτ6

q - - 0.0194±0.0078

ν 246 244 242
χ̃ 2.39 1.34 1.20
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The two-gluon-exchange model of the Pomeron

■ It remains a challenge for particle elementary physics to understand
the QCD nature of the Pomeron

⇒ various attempts using QCD ideas have been made to study the
soft Pomeron

⇒ the lowest-order QCD construction with the correct Pomeron
quantum numbers (C = +1, color singlet) is the two-gluon exchange

□ In this approach the scattering amplitude is written as:

A(s, t) = is
8
9

n2
pα

2
s [T1 − T2]

⇒ T1 (T2) represent the contribution when both gluons attach to the
same quark (to different quarks) within the proton
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The two-gluon-exchange model of the Pomeron

■ The elastic hadron-hadron scattering amplitude through two-gluon
exchange is invariably accompanied by a singularity at −t = 0

⇒ the origin of this singularity is the pole in the gluon propagator at
−t = 0

□ Landshoff and Nachtmann (LN) suggested that the gluon propagator
is intrinsically modified in the infrared region

⇒ they noticed that the singularity is eliminated if the gluon propagator
is finite at q2 = 0

■ Pomeron exchange corresponds to two-gluon exchange in the LN
model
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The two-gluon-exchange model of the Pomeron

■ The two gluons couple predominantly to the same quark in the
hadron, with an amplitude

iβ2
0 (ūγµu) (ūγµu)

where β0 represents the strength of the Pomeron coupling to quarks:

β2
0 =

1
36π2

∫
d2k

[
g2D(k2)

]2

□ The convergence of this integral requires a nonperturbative gluon
propagator

□ Very soon after the introduction of these ideas several
phenomenological consequences have been discussed in the literature
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The two-gluon-exchange model of the Pomeron

■ A LN inspired approach based on the refined Gribov-Zwanziger
framework and massive Cornwall-type gluon propagator was used in
the calculation of the differential cross sections at LHC [4]

⇒ the calculation provides reasonable description of dσ/dt at low
energies, namely

√
s = 53 GeV

⇒ the calculation is in complete disagreement with the experimental
data at

√
s = 7, 8, and 13 TeV !

□ However, the contribution of the Pomeron component is completely
dominant in the LHC regime

⇒ it seems very plausible that any Pomeron-type model should
therefore works precisely at the LHC energies

A crucial element is missing...
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[4] F.E. Canfora, et al., Phys. Rev. C 96 (2017) 025202.
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Reggeization of the scattering amplitude

■ Gluon Reggeization turn out to be of central importance at high
energies

□ The gluon Reggeization plays a central role in the derivation of the
BFKL equation

⇒ BFKL describes the leading logarithmic evolution of gluon ladders in
ln s, in which the vertical lines are Reggeized gluons

⇒ this means that these gluonic lines are not composed of bare
gluons whose propagators are given by

Dµν(q2) = −i
gµν

q2

but rather composed of gluons whose propagator is

Dµν(ŝ,q2) = −i
gµν

q2

(
ŝ
k2

)ϵG(q2)
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Reggeization of the scattering amplitude

⇒ here k2 is a typical transverse momentum and αG(q2) = 1 + ϵG(q2)
is the Regge trajectory of the gluon

■ In the case of color-singlet exchange, a gluon ladder configuration
corresponds to a bound state of gluons

⇒ the so called BFKL Pomeron

⇒ by considering the Pomeron Reggeization, one verifies that in the
case of the LN Pomeron [5]:

A(s, t) = isαP(t) 1
s̃0

8
9

n2
p[T̃1 − T̃2]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[5] G.B. Bopsin, EGSL, A.A. Natale, and M. Peláez, Phys. Rev. D 107 (2023) 114011.
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Reggeization of the scattering amplitude

where

T̃1 =

∫ s

0
d2k ᾱ

(q
2
+ k

)
D
(q

2
+ k

)
ᾱ
(q

2
− k

)
D
(q

2
− k

)
[Gp(q,0)]2

and

T̃2 =

∫ s

0
d2k ᾱ

(q
2
+ k

)
D
(q

2
+ k

)
ᾱ
(q

2
− k

)
D
(q

2
− k

)
×Gp

(
q, k − q

2

) [
2Gp(q,0)− Gp

(
q, k − q

2

)]

