
1

Data-driven magnetic 
dipole moment of 

the rho meson 

Genaro Toledo Sánchez

Antonio Rojas Ramos

Seminario Altas Energías ICN - IF        12/03/25

Dr. Genaro Toledo
Instituto de Física

UNAM

Sizing the double pole resonant enhancement 
in e+e−→π0π0γ and τ−→π−π0ντγ

Based on 
hep-ph: 2308.02766

and PRD 107 056006 (2023)  
Gustavo Ávalos, Leonardo Esparza,

Antonio Rojas, Marxil Sánchez and GT

Morelia,  Sep. 4, 2023,  Non-Perturbative Physics: Tools and Applications

• Phys.Rev.D 110 (2024) 5, 056037
           e-Print: 2406.14676 [hep-ph]

https://arxiv.org/abs/2406.14676


G. Toledo

Outline
• Motivation

• Radiative processes
• Lessons from the W
• Electromagnetic vertex VVγ
• e+ e-→ π+ π- 2π0 

• First analysis, the ρ MDM

• New analysis, what is new?
• Modeling e+ e-→ π+ π- 2π0

• Channels and model tests
• Magnetic dipole moment from Babar data 

• Conclusions

2



G. Toledo

Motivation

3

It carries information on the nature of the particle itself. Related to the spin via the gyromagnetic ratio (g)

The magnetic dipole moment

Normal: 
Dirac 30’sSpin 1/2

Electron (g - 2)/2  =  0.001159 

Proton g  =  2.79285 

Neutron g  =  - 1.91304 

Measurements 

No fundamental states?

gneutron/gproton =  - 0.6849 
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Hadron structure and the quark model

Spin 1/2 particles,  the lighters : u (2/3), d (-1/3), s (-1/3) 

Proton, made up of quarks uud  

Neutron, made up of quarks ddu

gneutrón/gprotón =  - 2/3= - 0.66 

Explains the magnitude and relative sign. One of the first successes of the model.

vs

gneutrón/gprotón =  - 0.6849 

Baryons ( ) qqq

Quark model: 
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Mesons (vector) and their unestable feature

Baryons ( )qqq Mesons ( ) qq̄

17 Las Interacciones y Las Part́ıculas Elementales.

Figura 2.1: Nonete de Mesones Pseudo-escalares (s=0) y Vectoriales (s=1).

1, nombrado como el nonete de mesones vectoriales ligeros, a los que pertenece el mesón
ρ. Podemos observar que en dicha figura las lineas diagonales determinan la carga de las
part́ıculas, y las horizontales determinan la extrañeza. Hay que notar que en el caso de los
multipletes de mesones las correspondientes anti-part́ıculas pertenecen al mismo diagrama,
en contraste con los correspondientes diagramas para bariones.

El hecho de que haya tres part́ıculas en el centro de los nonetes, las cuales tienen núme-
ros cuánticos idénticos, se ve reflejado en la practica como una “mezcla” entre éstas. En
este trabajo no consideraremos que haya tal efecto pero puede agregarse de manera directa
considerando una fase entre las part́ıculas, de manera que interfieran constructiva o destruc-
tivamente [3].

A continuación presento una lista con los datos generales del mesón ρ(770) según el
catálogo del PDG:

JPC = 1−−

Masa= 775.49± 0.34 MeV
Ancho de decaimiento (Γ) = 149.1± 0.8 MeV

Principal modo de decaimiento: ρ → ππ (∼ 100%)

El primer renglón se refiere al momento angular de la part́ıcula que como sabemos es
igual a J = L + S = 0 + 1, los supeŕındices P y C refieren a las operaciones de paridad y
conjugación de carga. En particular en el presente trabajo nos interesa conocer cual es la
razón de decaimiento (BR) del mesón ρ0 en π+π−2π0, la cual señala el PDG que tiene el
valor

BR(ρ0 → π+π−2π0) = 1.6± 0.8× 10−5.

Para nuestro trabajo es necesario considerar que el mesón ρ tiene un ancho de decaimien-
to lo suficientemente grande para modificar algunas de sus propiedades, en particular sus

Spin= 1

Example: ρ meson

    τ = ħ/Γρ

τ∼10−23 seg.
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The extremely short lifetime of vector mesons has prevented the measurement of their magnetic dipole moment (MDM)

Radiative process are an alternative to determine the mdm 

Radiation emitted off the  particle carries information of the electromagnetic structure 

ρ→ππγ,  
τ →νργ  
τ →νππγ 
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FIG. 5: Fit to the BaBar data [1] for the total cross section
e+e− → π+π−2π0. We use β as the only free parameter,
while the other involved parameters are fixed from other ob-
servables.

m2
ρσ(e+e−→f)|E=mρ

12πBR(ρ0→e+e−) , where BR
(

ρ0 → e+e−
)

is known

[21]. Then, the cross section we obtain corresponds to
a branching ratio of

BR(ρ0 → π+π−2π0) = 1.8 ± 0.5 × 10−5, (6)

which is in agreement with the experimental value
BR(ρ0 → π+π−2π0) = 1.6 ± 0.8 × 10−5 [12, 21]. The
error bar is taken with the same considerations as for the
MDM.

In summary, we have made the first determination of the
magnetic dipole moment for the ρ meson, by performing a
global analysis of the e+e− → π+π−2π0 cross section un-
der the VMD approach. The vector fields were described
using the complex mass scheme while fulfilling gauge in-
variance. The channels that we have considered here,
include the exchange of the π, ω, a1, σ, f(980), ρ and ρ′

mesons, where the couplings involved were determined
from independent processes. As a test we have shown
that the low energy behavior is in agreement with data,
no fit invoked, and that the ω channel is the dominant
one. Data from BaBar and SND exclusive ω channel were
fitted to obtain the gωρ′π coupling. As an additional test
we computed the branching ratio for the ρ → π+π−2π0

decay, which was found to be fully consistent with the
experimental value. The channel that contains the elec-
tromagnetic vector meson vertex becomes relevant for
energies between 1.5 and 2.4 GeV, while the remaining
channels are always subdominant. We have found that
the best fit to the BaBar data implies a value for the
MDM of |µ̄| = 2.3 ± 0.5 [ e

2mρ
].

Although the error bar takes into account model assump-
tions and the fact that we made use of preliminary data,
definite data on this process and detailed information on
the ρ′ meson will be very useful for a more refined anal-
ysis.
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Motivation

son three momenta, E (!) is the energy of the vector meson
"the photon#, and E!!q! 2"m2 in this frame. This term is
suppressed for small values of the angle $ , therefore, the
photon radiation off the electric charges of the % lepton and
the vector meson can be suppressed for this angular configu-
ration. In the same way, it can be shown that this small angle
configuration allows to suppress the interference terms of
O(k0) that comes from the interference between the quadru-
pole "or model-dependent# terms with the emission off the
charges of % and V.
Therefore, it becomes convenient to split the unpolarized

differential decay rate into two terms. The first one, which is
associated to the first term in Eq. "3#, vanishes when $!0, &
"collinear photons#. This term reduces to the radiation emit-
ted from the electric charges of the %# and V# when '(0)
!2. The second term (remaining terms in Eq. "3#), does not
vanish for collinear photons and contains a sensitive depen-
dence on the magnetic dipole moment of the vector meson. If
we denote these two terms with subscripts 1 and 2, respec-
tively, we can write the normalized (to the nonradiative de-
cay rate *nr!*(%#˜V#+%)) double differential decay rate
as follows:

d*

*nrdxdy
!
1

*nr
,
$

! d*1
$

dxdy "
d*2

$

dxdy " , "5#

where we have introduced the dimensionless variables x

!2!/m% and y!cos $. The explicit expressions for the two
contributions to the differential decay rate are given in the
Appendix.
The normalized rates given above do not depend on the

g- coupling and the CKM matrix element. Their only depen-
dence is on the magnetic dipole moment '(0). Following the
previous discussion, in Fig. 1 (-# meson# and Fig. 2 (K*#)
we plot the differential decay rates of Eq. "5# as a function of
the photon energy "x# for fixed values of the angle $ ($
!100 (200) corresponds to the upper "lower# half of the
plots) and three different values of '(0). The short-dashed
line in the different plots denotes the first term of Eq. "5#,
while the other lines refer to the second term, for the differ-
ent values of '(0): '(0)!1 " solid line#, '(0)!2 "long-
dashed line#, and '(0)!3 "long–short-dashed line#.
As is evident from these plots, the model-independent

terms of order k0 dominate over the radiation due to the
electric charges (terms of O(k#2) in the squared amplitude)
in the region of photon energies 0.2%x%0.5 for the %#

˜-#+%. decay and 0.2%x%0.4 for the %#˜K*#+%. case.
Therefore, it is precisely in this kinematical region where the
measurement of the photon spectrum may provide a determi-
nation of the vector meson magnetic moment with a reason-
able accuracy.
The curves also exhibit a dip at x!0.5667 for the -# case

and x!0.4991 for the case of K*# production. The position
of this dip is independent of y and the value of '(0). Fur-
thermore, the dip is more pronounced when '(0)!2. At
first sight this dip could be associated to a null radiation
amplitude (18), however, it can be checked that it corre-

FIG. 1. Differential photon spectrum for %˜-+. decay. See
description after Eq. "5#.

