

Quarkonium polarization at the LHC energies with ALICE

Seminario de Física de Altas Energías

Dr. Dushmanta Sahu

Dushmanta.Sahu@cern.ch

Instituto de Ciencias Nucleares UNAM, México

March 26, 2025

Introduction:

Standard Model of Elementary Particles

http://cms.web.cern.ch/news/what-do-we-already-know

Introduction:

Standard Model of Elementary Particles

http://cms.web.cern.ch/news/what-do-we-already-know

- Quarks and gluons interact strongly
- QCD is the governing theory
- At very high energies/densities, hadrons become deconfined
- Quark-Gluon Plasma (QGP)

The Large Hadron Collider

Four main experiments at CERN:

- ATLAS
- ALICE
- CMS
- LHCb

The Large Hadron Collider

Four main experiments at CERN:

• ATLAS

- CMS
- LHCb

PWG-DQ (Dileptons and Quarkonia)

The Large Hadron Collider

ALICE detector (Run 2)

Dushmanta Sahu

ALICE detector (Run 2)

[ALICE Muon spectrometer]

Dipole TRK 4 TRK 5 TRG 1 TRG 2 Front absorber TRK 1 TRK 2 TRK 2 TRK 1 TRK 2 TRK 2

- Dedicated to the study of quarkonium decaying to dimuons
- Muon spectrometer acceptance -2.5 < η < -4.0 corresponding to 2⁰ < θ < 9⁰

Measurements from Run 2 datasets

• pp :
$$\sqrt{s}$$
 = 13 TeV

• Pb-Pb :
$$\sqrt{s_{NN}} = 5.02 \text{ TeV}$$

Quark Gluon Plasma

- What is quark—gluon plasma (QGP)?
 - Deconfined thermalized state of quarks and gluons
 - Shows collectivity
 - Formed at extremely high temperature and energy density
- ALICE detector at CERN is devoted to the characterization of the QGP
- Governing theory of strong ineraction: Quantum Chromodynamics (QCD)

Quark Gluon Plasma

- What is quark—gluon plasma (QGP)?
 - Deconfined thermalized state of quarks and gluons
 - Shows collectivity
 - Formed at extremely high temperature and energy density
- ALICE detector at CERN is devoted to the characterization of the QGP
- Governing theory of strong ineraction: Quantum Chromodynamics (QCD)
- Several signatures of QGP have been observed in heavy-ion collisions
 - Strangeness enhancement
 - Quarkonium (heavy quark-antiquark bound state) suppression
 - Formation of ridge-like structures as an indication of collectivity
 - Jet quenching

• The fundamental Euler's thermodynamic equation gets modified in the presence of finite rotation, adding a new Rotational Chemical Potential:

 $\varepsilon + P = sT + n\mu + W\omega$

- Modifies the evolution of the fireball
- Thermodynamic and transport properties get changed
- Is the main cause of polarization in heavy-ion systems

- \checkmark Polarization is the measure of how much the spin of a particle is aligned in a given direction
- $\checkmark\,$ Polarization from vorticity and other sources
- $\checkmark\,$ Spin-angular momentum coupling requires thermalization in the medium
- $\checkmark~\Lambda-$ hyperon and vector meson polarization in heavy-ion collisions
- ✓ Polarization as a second-generation QGP signature

[Ann. Rev. Nucl. Part. Sci. **70**, 395 (2020)] [STAR Collaboration, Nature **548**, 62 (2017)]

Charmonia

- > Why charmonia (J/ ψ , ψ (2S), etc.)?
 - Charm and anti-charm quarks produced early in the system's evolution : during the pre-equilibrium phase
 - J/ ψ remains largely undiffused in the hadronic phase
 - Provide powerful tests of quantum chromodynamics (QCD)
- Polarization in pp collisions:
 - Polarization is the measure of how much the spin of a particle is aligned in a given direction
 - In two-body decays, the spin-alignment will be reflected in the angular distribution of the decay particles

- $h = \frac{S.p}{|p|} \rightarrow$ Helicity operator
- Vector (*J^{PC}* = 1⁻⁻) quarkonia have the same charge-parity as an electron-positron pair and can be produced in electron-positron annihilation via an intermediate photon
- The states originating from this process are polarized, as a consequence of helicity conservation, a general property of QED (QCD) in the relativistic (massless) limit
- For our case, gluon fragmentation dominates the high p_T region, while Drell-Yan process dominates the low p_T region

Polarization puzzle

J/ψ polarization puzzle ?