⇒ αP(t) = 1 + ϵ+ α′
P is the Pomeron trajectory

⇒ Gp (q, k) is the convolution of proton wave functions:

Gp (q, k) =
∫

d2p dαψ∗(α,p)ψ(α,p − k − αq)
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Nonperturbative gluon propagator

⇒ In this picture Gp (q,0) is simply the proton elastic form factor

⇒ we estimate Gp
(
q, k − q

2

)
assuming a proton wave function peaked

at α = 1/3 and using

Gp

(
q, k − q

2

)
= F1

(
q2 + 9

∣∣∣∣k2 − q2

4

∣∣∣∣)

■ The expressions for T̃1 and T̃2 include nonperturbative QCD
information =⇒ the QCD effective charge ᾱ(q2)

□ Combining all these results:

1
ᾱi(q2)D(q2)

= b0

[
q2 + m2

i (q
2)
]
ln

[
q2 + 4m2

i (q
2)

Λ2

]

where i = log, pl
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Analysis

■ The LHC data requires a more sophisticated version of the
convolution of proton wave functions

⇒ This is necessary in order to take account of the fact that the dσ/dt
data at LHC show a significant deviation from an exponential in the
small |t | region

⇒ To obtain a better fit the TOTEM Collaboration have generalized the
pure exponential to a cumulant expansion:

dσ
dt

(t) =
dσ
dt

∣∣∣∣
t=0

exp

 Nb∑
n=1

bntn



⇒ Here the Nb = 1 case corresponds to the pure exponential
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Analysis

■ A satisfactory description of the data at
√

s = 13 TeV was achieved
in the case Nb = 3, with χ2/DoF = 1.22 and p − value = 8.0%

⇒ TOTEM analyzed data with |t |max = 0.15 GeV2

⇒ This corresponds to the largest interval before dσ/dt accelerates its
decrease towards the dip region

□ Based on this observed behavior of dσ/dt , we propose the following
convolution of proton wave functions at k2 = 0 (i.e. the form factor):

Gp(q,0) = F1(q2) = exp

[
−
( Na∑

n=1

an|t |n
)]
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Analysis

■ The experimental results reveal some tension between the TOTEM
and ATLAS measurements of the cross sections

⇒ For example, if we compare the TOTEM result for σpp
tot at

√
s = 7

TeV, σpp
tot = 98.58 ± 2.23, with the value measured by ATLAS at the

same energy, σpp
tot = 95.35 ± 1.36, the difference between the values,

assuming that the uncertainties are uncorrelated, corresponds to 1.4σ

⇒ If we compare the ATLAS result for the total cross section at
√

s = 8
TeV, σpp

tot = 96.07 ± 0.92, with the lowest value measured by TOTEM at
the same center-of-mass energy, σpp

tot = 101.5 ± 2.1, we see an even
more significant difference: 2.6σ

■ This strong disagreement clearly indicates the possibility of different
scenarios for the rise of the total cross section and consequently for
the parameters of the Pomeron

We consider two distinct ensembles of data
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Analysis

■ We investigate three cases for the cumulant expansion, namely
Na = 1, 2, and 3

⇒ Our philosophy is to adopt the standard statistical χ2 test in order to
evaluate the relativity plausibility of these cases in the light of LHC data

⇒ Specifically, we consider different cumulant cases and the
effectiveness of these choices at describing the dσ/dt data sets

□ We have first observed that the fit in the case Na = 1 is not
supported by either of the two ensembles of data

□ However, the Na = 2 case provides a very good description of the
dσ/dt data, for both ensembles

⇒ Our model therefore adopt the case Na = 2 for the cumulant
expansion. This means that the model has four free parameters: mg , ϵ,
a1, and a2
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Analysis

Table: The values of the LN Pomeron obtained in fits to dσpp/dt data using
the logarithmic dynamical mass mlog(q2).