FIG. 2. Same as in Fig. 1 for the %˜K*+. decay.

VECTOR-MESON MAGNETIC DIPOLE MOMENT EFFECTS . . . PHYSICAL REVIEW D 60 053004

053004-3
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Lessons from the W

W gauge boson MDM measured by 
DELPHI (LEP2)

W W 
γ 

e+ 

e 
– 

 γ: I =0,1 & V 

The extremely short lifetime prevents of applying standard precession techniques 

Tests the gauge structure of the standard model. 
So far it is in agreement with the SM prediction

j
j

l
nu

Delphi Col. Eur. Phys. J. C 66 35(2010) 
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22 Modificación a los Multipolos por Efectos de Ancho de Decaimiento.

3.2. Estructura Multipolar.

Para relacionar los factores de forma de este vértice con los momentos multipolares, la
referencia [9] muestra un método de hacerlo, en el cuál se parte de las expresiones clásicas
para los carga eléctrica Q, momento dipolar magnético !µ y momento cuadrupolar eléctrico
XE , dadas por

Q =

∫

d3xρem(x), (3.12)

!µ =
1

2

∫

d3x!x× !Jem(x), (3.13)

X ij
E =

∫

d3xxixjρem(x), (3.14)

donde el 4-vector de corriente está dado por

Jem
µ (x) = (ρem(x), !Jem(x)); (3.15)

y el correspondiente valor cuántico de éstos se obtiene convirtiéndolos en operadores y to-
mando su valor esperado entre los estados |V (q1)〉 y 〈V (q2)|.

Siguiendo el procedimiento presentado en [9], y sabiendo que para tener bien definidos
los momentos multipolares las part́ıculas del vértice electromagnético deben estar en capa de
masa y el 3-momento del fotón (!k) emitido debe ser considerado en el ĺımite !k → 0(ĺımite
estático). Como resultado de este desarrollo, es posible identificar a las partes independientes
de kλ en el vértice con la estructura asociada a la carga eléctrica; las partes proporcionales
a la primera potencia de kλ, con el momento dipolar magnético y las partes proporcionales
a la segunda potencia de kλ con el cuadrupolo eléctrico; por lo que el vértice 3.11 se puede
reescribir de la siguiente manera

Γνλµ = α(k2)gνλ(q1 + q2)
µ + β(k2)(gµνkλ − gµλkν)− γ(k2)(q1 + q2)

µkνkλ. (3.16)

en donde los factoresα(k2), β(k2) y γ(k2), están directamente relacionados con los multipolos
electromagnéticos por medio de:

|Q| ≡ α(k2)

|!µ| = β(k2) ≡ 1 + κ+ λ

|XE| = κ− γ(k2)M2
V ≡ κ− λ, (3.17)

aqúı la carga eléctrica está en unidades de e; el momento dipolar magnético, en unidades de
e
2m y el cuadrupolo eléctrico en unidades de e

m2 . Los parámetros κ y λ, son muy utilizados
en la literatura [7, 9, 10] para referirse a estos multipolos y de hecho son los valores que
han sido medidos experimentalmente [10]. Para tener bien definidas estas propiedades es
necesario tomar el ĺımite !k → 0.

20 Modificación a los Multipolos por Efectos de Ancho de Decaimiento.

3.1. Vértice Electromagnético V V γ.

Al vértice electromagnético V V γ se le puede asociar de manera directa con los distintos
multipolos de la part́ıcula V . Para establecer dicha relación se considera una parametrización
de la manera más general posible de dicho vértice y después imponer restricciones debidas
a las simetŕıas de la teoŕıa, como las simetŕıas discretas C, P y T; esto se ha hecho en gran
detalle en particular para el vértice WWγ [7].

Ahora mostraremos cómo se produce la identificación de las estructuras multipolares [8],
para lo cuál comenzaremos con la expresión para la amplitud asociada al proceso V (q1) →
V (q2)+γ(k), que es descrita por el elemento de matriz de la corriente electromagnética dado
por

〈V (q2)|Jem
µ (0)|V (q1)〉 = η1νη

∗
2λΓ

νλ
µ (q1, k) ≡ Jµ(q1, k), (3.1)

donde Γνλ
µ denota al vértice V V γ y ηβ es el 4-vector de polarización asociado a V, y los

estados satisfacen la condición de normalización,

〈V (q2)|V (q1)〉 = (2π)32q0δ
3(%q1 − %q2). (3.2)

Usando la condición de invariancia de Lorentz para obtener la expresión más general para
el vértice puede escribirse como:

Γνλµ(Q, k) = gνλ(C1Q + C2k)
µ + C3(g

µνkλ − gµλkν) + C4(g
µνkλ + gµλkν)

+C5g
µνQλ + C6g

µλQν +Qµ[C7Q
νQλ + C8Q

νkλ + C9k
νQλ + C10k

νkλ]

+kµ[C11Q
νQλ + C12Q

νkλ + C13k
νQλ + C14k

νkλ]

+ıεµνλα(C15Q+ C16k)α + ıενλαβQαkβ(C17Q+ C18k)
µ

+ıεµλαβQαkβ(C19Q + C20k)
ν + ıεµναβQαkβ(C21Q + C22k)

λ, (3.3)

donde Q = q1 + q2 y Ci son factores de forma que dependen de k2.

Si ahora aplicamos las restricciones provenientes de las simetŕıas discretas tenemos los
siguientes resultados:

• Inversión Espacial P.

Esta operación implica que

Γνλµ(Q0, %Q; k0,%k) → ΓPνλµ(Q0,−%Q; k0,−%k) (3.4)

entonces, si lo aplicamos a la expresión 3.3 tenemos que:

C15 = C16 = C17 = C18 = C19 = C20 = C21 = C22 = 0 (3.5)

The electromagnetic current is related to the vertex

23 Modificación a los Multipolos por Efectos de Ancho de Decaimiento.

+ +

+ +

ρ

ρρ

ρ

ρρρρ

ρρ

γ

γγ

γγ

π

ππ

π

Figura 3.4: Corrección del vértice ρργ a un lazo.

3.4. Modificaciones a la Estructura Multipolar del
Mesón ρ debidas a Efectos de Ancho Finito de
Decaimiento

Para estudiar como se modifican las expresiones para los multipolos del mesón ρ a orden
de un lazo como nos indica el esquema de lazos bosónicos partimos de las expresiones en la
referencia [6], en los que se seguirá la convención del diagrama mostrado en la figura 3.5.

ρ(qα
1 )

γ(kµ)

ρ(qβ
2 )

Figura 3.5: Convención de momentos para el vértice ρργ.

De la referencia se obtiene directamente que las correcciones a un lazo del vértice están
dadas por

Estructura multipolar del vértice de interacción.

Para tener bien definidos los momentos multipolares las
partículas del vértice electromagnético deben estar en
capa de masa y el 3-momento del fotón (k) emitido debe
ser considerado en el límite k ĺ 0.

īǌǊǋ  �Į�k2)gǌǊ(q1 + q2)ǋ ��ǃ�k2)(gǋǌkǊ í�gǋǊkǌ) í�Ǆ�k2)(q1 + q2)ǋkǌkǊ.

Es posible demostrar que el vértice a nivel árbol más
general para la interacción electromagnética, se puede
escribir como

Carga Eléctrica

Límite k          0  

Dipolo Magnético Cuadrupolo Eléctrico

K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B282, 253 (1987).

electric charge Magnetic dipole moment electric quadrupole

J. F. Nieves and P. B. Pal, Phys. Rev. D 55 3118(1997). 

QV = α(0) is the electric charge ( in e units)

μV = β(0) is the magnetic dipole moment (in e/2MV units) 

XEV = 1 − β(0) + 2γ(0) Electric quadrupole (in e/MV2 units).
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Electromagnetic vertex 
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• In QFT the width arises naturally  from the absortive part of the loops.
•The Ward identity is fulfilled order by order in PT. Vertex

Propagator.

ρ ρρ

unstable spin-1=2 particles has also been performed in
Ref. [16], pointing out complex renormalization factors
as a requirement for properly defined physical quantities.
Further considerations on the renormalizability of the wave
function can be seen in Ref. [17]. The proper values of the
modifications to the form factors are then found by the
expressions given in the previous section divided by !0ð0Þ.
In Table I, we present the corresponding results for the W
gauge boson and the " and K# mesons. Recall that the
particles in the loops are restricted to be on shell. For theW
we have included all the leptons and the u, d, s, and c
quarks, and the numerical values are similar to those
obtained in the chiral limit (the largest fermion-to-W
mass ratio is only $ 0:022). As a reference of the magni-
tude of the modification, we recall several results obtained
for contributions of a different nature: Reference [18] finds
a correction to the MDM induced by the Higgs of # ¼
2& 0:0151, while Ref. [19] finds a correction from quark,
lepton, and Higgs loops in the standard model of # ¼ 2þ
0:002 58; i.e. the width induced corrections are at least 2
orders of magnitude smaller than other standard contribu-
tions. Note that, due to the renormalization condition, the
argument that the finite width correction to the vertex is of
order !=MV ( $ 0:03, 0.19, and 0.06 for theW, ", and K#,
respectively) does not extend to the electromagnetic
multipoles.