- Measurements of polarization parameters from Tevatron, RHIC and LHC show almost no J/ψ polarization in hadronic collisions
- Conflicting theoretical results from non-relativistic quantum chromodynamics (NRQCD) and Color Singlet Model
- NRQCD explains the production, but not the polarization

[ALICE Collaboration, Phys. Rev. Lett. 108, 082001 (2012)]

[Phys. Rev. Lett. 108, 172002 (2012)]

Importance of $\Upsilon(nS)$ polarization study :

- $b\overline{b}$ system satisfies the non-relativistic calculations at high p_{T} much better than the $c\overline{c}$
- Better probe for QCD
- Results from Tevatron show almost no (CDF) or longitudinal polarization for Υ(1S) (D0)
- At lower energy and p_T, the E866 experiment has shown yet a different polarization pattern: the Y(2S) and Y(3S) states have maximal transverse polarization
- Unexpectedly, the Υ(1S) found to be only weakly polarized

 $[D\Phi$ Collaboration, Phys. Rev. Lett. 101, 182004 (2008)

• The angular distribution in dilepton decay:

$$\frac{d^2N}{d\cos\theta \ d\phi} = \frac{3}{4\pi(3+\lambda_{\theta})} (1+\lambda_{\theta} \ \cos^2\theta + \lambda_{\phi} \ \sin^2\theta \ \cos^2\phi + \lambda_{\theta\phi} \ \sin^2\theta \ \cos\phi)$$

[P.Faccioli, et. al., Eur. Phys. J. C 69, 657 (2010)]

The angular distribution in dilepton decay: ٠

$$\frac{d^2N}{d\cos\theta \ d\phi} = \frac{3}{4\pi(3+\lambda_{\theta})}(1+\lambda_{\theta} \ \cos^2\theta + \lambda_{\phi} \ \sin^2\theta \ \cos^2\phi + \lambda_{\theta\phi} \ \sin^2\theta \ \cos\phi)$$

[P.Faccioli, et. al., Eur. Phys. J. C 69, 657 (2010)]

$$(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (1, 0, 0) \longrightarrow \text{Transverse polarization}$$

- $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (-1, 0, 0) \longrightarrow \text{Longitudinal polarization}$ $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0, 0, 0) \longrightarrow \text{Unpolarized state}$

Frames of reference

- The helicity frame uses the ψ (2S) momentum as the quantization axis
- In the Collins—Soper frame, the quantization axis is chosen to be the bisector of the angle between the two incoming beams in the rest frame of the ψ (2S) meson

- J/ψ polarization measured in pp collisions in the CS and HE frames
 - Dataset : ALICE \sqrt{s} = 7 TeV (2010) ALICE \sqrt{s} = 8 TeV (2012) LHCb \sqrt{s} = 7 TeV (2011)
- No significant polarisation observed by ALICE and LHCb at forward rapidity
- Need for studies with higher center of mass energies
 - ✓ New ongoing analyses of J/ψ and ψ (2S) in pp collisions at \sqrt{s} = 13 TeV

ALICE Collaboration, Phys. Rev. Lett. 108, 082001 (2012) ALICE Collaboration, Eur. Phys. J. C 78, 562 (2018) LHCb Collaboration, Eur. Phys. J. C 73, 2631 (2013)

Theoretical comparison:

- Color Glass Condensate + NRQCD
- Improved Color Evaporation Model (ICEM)
- General agreement between predictions
- Zero or small polarization predicted in the whole transverse momentum range

JHEP 12, 057 (2018) Phys. Rev. D 104, 094026 (2021)

Importance of $\psi(2S)$ polarization study :