Ensemble A Ensemble T
mg (GeV) 0.356±0.025 0.380±0.023

ϵ 0.0753±0.0024 0.0892±0.0027
a1 (GeV−2) 1.373±0.017 1.491±0.019
a2 (GeV−4) 2.50±0.53 2.77±0.60

ν 108 328
χ2/ν 0.71 0.67
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Analysis

Table: The values of the LN Pomeron obtained in fits to dσpp/dt data using
the power-law dynamical mass mpl(q2).

Ensemble A Ensemble T
mg (GeV) 0.421±0.030 0.447±0.026

ϵ 0.0753±0.0025 0.0892±0.0027
a1 (GeV−2) 1.517±0.019 1.689±0.021
a2 (GeV−4) 2.05±0.45 1.70±0.51

ν 108 328
χ2/ν 0.64 0.90
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Analysis

FIG.1: LN Pomeron model description of the pp elastic differential cross section data from ATLAS (Ensemble A). The solid and
dashed lines show the results obtained using mlog (q

2) and mpl (q
2), respectively.
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Analysis

FIG.2: LN Pomeron model description of the pp elastic differential cross section data from TOTEM (Ensemble T). The solid and
dashed lines show the results obtained using mlog (q

2) and mpl (q
2), respectively.
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Analysis

FIG.3: LN Pomeron model prediction for the pp total cross section. The solid, dashed, dash-dotted, and dotted lines are the
predictions obtained from the fit to Ensemble A using mlog (q

2), Ensemble A using mpl (q
2), Ensemble T using mlog (q

2), and

Ensemble T using mpl (q
2), respectively.
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Analysis

FIG.4: The behavior of the product ᾱi (q
2)D(q2). The solid, dashed, dash-dotted, and dotted lines are the same as in Figure 3.
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Conclusions

■ We have obtained an analytical approach to calculating higher twist
corrections to the structure function F2(x ,Q2)

⇒ the formalism is based on existing analytical solutions of the
DGLAP equation in the small x region

■ Our analytical approach, when combined with some nonperturbative
information from QCD, results in an instrumental tool to study structure
functions at very small x region in the infrared regime

■ Comparing the renormalon and standard GDFs, we see that our
distributions fg(x ,Q2) are in good agreement with the CT14 and
MMHT ones at very small x

The description of the data requires a nonperturbative gluon
propagator
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Conclusions

■ We verified that a two-gluon exchange model gives a very good
description of the dσ/dt data at TeV energies

⇒ provided we demand the Reggeization of the elastic scattering
amplitude

⇒ provided we make a suitable choice for the convolution of proton
wave functions at k = 0

■ We evaluated the relative plausibility of different cumulant
expansions for the form factor

⇒ we have described for the first time high-energy differential cross
sections data, in the interval 0 < |t | ≤ 0.2 GeV2, using a LN inspired
model

Once again, a nonperturbative gluon propagator is essential for
accurately describing the data
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Perspectives

■ For inclusive e±p DIS process the real experimentally measured
data are the reduced cross sections σ̃,

d2σe±p

dx dQ2 =
2πα2Y+

xQ4 σ̃(x ,Q2, y),

where σ̃(x ,Q2, y) = F2(x ,Q2)− y2

Y+
FL(x ,Q2), y is the inelasticity, α is

the fine structure constant and Y+ = 1 + (1 − y)2

⇒ FL is usually treated as a small correction in the F2 extraction from
the reduced cross section σ̃

⇒ in our analysis the bias introduced by neglecting FL is kept to a
minimum
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Perspectives

⇒ however FL is an important quantity due to its rather direct relation
to fg(x ,Q2)

⇒ thus, it is clearly important to develop a consistent QCD method to
describe directly the reduced cross section σ̃

=⇒ work in this direction, using the renormalon approach is in
progress
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Perspectives

■ We plan to extent our analysis to dσ/dt data with |t | > 0.2 GeV2

⇒ it is generally believed that at large |t | values the Odderon can play
an important role

⇒ in performing calculations in the dip region it is necessary to obtain
the real part of the scattering amplitude

⇒ we are developing dispersion relations specially tailored to relate
the real and imaginary parts of the LN scattering amplitude

■ We plan to obtain an eikonal version of the LN model

⇒ eikonalization is an effective procedure to take into account some
properties of high-energy s-channel unitarity
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THANK YOU
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