For the " meson, pions are the only on-shell particles
allowed in the loops. In this case the pion-to-" mass ratio
( $ 0:18) is not as small as the corresponding one for the
fermion-to-W, and therefore a significant effect from the
mass of the particles in the loop is expected. We can
compare our results shown in Table I with those shown

in Table II as obtained from several approaches to QCD:
light-front framework with constituent quarks [2–4] and
covariant formulations based on the Dyson-Schwinger
equations of QCD [1,5]. In general, the latter are about
the same or 1 order of magnitude larger than the finite
width induced corrections computed in this work.
Recently, lattice calculations of the form factors have
become available [6] and, in particular, the dependence
on the pion mass they are able to reproduce has been
exhibited. In Fig. 1, we compare our result for the MDM
with lattice calculations as a function of the pion mass [6];
we also include predictions from the models at the physical
mass of the pion. We observe that the pion mass depen-
dence of our results is mostly flat with a slight tendency to
rise for very large masses. Lattice results are also flat with a
tendency to increase for low masses.
The corrections for the K#þ meson are dominated by the

kaon-to-K# mass ratio ( $ 0:55) which is very large; thus,
although the width-to-mass ratio of theK# is only$ 0:056,
the corrections to the multipoles are important. Compared
with the predictions listed in Table II, they can be about the
same or 1 order of magnitude smaller.
As a by-product, the mean square radius can be com-

puted following [20] as hR2i ¼ ð$þ %Þ=M2
V . For the " we

obtain a deviation of &0:0012 fm with respect to the
normal value (defined for $ ¼ 1 and % ¼ 0), which can
be compared, for example, with the one computed in
Ref. [21], where they observe a correction of 0.06 fm,
due to the inclusion of the pion contribution with respect
to a pure quark-antiquark state. For K# the deviation is
&0:0005 fm.

IV. CONCLUSIONS

The inclusion of the unstable features of spin-1 particles,
without breaking the electromagnetic gauge invariance,
induces a nontrivial modification to the electromagnetic
vertex of the particle. In this work we have extracted the

TABLE I. W gauge boson, and " and K# meson multipoles,
including the corrections due to their finite width.

Multipole W boson " meson K# meson

jQj [e] 1 1 1
j ~#j [e=2MV] 2.0 2& 0:0091 2& 0:0047
jXEj [e=M2

V] 1& 4:23( 10&7 1& 0:0387 1& 0:097

TABLE II. Numerical values for the " and K# meson multi-
poles from several references, computed as stable particles.

Reference j ~#j [e=2MV] jXEj [e=M2
V]

[2] ": 2þ 0:26 ": 1þ 0:22
[3] ": 2þ 0:14 ": 1þ 1:65
[4] ": 2& 0:08 ": 1& 0:57
[5] ": 2þ 0:01 ": 1& 1:41
[1] ": 2þ 0:69 ": 1þ 1:8

K#þ: 2þ 0:37 K#þ: 1þ 0:96
[6] ": 2þ 0:25 ": 1& 0:75

K#þ: 2þ 0:14 K#þ: 1& 0:62

( )

)
(

FIG. 1 (color online). Comparison of the " meson MDM as
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as a reference for vector mesons. However, since they are not linked to a gauge sym-
metry, they are rather expected to reflect the strong interaction dynamics among
quarks. A plethora of effective approaches to QCD have been used to compute the
MDM of the light vector meson states 11. The most representative is the ρ meson,
whose predictions for the MDM are found to lay in the region from 1.9 to 3 (in
e/2Mρ units).
In addition, the proper theoretical description of the vector mesons requires the
inclusion of its unstable feature (parameterized by the decay width, Γ) without
breaking the electromagnetic gauge invariance. The fermion loop scheme 12 and the
boson loop scheme 6 (suitable for the W and vector mesons respectively) succeed
in this task by taking into account the absorptive contributions to the electromag-
netic vertex and the propagator and the linearity of the Ward-Takahashi identity,
which is fullfilled order by order in perturbation theory. In a previous work 13,
we have computed the correction to the multipoles of the W , ρ and K∗ particles,
exclusively from this fact, and found them to be relatively small. Moreover, these
schemes are consistent with the complex-mass scheme 14 upon the renormalization
of the vector field. Thus, it is well grounded to consider the above expression for
the electromagnetic vertex and for the vector meson propagator we use:

Dµν [q, V ] = i

(

−gµν + qµqν

MV −iMV Γ

q2 − M2
V + iMV Γ

)

. (3)

This is the way we will consider the vector particles hereafter. The momentum
dependence of the width will be used only for the ρ meson.

Γρ(q
2) =

(

√

q2

)−5
(

λ
[

q2, m2
π, m2

π

])3/2

m−5
ρ
(

λ
[

m2
ρ, m2

π, m2
π

])3/2
Γρ. (4)

where λ[a, b, c] ≡ a2 + b2 + c2 − 2ab − 2ac − 2bc.

3. Modeling the e+e−

→ π+π−2π0 process

The e+e− → π+π−2π0 process has been measured by several experiments in the
low energy regime in a direct production from e+e− 15,16, and preliminary data
is available from the BaBar collaboration 8, which uses the initial state radiation
technique, in a wider energy range. A comparison of the total cross section data
shows that SND and BaBar agree with each other for energies below 1.4 GeV 17.
Thus, for this study we made use of the BaBar data and consider the SND data for
comparison purposes in the corresponding energy range.
The description of the data in the low energy range has been studied using effective
models based on chiral symmetry and VMD 18,19,20,21. The approach we follow is
based on VMD 22 which, by considering the relevant hadronic degrees of freedom in
the energy range of our interest, is well suited to describe the process. Chiral sym-
metry models with resonances would be also applied 23. In our case, the couplings

consistent with
complex mass scheme
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Figura 4.1: El proceso e+e− → ρ+ρ− y el sucesivo decaimiento de los ρ’s en piones.

del momento dipolar magnético (β) a una enerǵıa dada y con ello determinaremos el ángulo
para el cual la sección eficaz tiene un máximo; finalmente calcularemos la sección eficaz para
diferentes valores de β para ver cual es el efecto de este parámetro en dicha cantidad.

4.1. El Esquema de Dominancia Vectorial.

La f́ısica de hadrones era un tema de interés desde mucho antes de que la teoŕıa de
norma de la cromodinámica cuántica (QCD) fuera inventada; por lo cual diferentes modelos
fueron desarrollados para describir diferentes aspectos de la interacción hadrónica. En 1960
Sakurai propuso una teoŕıa de interacción fuerte basada en una simetŕıa de norma local,
donde la interacción estaba mediada por mesones vectoriales. En este escenario la interacción
electromagnética de los hadrones era introducida por una mezcla entre el fotón y los mesones.
Esta idea es conocida como Dominancia Vectorial o (VMD) por sus siglas en inglés.

En este modelo se asume que la componente hadrónica de la polarización del vació de un
fotón, que según la teoŕıa de QCD se presentaŕıa en forma de lazos, consiste exclusivamente de
mesones vectoriales conocidos, según se muestra en la figura 4.2. Las diferentes contribuciones
de lazos son resumadas en constantes de acoplamiento efectivas que ligan al fotón con los
diferentes mesones vectoriales.

γ γγγ ρ

q

q

Figura 4.2: La contribución proveniente de lazos, según la teoŕıa de QCD, reemplazada por un
mesón vectorial conocido (ρ).

El hecho de que podamos hacer este reemplazo de los lazos por el propagador del mesón

10

Lessons from the W (continued)
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FIG. 5: Fit to the BaBar data [7] for the total cross section
e+e− → π+π−2π0. We use β as the only free parameter,
while the other involved parameters are fixed from other ob-
servables.

which is in agreement with the experimental value
BR(ρ0 → π+π−2π0) = 1.6 ± 0.8 × 10−5 [1, 15]. The
error bar is taken with the same considerations as for the
MDM.
In summary, we have made the first determination of
the magnetic dipole moment of the ρ meson, by study-
ing its effect in the e+e− → π+π−2π0 cross section, in
the VMD approach. The vector particles were described
using the complex mass scheme while fulfilling electro-

magnetic gauge invariance. The channels that we have
considered here, include the exchange of the π, ω, a1, σ,
f(980), ρ and ρ′ mesons, where the couplings involved
were determined from independent processes. We have
shown that the low energy behavior is well described, in
agreement with data, and that the ω channel is the dom-
inant one. Data from BaBar and SND exclusive ω chan-
nel were fitted to obtain the gωρ′π coupling. Additionally,
we computed the branching ratio for the ρ → π+π−2π0

decay, which was found to be fully consistent with the
experimental value. The channel that contains the elec-
tromagnetic vector meson vertex becomes relevant for
energies between 1.5 and 2.2 GeV, while the remaining
channels are always subdominant. We have found that
the best fit to the BaBar data implies a value for the
MDM of the ρ meson of µρ = 2.1± 0.5 [ e

2mρ
].