- $\psi(2S)$ is a resonance state of J/ ψ
- A small prompt J/ ψ polarization can be interpreted as reflecting a mixture of directly produced mesons with those produced in the decays of heavier (P-wave) charmonium states
- $\psi(2S)$ is unaffected by feed-down decays from heavier charmonia
- Clean polarization signal from $\psi(2S)$

Mass: 3.69 GeV/c² Spin: 1 Lifetime: ~ 688 fm/c

Analysis Note: $\psi(2S)$ polarization measurement in pp collisions at $\sqrt{s} = 13$ TeV, <u>https://alice-notes.web.cern.ch/node/1472 (ALICE internal)</u>)

- Recent preliminary measurement of $\Upsilon(1S)$ polarization at $\sqrt{s} = 13$ TeV from ALICE
- Results compatible with previous LHCb measurements at $\sqrt{s} = 8 \text{ TeV}$
- Polarization is evaluated down to $p_{\rm T} \sim 0$
- All values compatible with zero within uncertainties
- Large uncertainties due to limited statistical precision

LHCb Collaboration, JHEP 12, 110 (2017)

- Large non-zero magnetic field in non-central heavy-ion collisions
- Production of vorticity due to large initial angular momentum
- Both the external magnetic field and the initial angular momentum produced in the non-central heavy-ion collisions may influence the quarkonium polarization
- Event Plane (EP) frame: direction of the polarization axis orthogonal to the event plane in the centre-of-mass of the colliding beams

Magnetic field (\vec{B}):

- Huge intensity (10¹⁴ T)
- Short lived ($\tau = 1 fm/c$)

[Kharzeev et al., NPA 803 (2008)]

- Largest in semicentral collisions
- Can affect the system evolution till freeze-out

[Becattini et al., PRC 77 (2008) 024906]

- ALICE measurement of J/ψ polarization in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in Helicity (HE) and Collins-Soper (CS) reference frames
- $\lambda_{ heta}$ shows a 2 σ deviation from zero at low $p_{
 m T}$
- 3σ deviation from LHCb measurement in pp collisions in the Helicity frame
- Values compatible with ALICE results in pp collisions within uncertainties

ALICE Collaboration, Phys. Lett. B 815, 136146 (2021) ALICE Collaboration, Eur. Phys. J. C 78, 562 (2018) LHCb Collaboration, Eur. Phys. J. C 73, 2631 (2013)

- ALICE measurement of J/ψ polarization in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$
- First measurement with respect to the Event Plane (EP)
- Small but significant polarization (3.5 σ), particularly in the 40-60% centrality range
- Effect more pronounced at low transverse momentum (2 < $p_{\rm T}$ < 4 GeV/c) in centrality 30-50%
- Qualitatively in agreement with spin alignment observed for light
 vector mesons [Phys. Rev. Lett. 125, 012301 (2022)]

[ALICE Collaboration, Phys. Rev. Lett. 131, 042303 (2023)]

Polarization with PYTHIA8

- PYTHIA8 with color reconnection (CR) explains the charmonia transverse momentum spectra
- Trend is the same as ALICE and LHCb
- Values incompatible with experimental data
- Possible issues?

Polarization with PYTHIA8

- Charged-particle multiplicity dependent study might shed light on possible thermalization in small collision systems
- PYTHIA8 gives finite polarization as a function of multiplicity in both helicity and Collins-Soper frame
- No experimental observations till now due to low statistics
- ALICE RUN 3 will provide substantially higher statistics for such analysis

Muon Identifier (MID) in ALICE 3

ALICE 3 features:

Muon identification for charmonia and exotic hadrons

CMS and ATLAS:

 μ identification down to $p_{\rm T} \approx 3-4~{\rm GeV/c}$

ALICE 3:

optimized to identify μ down to $p_{\rm T} = 1.5~{\rm GeV/c}$

VS

LHCb:

 J/ψ at rest but only at forward rapidity

ALICE 3:

 J/ψ at rest for a wider rapidity |y| < 1.24

Muon Identifier (MID) in ALICE 3

- Muon efficiency around 94% for $p_{\rm T} > 1.5~{\rm GeV/c}$
- Pion rejection at the level of 3-5%

The MID will allow the reconstruction of J/ψ down to $p_{\rm T} = 0$ via its dimuon decay channel