The quoted error bar takes into account the uncertain-
ties coming form the couplings of the different channels
and model assumptions, definite data on this process and
detailed information on the ρ′ meson will be very useful
for a more refined analysis.
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FIG. 3: Total cross section e+e− → π+π−2π0 in the energy
region from threshold to 1.4 GeV, compared to several exper-
imental data: SND [15], BaBar [7], OLYA, CMD2 and ND
[14]

variant by themselves.
Channel 1E) involves the a1 axial vector meson, and the
coupling ga1ρπ = 3.25± 0.3 GeV is determined from the
a1 → ρπ decay. Channel F) involves gρρσ, which is re-
lated by vector meson dominance to gρσγ = 0.63 ± 0.15
GeV, which is determined from the ρ → σγ decay. The
coupling gσππ = 3.7 ± 1.6 GeV is determined from the
σ → ππ decay. A non-resonant channel 1G) is included
but, since the information on the couplings and param-
eters of the σ are not well determined, this is a strong
source of uncertainties in the low energy regime. We also
included the f(980) state on the same basis. As we will
show, these do not affect the region of our interest to de-
termine the MDM of the ρ meson.
The electromagnetic structure of the ρ meson as a func-
tion of the momentum is accomplished by the inclusion
of the ρ and ρ′ resonances couplings to the photon, such
that the electric charge form factor is written as

Fρ

(

q2
)

=
gρππm2

ρ

gρ

∑

j=ρ,ρ′

1

q2 −m2
j + imjΓj

(4)

with a relative phase of 1800, such that the couplings ful-
fill that Fρ(q2 → 0) → −1.
In Figure 3 we compare our model to several experimen-
tal results in the low energy region (below 1.1 GeV),
which are properly described. Our result is dominated
by the ω channel, consistent with what has been found
in previous analysis [19]. The displayed error bar is in-
tended to be a representative one and it is mainly driven
by the σ(600) parameters. In this region there is no effect
due to variations of the parameters of channel 1B).
In Figure 4 we have plotted all the individual channels
contributing to the cross section and the experimental
data from BaBar. The energy region below 1GeV is dom-
inated by the ω channel (1D) and the σ channel (1G),
above this energy they decrease and the A, B and C
channels, which are linked by gauge invariance, become
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FIG. 4: Individual channel contributions to the total cross
section for e+e− → π+π−2π0 and the BaBar[7] experimental
data.

the relevant ones. The a1 channel (E) also increases be-
coming the subleading contribution. Channel (F) is very
suppressed in all the energy region considered. The effect
from the f(980) is shown on the same basis as the σ (G’).
For the sake of clarity, interferences are not shown.
In Figure 5 we show the total cross section data with a

10% systematic error bars [7], and the fit corresponding
to β as a free parameter and γ = 0. The fit consider-
ing β and γ as free parameters favors the same β and
restricts γ to be in the range (−1.1, 0.1). That is, the β
parameter accounts for the global description, while the
γ contribution enters at the end region. To determine the
cross section error bars, we have taken into account the
combined uncertainties coming from the couplings of the
different channels, assumed as no correlated. We also ex-
plored the role of the model assumption regarding the ρ′

triple boson vertex, the global combination of couplings
and mass (see Eqn. 4), was found to be consistent with
data for upto a 10% deviation from the combination for
the ρ. We determine the β parameter error bar consid-
ering it as the responsible of the total uncertainties. In
addition, to account for the model dependence, we have
added a 20% error (added in quadrature). Thus, corre-
sponding to a MDM

µρ = 2.1± 0.5 [
e

2mρ
]. (5)

In addition, the branching ratio for the ρ → π+π−2π0

decay can be computed from the result of the cross sec-
tion at the pole of the ρ meson as follows:

BR(ρ0 → f) =
m2

ρσ (e+e− → f) |E=mρ

12πBR (ρ0 → e+e−)
, (6)

where BR
(

ρ0 → e+e−
)

is known [1]. Then, the cross
section we obtain corresponds to a branching ratio of

BR(ρ0 → π+π−2π0) = 1.7± 0.6× 10−5, (7)

The quoted error bar: 
Uncertainties coming from the couplings of the different channels

Model assumptions

Preliminary data

Scarce information on the ρ’ meson

Total cross section data from the preliminary analysis of BaBar, we have assigned a 10% systematic error bar (symbols). Provided all the parameters 
involved in our description are determined from other observables, we performed a fit considering the MDM as the only free parameter.
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the final state in addition to the usual selection. The result is
shown in Fig. 7, where very good agreement between the
χ2πþπ−2π0γ distributions in data and simulation is observed.

VI. CROSS SECTION

The main purpose of this analysis is to determine the
nonradiative cross section from the measured event rate,

σπþπ−2π0ðMÞ ¼
dNπþπ−2π0γðMÞ

dLðMÞ · ϵðMÞð1þ δðMÞÞ
: ð3Þ

Here, M ≡Mðπþπ−2π0Þ, dNπþπ−2π0γ is the number of
events after selection and background subtraction in the
interval dM, dL the differential ISR luminosity, ϵðMÞ the
combined acceptance and efficiency, and δ the correction
for radiative effects including FSR. The AfkQed generator
used in combination with the detector simulation contains
corrections for NLO-ISR collinear to the beam as well as
FSR corrections implemented by PHOTOS [18]. The NLO-
ISR correction is calculated by comparing the generator
with PHOKHARA [8], which includes the full ISR con-
tributions up to NLO. An effect of (0.8% 0.1stat%
0.5syst)%, constant in Mðπþπ−2π0Þ, is observed and sub-
sequently corrected for. Final-state radiation shifts events
towards smaller invariant masses. Therefore, a mass-
dependent correction is applied corresponding to the
relative change in the content of each mass bin. This is
calculated by dividing the simulated event rate with FSR by
the event rate without FSR, as shown in Fig. 8. The
measured event distribution is then divided by the phe-
nomenological fit function to reverse the effect of FSR.
Besides radiative effects, the mass resolution is considered
in the cross section measurement. The invariant mass
Mðπþπ−2π0Þ has a resolution of 15 MeV=c2 in the range
of interest. Since the cross section is given in bins of

20 MeV=c2, events with nominal bin-center mass are
distributed such that 50% will lie in the central bin, 23%
in each neighboring bin, and 2% in the next bins. The effect
of the mass resolution has been studied by performing
unfolding procedures based on singular value decomposi-
tion [23] and Tikhonov regularized χ2 minimization with
L-curve optimization [24]. It is observed that the effect of
the mass resolution is consistent with 0 with a systematic
uncertainty of 0.3%.
Once all corrections are applied and the efficiency is

determined (including data-MC differences from photon,
track and π0 detection), Eq. (3) is employed to calculate the
nonradiative cross section σ, displayed in Fig. 9 and listed
in Table I.
Removing the effect of vacuum polarization (VP) leads to

the undressed cross section σð0Þ, which is related to its ori-
ginally dressed equivalent σ through the transformation [25]

σð0Þ
πþπ−2π0

ðECMÞ ¼ σπþπ−2π0ðECMÞ ·
!

αð0Þ
αðECMÞ

"
2

; ð4Þ

where α is the QED coupling at the center-of-mass energy
ECM, with αð0Þ ¼ 7.2973525664ð17Þ × 10−3 [19]. The
undressed cross section is also listed in Table I.

A. Systematic uncertainties

Table II shows the systematic uncertainties in this
analysis.
The efficiency predicted by the Monte Carlo generator

AfkQed is affected by the relative weight of the resonances
included in the simulation. The model used in AfkQed
includes the ρ, ρ0, and ρ00 resonances as well as the
intermediate states ωπ0, a1ð1260Þπ, and a small contribu-
tion from ρ0f0. The corresponding uncertainty due to their
relative weight was determined to be less than 0.4%.

FIG. 8. Ratio of the simulated mass distributions including
FSRþ ISR and ISR only. The black line depicts a phenomeno-
logical fit function.
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FIG. 9. The measured dressed πþπ−2π0 cross section (statis-
tical uncertainties only).
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different mass regions. For Mðπþπ−2π0Þ ≤ 1.2 Gev=c2,
the systematic uncertainty due to ISR background sub-
traction is determined bin by bin and ranges from 1%
to 100%. In this region the absolute systematic uncer-
tainty due to ISR background subtraction is calculated
as ð0.455 · ECM=GeV–0.296Þ nb. In the region below
0.85 GeV=c2 the measurement is compatible with 0.

B. Comparison to theory and other experiments

The measured cross section is compared to existing data
in Fig. 10. Our new measurement covers the energy range
from 0.85 to 4.5 GeV. The previously existing data were
collected by the experiments ACO [26,27], ADONE MEA
[28–30], ADONE γγ2 [31], DCI-M3N [20], ND [32],
OLYA [33], and SND [34,35]. The new measurement is in
reasonable agreement with the previous experiments except
for ND, which lies significantly above all others.
This cross section measurement is an important bench-

mark for existing theoretical calculations. In Fig. 11, the
prediction from chiral perturbation theory including ω, a1
and double ρ exchange [36] is shown in comparison to data.
The prediction exhibits similar behavior as the measured
cross section, underestimating it slightly but especially at
low energies this discrepancy is covered by the systematic
uncertainties.

C. Contribution to aμ and Δα
The result of this analysis is of major importance for the

theoretical prediction of the muon gyromagnetic anomaly
aμ. Before BABAR, the channel eþe− → πþπ−2π0 was

estimated to contribute approximately 2.4% of the leading
order hadronic part of aμ, but the size of its uncertainty was
more than one fifth of the uncertainty of all hadronic
contributions combined [37].
The theoretical prediction of aμ relates the undressed

eþe− cross section of a given final state X to the
corresponding contribution to aμ at leading order via [38]

aXμ ¼ 1

4π3

Z
∞

sXmin

KμðsÞ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

ec4

s

q

1þ 2m2
ec4

s

· σð0Þeþe−→XðsÞds; ð5Þ

where KμðsÞ is the muon kernel function and me the
electron mass [19]. Integrating over the energy region
0.85 GeV ≤ ECM ≤ 1.8 GeV we find

aπ
þπ−2π0

μ ¼ ð17.9% 0.1stat % 0.6systÞ × 10−10; ð6Þ

where the first uncertainty is statistical and the second
systematic, giving a total relative precision of 3.3%.
Before BABAR, the world average covered the energy

range 1.02 GeV ≤ ECM ≤ 1.8 GeV and yielded the result1

ð16.76% 1.31% 0.20radÞ × 10−10 [37], implying a total
relative precision of 7.9%. In this region we measure
aπ

þπ−2π0
μ ¼ ð17.4% 0.1stat % 0.6systÞ × 10−10 in agreement

with the previous value. The uncertainties correspond to a
total relative precision of 3.2%. Hence, the relative pre-
cision of the BABAR measurement alone is a factor 2.5
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FIG. 10. The previously published πþπ−2π0 cross section data
in addition to this analysis (statistical uncertainties only).
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corrected measured undressed cross section (points with statis-
tical uncertainties) compared to the theoretical prediction (line)
from Ref. [36].

1The second uncertainty corresponds to a correction of
radiative effects, while the first is the combined statistical and
systematic uncertainty.
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stated otherwise no background subtraction is applied to
data when graphing the mass distribution of a subsystem.
One important intermediate state is given by the channel

eþe− → ωπ0γ → πþπ−2π0γ with Bðω → πþπ−π0Þ ¼
0.892% 0.007 [19]. Fitting a Voigt profile plus a normal
distribution (for the radiative tail) to the efficiency corrected
Mðπþπ−π0Þ distribution, as shown in Fig. 12, results in an
ωπ0 production fraction of (32.1% 0.2stat % 2.6syst)% over
the full invariant mass range. The systematic uncertainty is

determined as the difference from an alternative fit func-
tion. The same fitting procedure is applied in narrow slices
of the invariant mass Mðπþπ−2π0Þ. The resulting number
of events is divided by the ISR luminosity in each mass
region, yielding the cross section σðeþe− → ωπ0γ →
πþπ−2π0γÞ as a function of the CM energy of the hadronic
system listed in Table III and shown in Fig. 13 in
comparison to existing data [41–44]. In this case, possible
background processes are removed by the fit function. The
ωπ0 production fraction dominates at low masses, then
decreases rapidly, such that it is on the level of 10% already
at Mðπþπ−2π0Þ ≈ 1.8 GeV=c2, decreasing further towards
higher masses.
Figure 14 shows the two-dimensional plot of the πþπ−

mass vs the π0π0 mass in the range 1.7 GeV=c2 <
Mðπþπ−2π0Þ < 2.3 GeV=c2, which is chosen to achieve
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Modeling   e+ e-￫  π + π - 2π0

The channels that we have considered here,  include the exchange of the π, ω, a1, σ, f(980), ρ and ρ’ mesons. 

We consider the Vector Meson Dominance apprach (VMD)

e+

e-

2

There, we provide the explicit gauge invariant amplitude
of the process, paying particular attention to the chan-
nels that are linked by gauge invariance and involve the
⇢ MDM, which allows to identify the dependence on it.
Bose-Einstein symmetry and C invariance are inforced
by properly including the neutral and charged pions in-
terchange respectively.
In section III the ⇢ MDM is determined by fitting the
experimental cross section data, while using other ob-
servables to fix all the remaining parameters. We profit
from a previous analysis of the description of low energy
observables to fix the parameters of the model [82], and
incorporate the data from BaBar [81] of the so-called !
channel of the process to better constrain them. This
procedure improves with respect to the previous analysis
where a more limited set of observables was considered
to fix the model parameters and an ansatz between pa-
rameters involving the ⇢0 meson was invoked. As a com-
plementary check of the parameters involved in the low
energy regime, where the ⇢ MDM plays no role, we show
that the BaBar data is also well described within the un-
certainties. In section IV, we discuss the result and draw
our conclusions.

II. DESCRIPTION OF THE e+e� ! ⇡+⇡�2⇡0

PROCESS

Let us recall some facts about the way we describe
the C, P and CP conserving electromagnetic vertex �µ⌫�

for a vector particle V (q1, ⌘1) ! V (q2, ⌘2)�(q, ✏). It is
defined from the matrix element,

hV (q2, ⌘2)|J
µ
EM (0)|V (q1, ⌘1)i ⌘ e�µ⌫�⌘1⌫⌘

⇤
2�, (1)

where V (qi, ⌘i) denote the vector state with correspond-
ing momentum qi and polarization vector ⌘i. The vertex
can be decomposed into the following Lorentz structures

�µ⌫� = ↵(q2)g⌫�(q1 + q2)
µ + �(q2)(gµ⌫q� � gµ�q⌫)

�
�(q2)

M2
V

(q1 + q2)
µq⌫q� � q�1 g

µ⌫
� q⌫2g

µ�, (2)

where ↵(q2), �(q2) and �(q2) are the electromagnetic
form factors [83–86] which, in the static limit, are
related to the electromagnetic multipoles as follows:
QV = ↵(0) is the electric charge ( in e units), µV = �(0)
is the magnetic dipole moment (in e/2MV units) and
XEV = 1 � �(0) + 2�(0) (in e/M2

V units) is the electric
quadrupole moment. Other parameterization is the one
used for the W gauge boson, given in terms of the pa-
rameters � and �� , which are related to the multipoles
by: µW = e

2mW
(1+�+��) and QW = �

e
m2

W
(�+��).

The values ↵(0) = 1, �(0) = 2 and �(0) = 0 ( � = 1
and �� = 0 for the W ) are usually taken as a reference
for vector mesons. For the ⇢ meson the physical value
is expected to be a↵ected by the strong interaction
dynamics among quarks. Notice that the MDM grows as

O(q) while the quadrupole does it as O(q2). Thus, the
MDM is expected to be dominant for a relatively small
photon energy compared to the quadrupole moment.
This was verified in the previous analysis [66, 67], so
here we restrict ourselves to explore only the MDM
contribution in a low energy regime, as we describe below.

We set the notation for the process as e+(k+)e�(k�) !
⇡+(p1)⇡0(p2)⇡�(p3)⇡0(p4), where, in parenthesis, are the
corresponding 4-momenta. The total amplitude can be
written as:

M =
e

q2
lµJµ, (3)

where 1/q2 comes from the photon propagator (q =
k++k�), the leptonic current lµ ⌘ v̄(k+)�µu(k�) is com-
mon to all the channels, and Jµ represents the four pion
electromagnetic current. This last must fulfill the Bose-
Einstein symmetry, by the interchange of the neutral pi-
ons and C invariance, by the interchange of the charged
pions. These conditions have been enforced in previous
studies in a generic way, by considering reduced ampli-
tudes (not restricted by the symmetries) upon which the
corresponding symmetries are applied, and then the cur-
rent is constructed by the combination of such reduced
amplitudes [87, 88]. Here, we follow a di↵erent handling
of the amplitudes which allow us to obtain explicit gauge
invariant amplitudes, by combining contributions from
di↵erent channels, as we make clear below.
The �⇤

! 4⇡ vertex is modelled in the VMD approach,
by considering the relevant hadronic degrees of freedom
in the energy range of our interest. The e↵ective La-
grangian that is common to all the VMD based models
[68–71], including the light mesons ⇢, ⇡ and !, in addition
to the ⇢0 can be set as

L =
X

V=⇢, ⇢0,!