Conclusion and Outlook

- ALICE has measured the polarization of several quarkonium states both in pp and Pb–Pb collisions
- No significant quarkonium polarization till now in pp collisions
- New J/ψ and $\psi(2S)$ polarization analyses ongoing in pp collision at $\sqrt{s} = 13$ TeV (In preparation for publication)
- Results are more or less compatible with other LHC measurements and recent model predictions
- Hint for non-zero polarization at low $p_{\rm T}$ in the HE and CS frames in Pb–Pb collisions
- From the results of EP frame analysis, possible correlation with \vec{B} and \vec{L} in the QGP formed in heavy-ion collision
- ALICE Run 3 with high luminosity will provide significant statistics and precision measurements
- Need of an update to MC models and other theoretical models
- Need for event classifier dependent study of polarization to better understand heavy-flavor in QCD

Publications

- D. Sahu, S. Tripathy, G. S. Pradhan and R. Sahoo, Phys. Rev. C 101, 014902 (2020)
- 2. D. Sahu and R. Sahoo, J. Phys. G 48, 125104 (2021)
- 3. D. Sahu , S. Tripathy, R. Sahoo and S. K. Tiwari, Eur. Phys. J. A 58, 78 (2022)
- 4. A. N. Mishra, D. Sahu and R. Sahoo, MDPI Physics 4, 315 (2022)
- **5. D. Sahu** and R. Sahoo, " ψ (2S) polarization measurement in pp collisions at \sqrt{s} = 13 TeV", <u>https://alice-notes.web.cern.ch/node/1472</u> (ALICE internal)
- 6. D. Sahu, S. Tripathy, R. Sahoo and A. R. Dash, Eur. Phys. J. A 56, 187 (2020)
- 7. D. Sahu and R. Sahoo, MDPI Physics 3, 207 (2021)
- 8. S. Deb, **D. Sahu**, R. Sahoo and A. K. Pradhan, **Eur. Phys. J. A 57, 158 (2021)**
- 9. K. Goswami, D. Sahu and R. Sahoo, Phys. Rev. D 107, 014003 (2023)
- K. K. Pradhan, D. Sahu, R. Scaria and R. Sahoo, Phys. Rev. C 107, 014910 (2023)
- 11. G. S. Pradhan, D. Sahu, S. Deb and R. Sahoo, J. Phys. G 50, 055104 (2023)
- R. Scaria, D. Sahu, C. R. Singh, R. Sahoo and J. e. Alam, Eur. Phys. J. A 59, 140 (2023)

- B. Sahoo, C. R. Singh, D. Sahu, R. Sahoo and J. e. Alam, Eur. Phys. J. C 83, 873 (2023)
- K. Goswami, K. K. Pradhan, D. Sahu and R. Sahoo, Phys. Rev. D 108, 074011 (2023)
- 15. B. Sahoo, K. K. Pradhan, **D. Sahu** and R. Sahoo, **Phys. Rev. D 108, 074028** (2023)
- G. S. Pradhan, D. Sahu, R. Rath, R. Sahoo and J. Cleymans, Eur. Phys. J. A 60, 52 (2024)
- B. Sahoo, D. Sahu, S. Deb, C. R. Singh and R. Sahoo, Phys. Rev. C 109, 034910 (2024)
- K. Goswami, D. Sahu, J. Dey, R. Sahoo and R. Stock, Phys. Rev. D 109, 074012 (2024)
- K. K. Pradhan, B. Sahoo, **D. Sahu** and R. Sahoo, **Eur. Phys. J. C 84, 936** (2024)
- 20. K. Goswami, K. K. Pradhan, **D. Sahu**, J. Dey and R. Sahoo, **Phys. Rev. D** 111, 014029 (2025)
- 21. K. K. Pradhan, R. Scaria, **D. Sahu** and R. Sahoo, arXiv:2308.09337
- 22. K. K. Pradhan, D. Sahu, C. R. Singh and R. Sahoo, arXiv:2212.09288
- 23. K. Singh, K. K. Pradhan, **D. Sahu** and R. Sahoo, arXiv:2502.16853

THANK YOU!