em2
V

gV
Vµ A

µ +
X

V=⇢, ⇢0

gV ⇡⇡ ✏abc V
a
µ ⇡b @µ ⇡c

+
X

V=⇢, ⇢0

g!V ⇡ �ab ✏
µ⌫�� @µ !⌫ @� V

a
� ⇡b

+ g3⇡ ✏abc ✏
µ⌫�� !µ @⌫ ⇡

a @� ⇡
b @� ⇡

c. (4)

V and A refer to the vector meson and the photon field
respectively. The couplings are free parameters to be
determined from experiment and the subindices denote
the corresponding interacting fields, and g3⇡ is a contact
term from the Wess-Zumino-Witten anomaly [89, 90].
To model the four pion electromagnetic current, we

consider the channels including the exchange of the ⇡, !,
a1, �, f(980), ⇢ and ⇢0(1450) mesons, as shown in Figure
1. Thus, we have seven generic channels (twenty CHECK
seven in total by including the neutral and charged pions
exchange).
The contribution to the four pion electromagnetic

current from each channel in Figure 1 is denoted by
M

µ
channel(p1, p2, p3, p4), the additional amplitudes for

the diagrams corresponding to the neutral and charged
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1. Thus, we have seven generic channels (twenty CHECK
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are taken as effective constants determined from different observables, although in
some cases relations can be drawn among them by invoking symmetry considera-
tions.
Let us set our notation for the process as:
e+(k1)e−(k2) → π+(p1)π0(p2)π−(p3)π0(p4), in parenthesis are the corresponding
4-momenta. The total amplitude can be written as:

M =
−ie

(k1 + k2)2
lµhµ(p1, p2, p3, p4), (5)

where the leptonic current lµ ≡ v̄(k2)γµu(k1) is common to all the channels, and
hµ represents the four pion electromagnetic current. This last must fulfill the Bose-
Einstein symmetry, by the interchange of the neutral pions

hµ(p1, p2, p3, p4) = hµ(p1, p4, p3, p2), (6)

and C invariance, by the interchange of the charged pions

hµ(p1, p2, p3, p4) = −hµ(p3, p2, p1, p4). (7)

Thus, the total contribution can be written as the sum of the four possible momenta
configurations, represented by a reduced amplitude Mrµ no longer constrained by
such symmetries 19:

hµ(p1, p2, p3, p4) = Mrµ(p1, p2, p3, p4) + Mrµ(p1, p4, p3, p2)

− Mrµ(p3, p2, p1, p4) −Mrµ(p3, p4, p1, p2). (8)

To model the four pion electromagnetic current, we consider the channels in-
cluding the exchange of the π, ω, a1, σ, f(980), ρ and ρ′(1450) mesons, as shown in
Figure 1. The energy range to be described goes from threshold up to 2.2 GeV. Thus,
we have seven generic channels, each one accounting for several specific diagrams,
corresponding to the allowed permutations of the momenta due to Bose-Einstein
symmetry and charge conjugation. We now proceed to discuss each one in detail.

3.1. Channel A

The diagram (A) shown in Figure 1, corresponds to the case where we have a π
and ρ intermediate states, and the initial resonant state coupled to the leptonic
current are both a ρ and ρ′ mesons. The interaction Lagrangian involving vectors
(V), pseudoscalars (P) and the photon (A) is:

L = gV PP ϵabcV
a
µ P b∂µP c +

em2
V

gV
VµAµ (9)

where gV PP and gV are effective coupling constants. The reduced amplitude for
such contribution considering the ρ intermediate state is then given by:

MAµ = e

(

m2
ρg

3
ρππ

gρ

)

Dµλ [q, ρ] (q − 2p1)
λ

D [q − p1, π] (q − r12)
νDνδ [s34, ρ] rδ

34, (10)
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corresponding to the allowed permutations of the momenta due to Bose-Einstein
symmetry and charge conjugation. We now proceed to discuss each one in detail.

3.1. Channel A

The diagram (A) shown in Figure 1, corresponds to the case where we have a π
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such contribution considering the ρ intermediate state is then given by:

MAµ = e

(

m2
ρg

3
ρππ

gρ

)

Dµλ [q, ρ] (q − 2p1)
λ

D [q − p1, π] (q − r12)
νDνδ [s34, ρ] rδ

34, (10)

April 23, 2015 12:19 WSPC/INSTRUCTION FILE rhomdmE-ijmpa
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Leptonic current

Four pion electromagnetic current current

Charge conjugation

Bose-Symmetry

Written in terms of a reduced amplitude no longer restricted by the symmetries

Here: We follow the same approach as in the previous analysis,
 but now we have explicit gauge invariant amplitudes with 

 Charge conjugation and Bose- symmetry enforced

Previous studies   S. I. Eidelman, Z. K. Silagadze and E. A. Kuraev; Phys. Lett. B 346 186(1995);   G. Ecker and R. Unterdorfer, Eur. Phys. J. 
C 24 535(2002).  H. Czyz, J. H. Kuhn and A. Wapienik, Phys. Rev. D 77 114005(2008);    J. Juran and P. Lichard, Phys. Rev. D 78 017501(2011). 

+ Gauge invariance
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Channel A
56 El Proceso e+e− → π+π−2π0.

• Canal A.

El canal A es el mostrado en la Figura 6.2.

ρ0 π−

π+

ρ−

π−

π0π0

Figura 6.2: Canal A.

La amplitud reducida para este proceso esta dada por la expresión

MrAµ =

(

−
iem2

ρ

gρ
δµβ

)

(−igβγ)

(

1

q2 −m2
ρ + imρΓρ

−
1

q2 −m2
ρ′ + imρ′Γρ′

)

(−2igρππp1γ)
i

(q − p1) 2 −m2
π

(igρππ (q − p1 + p2)δ) i





−gδη + (p3+p4)δ(p3+p4)η

m2
ρ−imρΓρ

(p3 + p4) 2 −m2
ρ + imρΓρ





(

igρππ (p4 − p3)η

)

,(6.5)

en donde q = p1 + p2 + p3 + p4. Las reglas de Feynman para obtener esta expresión se
encuentran en el apéndice. Notese que la fase con la que es introducida la resonancia del
mesón ρ′ es negativa; esto se puede ver claramente en la resta de propagadores en el primer
renglón de la expresión pasada.

Para simplificar la escritura definimos las siguientes expresiones

sij ≡ pi + pj ,

rij ≡ pi − pj,

P [q, ρ] ≡
i

q2 −m2
ρ + imρΓρ

,

PS[q] ≡
i

q2 −m2
π

,

F [ρ] ≡
1

m2
ρ − imρΓρ

. (6.6)

Con ayuda de esto podemos escribir la expresión 6.5 de la siguiente manera

MrAµ = −2

(

−
iem2

ρ

gρ

)

(igρππ)
3(P [q, ρ]− P [q, ρ′])PS [q − p1, π]P [s34, ρ]

[(q − p1 + p2) · r34 − F [ρ]s34 · r34 (q − p1 + p2) · s34] p1µ. (6.7)

 In the previous analysis, given the scarce 
information on the rho’,  a VMD-like relation 
was used
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Fig. 1. Generic channels relevant for the description of the e+e− → π+π−2π0 process. The total
diagrams are obtained by applying Bose symmetry and Charge conjugation.

where q ≡ k1 + k2 = p1 + p2 + p3 + p4, sij ≡ pi + pj , rij ≡ pi − pj. Dµν [q, V ]
is the vector meson propagator as given in Eqn. 3 and D[q, P ] = i/(q2 − m2

P ) is
the pseudoscalar propagator, the arguments denoting the four momentum and the
corresponding particle. A similar expression is obtained for the case when the photon
couples to the ρ′, which is considered to have a relative phase respect to the ρ of
1800, this has been shown to be the case in 19,20 and will be used without further
mention in the following diagrams. We have verified that this value is favored in
the analysis of the cross section (see the corresponding section below). Given the
scarce information on the ρ′ decay modes, we asume the following combination of
couplings constants for the ρ′ to be the same as for the ρ .

m2
ρ′

gρ′

gρ′ππ =
m2

ρ

gρ
gρππ. (11)

The idea behind this assumptions is to resemble typical VMD relations, expecting
the particularities of the radial excitation properties drops out when considering
the ratios. Implications of the deviation from this assumption are explored in the
analysis. Thus, the parameters involved in this channel are gρππ = 5.96 ± 0.02 and
gρ = 4.96 ± 0.02 which are determined from the ρ → ππ and ρ → e+e− decay
respectively.

3.2. Channel B

This channel corresponds to diagram (B) in Figure 1. The extraction of the MDM of
the ρ meson is based on the existence of the ρ−ρ−γ vertex. An energy range up to
2.2 GeV allows the photon to couple to intermediate states like the ρ and ρ′ mesons,
which then couple to the ρ pair. Thus, the structure of such vertices is similar to the
electromagnetic vertex but with different global constants accounting for the strong
process. It is possible to identify such constants with the gρππ and gρ′ππ couplings

Similar amplitude for the rho’ is added (1800 phase) G. Ecker and R. Unterdorfer, Eur. Phys. J. C 24 535(2002). 

H. Czyz, J. H. Kuhn and A. Wapienik, Phys. Rev. D 77 114005(2008) 
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FIG. 1. Generic channels, linked by gauge invariance, rel-
evant for the description of the e+e� ! ⇡+⇡�2⇡0 process.
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pions exchange, will be denoted by just the momentum
exchange with respect to the first case in the Figure.
Namely, the amplitude for the neutral pions exchange
is denoted by M

µ
channel(p1, p4, p3, p2), for the charged pi-

ons exchange by M
µ
channel(p3, p2, p1, p4) and combining

both is denoted by M
µ
channel(p3, p4, p1, p2). Thus, the

four pion electromagnetic current is made up of all these
contributions

Jµ =
X

channel

M
µ
channel (5)

The energy range to be described goes from threshold
up to 1.8 GeV. The process has been also studied, in
the energy regime below 1 GeV, using e↵ective models
based on chiral symmetry and VMD [87, 88, 91, 92]. We
now proceed to discuss each channel in detail:

Channels A, B and C, linked by gauge invariance.
In Figure 1, we show the diagrams where the intermedi-
ate states are the ⇡ and ⇢ mesons, labeled by (A) (B)
and (C). These channels, with their corresponding neu-
tral and charged pions exchange, are linked by the gauge
invariance condition. This is an important observation
since our description of channel (B), also called the ⇢-
channel, is not gauge invariant by itself. Here, we de-
scribe the three channels and combine them to provide
an analytical gauge invariant amplitude, the details are
presented in Appendix A.
The initial vector states, coupled to the photon from

the leptonic current, in the VMD approach, are both
the ⇢ and the ⇢0 mesons. Here, we provide the explicit
equations for the amplitude considering only the ⇢meson,
the corresponding for the ⇢0 are similar with the ⇢ mass
and couplings replaced by the ones of the ⇢0. A relative
phase of 1800 is assumed, based on previous studies [87,
88].
Channel A

The amplitude for the channel (A) in Figure 1 is given
by:

M
µ
A(p1, p2, p3, p4) = �e

g3⇢⇡⇡
g⇢

m2
⇢ D

↵µ
⇢ [q] (q � 2p1)↵

S⇡[q � p1](q � p1 + p2)� D
⌘�
⇢� [s43] r43⌘, (6)

where we have made the following definitions to simplify
the notation sij ⌘ pi + pj , rij ⌘ pi � pj . The vector
propagators is considered to have the complex mass form,
which is consistent with the inclusion of the absorptive
corrections and gauge invariance [50, 93–95]

D↵µ
V [p] = �iDV [p]

✓
g↵µ �

p↵pµ

m2
V � imV �V

◆
, (7)

where DV [p] ⌘ 1/(p2 � m2
V + imV �V ). We work in

the isospin limit, but in some cases we label the vector
mesons including their corresponding charges, to guide
the reading from the corresponding Feynman diagrams.
The energy dependence of the width will be used only
for the ⇢ meson (for the ⇢0 the di↵erence between con-
sidering a constant width and an energy dependent one,
considered dominated by the ⇡⇡ channel, is within the
uncertainties of the corresponding parameters)

�⇢(s) = �⇢

✓
m⇢
p
s

◆5 
�(s,m2

⇡,m
2
⇡)

�(m2
⇢,m

2
⇡,m

2
⇡)

�3/2
, (8)

where �(x, y, z) is the Källen function and �⇢ is the
constant decay width. The pion propagator is S⇡[q] =
i/(q2 � m2

⇡). In the isospin symmetry limit the ampli-
tude gets the simplified form:

M
µ
A(p1, p2, p3, p4) = i eCD⇢� [s43] r

�
43 z12�

x1
µ

x1 · q
, (9)

where x1 = q � 2 p1, z12 = q � p1 + p2 and C =
(g3⇢⇡⇡/g⇢)m

2
⇢ D⇢[q]. A similar expression corresponds to
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↵µ
⇢ [q] (q � 2p1)↵

S⇡[q � p1](q � p1 + p2)� D
⌘�
⇢� [s43] r43⌘, (6)

where we have made the following definitions to simplify
the notation sij ⌘ pi + pj , rij ⌘ pi � pj . The vector
propagators is considered to have the complex mass form,
which is consistent with the inclusion of the absorptive
corrections and gauge invariance [50, 93–95]
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where DV [p] ⌘ 1/(p2 � m2
V + imV �V ). We work in

the isospin limit, but in some cases we label the vector
mesons including their corresponding charges, to guide
the reading from the corresponding Feynman diagrams.
The energy dependence of the width will be used only
for the ⇢ meson (for the ⇢0 the di↵erence between con-
sidering a constant width and an energy dependent one,
considered dominated by the ⇡⇡ channel, is within the
uncertainties of the corresponding parameters)
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where �(x, y, z) is the Källen function and �⇢ is the
constant decay width. The pion propagator is S⇡[q] =
i/(q2 � m2

⇡). In the isospin symmetry limit the ampli-
tude gets the simplified form:
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µ
A(p1, p2, p3, p4) = i eCD⇢� [s43] r
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where x1 = q � 2 p1, z12 = q � p1 + p2 and C =
(g3⇢⇡⇡/g⇢)m
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⇢ D⇢[q]. A similar expression corresponds to
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pions exchange, will be denoted by just the momentum
exchange with respect to the first case in the Figure.
Namely, the amplitude for the neutral pions exchange
is denoted by M

µ
channel(p1, p4, p3, p2), for the charged pi-

ons exchange by M
µ
channel(p3, p2, p1, p4) and combining

both is denoted by M
µ
channel(p3, p4, p1, p2). Thus, the

four pion electromagnetic current is made up of all these
contributions

Jµ =
X

channel

M
µ
channel (5)

The energy range to be described goes from threshold
up to 1.8 GeV. The process has been also studied, in
the energy regime below 1 GeV, using e↵ective models
based on chiral symmetry and VMD [87, 88, 91, 92]. We
now proceed to discuss each channel in detail:

Channels A, B and C, linked by gauge invariance.
In Figure 1, we show the diagrams where the intermedi-
ate states are the ⇡ and ⇢ mesons, labeled by (A) (B)
and (C). These channels, with their corresponding neu-
tral and charged pions exchange, are linked by the gauge
invariance condition. This is an important observation
since our description of channel (B), also called the ⇢-
channel, is not gauge invariant by itself. Here, we de-
scribe the three channels and combine them to provide
an analytical gauge invariant amplitude, the details are
presented in Appendix A.
The initial vector states, coupled to the photon from

the leptonic current, in the VMD approach, are both
the ⇢ and the ⇢0 mesons. Here, we provide the explicit
equations for the amplitude considering only the ⇢meson,
the corresponding for the ⇢0 are similar with the ⇢ mass
and couplings replaced by the ones of the ⇢0. A relative
phase of 1800 is assumed, based on previous studies [87,
88].
Channel A

The amplitude for the channel (A) in Figure 1 is given
by:

M
µ
A(p1, p2, p3, p4) = �e

g3⇢⇡⇡
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m2
⇢ D

↵µ
⇢ [q] (q � 2p1)↵

S⇡[q � p1](q � p1 + p2)� D
⌘�
⇢� [s43] r43⌘, (6)

where we have made the following definitions to simplify
the notation sij ⌘ pi + pj , rij ⌘ pi � pj . The vector
propagators is considered to have the complex mass form,
which is consistent with the inclusion of the absorptive
corrections and gauge invariance [50, 93–95]
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V [p] = �iDV [p]
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where DV [p] ⌘ 1/(p2 � m2
V + imV �V ). We work in

the isospin limit, but in some cases we label the vector
mesons including their corresponding charges, to guide
the reading from the corresponding Feynman diagrams.
The energy dependence of the width will be used only
for the ⇢ meson (for the ⇢0 the di↵erence between con-
sidering a constant width and an energy dependent one,
considered dominated by the ⇡⇡ channel, is within the
uncertainties of the corresponding parameters)
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where �(x, y, z) is the Källen function and �⇢ is the
constant decay width. The pion propagator is S⇡[q] =
i/(q2 � m2

⇡). In the isospin symmetry limit the ampli-
tude gets the simplified form:

M
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A(p1, p2, p3, p4) = i eCD⇢� [s43] r
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, (9)

where x1 = q � 2 p1, z12 = q � p1 + p2 and C =
(g3⇢⇡⇡/g⇢)m
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⇢ D⇢[q]. A similar expression corresponds to
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pions exchange, will be denoted by just the momentum
exchange with respect to the first case in the Figure.
Namely, the amplitude for the neutral pions exchange
is denoted by M

µ
channel(p1, p4, p3, p2), for the charged pi-

ons exchange by M
µ
channel(p3, p2, p1, p4) and combining

both is denoted by M
µ
channel(p3, p4, p1, p2). Thus, the

four pion electromagnetic current is made up of all these
contributions

Jµ =
X

channel

M
µ
channel (5)

The energy range to be described goes from threshold
up to 1.8 GeV. The process has been also studied, in
the energy regime below 1 GeV, using e↵ective models
based on chiral symmetry and VMD [87, 88, 91, 92]. We
now proceed to discuss each channel in detail:

Channels A, B and C, linked by gauge invariance.
In Figure 1, we show the diagrams where the intermedi-
ate states are the ⇡ and ⇢ mesons, labeled by (A) (B)
and (C). These channels, with their corresponding neu-
tral and charged pions exchange, are linked by the gauge
invariance condition. This is an important observation
since our description of channel (B), also called the ⇢-
channel, is not gauge invariant by itself. Here, we de-
scribe the three channels and combine them to provide
an analytical gauge invariant amplitude, the details are
presented in Appendix A.
The initial vector states, coupled to the photon from

the leptonic current, in the VMD approach, are both
the ⇢ and the ⇢0 mesons. Here, we provide the explicit
equations for the amplitude considering only the ⇢meson,
the corresponding for the ⇢0 are similar with the ⇢ mass
and couplings replaced by the ones of the ⇢0. A relative
phase of 1800 is assumed, based on previous studies [87,
88].
Channel A

The amplitude for the channel (A) in Figure 1 is given
by:

M
µ
A(p1, p2, p3, p4) = �e

g3⇢⇡⇡
g⇢
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⇢ D

↵µ
⇢ [q] (q � 2p1)↵

S⇡[q � p1](q � p1 + p2)� D
⌘�
⇢� [s43] r43⌘, (6)

where we have made the following definitions to simplify
the notation sij ⌘ pi + pj , rij ⌘ pi � pj . The vector
propagators is considered to have the complex mass form,
which is consistent with the inclusion of the absorptive
corrections and gauge invariance [50, 93–95]
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V [p] = �iDV [p]
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where DV [p] ⌘ 1/(p2 � m2
V + imV �V ). We work in

the isospin limit, but in some cases we label the vector
mesons including their corresponding charges, to guide
the reading from the corresponding Feynman diagrams.
The energy dependence of the width will be used only
for the ⇢ meson (for the ⇢0 the di↵erence between con-
sidering a constant width and an energy dependent one,
considered dominated by the ⇡⇡ channel, is within the
uncertainties of the corresponding parameters)
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where �(x, y, z) is the Källen function and �⇢ is the
constant decay width. The pion propagator is S⇡[q] =
i/(q2 � m2

⇡). In the isospin symmetry limit the ampli-
tude gets the simplified form:

M
µ
A(p1, p2, p3, p4) = i eCD⇢� [s43] r
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where x1 = q � 2 p1, z12 = q � p1 + p2 and C =
(g3⇢⇡⇡/g⇢)m
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⇢ D⇢[q]. A similar expression corresponds to
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pions exchange, will be denoted by just the momentum
exchange with respect to the first case in the Figure.
Namely, the amplitude for the neutral pions exchange
is denoted by M

µ
channel(p1, p4, p3, p2), for the charged pi-

ons exchange by M
µ
channel(p3, p2, p1, p4) and combining

both is denoted by M
µ
channel(p3, p4, p1, p2). Thus, the

four pion electromagnetic current is made up of all these
contributions

Jµ =
X

channel

M
µ
channel (5)

The energy range to be described goes from threshold
up to 1.8 GeV. The process has been also studied, in
the energy regime below 1 GeV, using e↵ective models
based on chiral symmetry and VMD [87, 88, 91, 92]. We
now proceed to discuss each channel in detail:

Channels A, B and C, linked by gauge invariance.
In Figure 1, we show the diagrams where the intermedi-
ate states are the ⇡ and ⇢ mesons, labeled by (A) (B)
and (C). These channels, with their corresponding neu-
tral and charged pions exchange, are linked by the gauge
invariance condition. This is an important observation
since our description of channel (B), also called the ⇢-
channel, is not gauge invariant by itself. Here, we de-
scribe the three channels and combine them to provide
an analytical gauge invariant amplitude, the details are
presented in Appendix A.
The initial vector states, coupled to the photon from

the leptonic current, in the VMD approach, are both
the ⇢ and the ⇢0 mesons. Here, we provide the explicit
equations for the amplitude considering only the ⇢meson,
the corresponding for the ⇢0 are similar with the ⇢ mass
and couplings replaced by the ones of the ⇢0. A relative
phase of 1800 is assumed, based on previous studies [87,
88].
Channel A

The amplitude for the channel (A) in Figure 1 is given
by:

M
µ
A(p1, p2, p3, p4) = �e

g3⇢⇡⇡
g⇢

m2
⇢ D

↵µ
⇢ [q] (q � 2p1)↵

S⇡[q � p1](q � p1 + p2)� D
⌘�
⇢� [s43] r43⌘, (6)

where we have made the following definitions to simplify
the notation sij ⌘ pi + pj , rij ⌘ pi � pj . The vector
propagators is considered to have the complex mass form,
which is consistent with the inclusion of the absorptive
corrections and gauge invariance [50, 93–95]

D↵µ
V [p] = �iDV [p]
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p↵pµ

m2
V � imV �V
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, (7)

where DV [p] ⌘ 1/(p2 � m2
V + imV �V ). We work in

the isospin limit, but in some cases we label the vector
mesons including their corresponding charges, to guide
the reading from the corresponding Feynman diagrams.
The energy dependence of the width will be used only
for the ⇢ meson (for the ⇢0 the di↵erence between con-
sidering a constant width and an energy dependent one,
considered dominated by the ⇡⇡ channel, is within the
uncertainties of the corresponding parameters)
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where �(x, y, z) is the Källen function and �⇢ is the
constant decay width. The pion propagator is S⇡[q] =
i/(q2 � m2

⇡). In the isospin symmetry limit the ampli-
tude gets the simplified form:

M
µ
A(p1, p2, p3, p4) = i eCD⇢� [s43] r
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x1
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x1 · q
, (9)

where x1 = q � 2 p1, z12 = q � p1 + p2 and C =
(g3⇢⇡⇡/g⇢)m
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⇢ D⇢[q]. A similar expression corresponds to
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Channel B
32 El Proceso e+e− → ρ+ρ−.
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Figura 4.1: El proceso e+e− → ρ+ρ− y el sucesivo decaimiento de los ρ’s en piones.

del momento dipolar magnético (β) a una enerǵıa dada y con ello determinaremos el ángulo
para el cual la sección eficaz tiene un máximo; finalmente calcularemos la sección eficaz para
diferentes valores de β para ver cual es el efecto de este parámetro en dicha cantidad.

4.1. El Esquema de Dominancia Vectorial.

La f́ısica de hadrones era un tema de interés desde mucho antes de que la teoŕıa de
norma de la cromodinámica cuántica (QCD) fuera inventada; por lo cual diferentes modelos
fueron desarrollados para describir diferentes aspectos de la interacción hadrónica. En 1960
Sakurai propuso una teoŕıa de interacción fuerte basada en una simetŕıa de norma local,
donde la interacción estaba mediada por mesones vectoriales. En este escenario la interacción
electromagnética de los hadrones era introducida por una mezcla entre el fotón y los mesones.
Esta idea es conocida como Dominancia Vectorial o (VMD) por sus siglas en inglés.

En este modelo se asume que la componente hadrónica de la polarización del vació de un
fotón, que según la teoŕıa de QCD se presentaŕıa en forma de lazos, consiste exclusivamente de
mesones vectoriales conocidos, según se muestra en la figura 4.2. Las diferentes contribuciones
de lazos son resumadas en constantes de acoplamiento efectivas que ligan al fotón con los
diferentes mesones vectoriales.

γ γγγ ρ

q

q

Figura 4.2: La contribución proveniente de lazos, según la teoŕıa de QCD, reemplazada por un
mesón vectorial conocido (ρ).

El hecho de que podamos hacer este reemplazo de los lazos por el propagador del mesón

• Wherever the ρ meson appears, the ρ’ is also considered

Includes the ρργ vertex

4

the case for the ⇢0, with C ! (g2⇢⇡⇡g⇢0⇡⇡/g⇢0)m2
⇢0 D⇢0 [q].

Given the scarce information on the ⇢0 decay modes, in
the previous analysis [66, 67] the following combination
of coupling constants for the ⇢0 was assumed:

m2
⇢0g⇢0

g⇢0⇡⇡
= X

m2
⇢g⇢

g⇢⇡⇡
, (10)

where the proportionality constant X = 1 was taken.
The idea behind this assumption was to resemble typical
VMD relations, expecting the particularities of the ra-
dial excitation properties to drop out when considering
the ratios. Deviations of up to 20% were explored and
considered in the final result uncertainty. In this work,
we do not rely on this ansatz but make use of additional
theoretical and experimental information. In Table I, we
show the values of the couplings, consistent with a large
set of observables [82], which favors X = 1.3± 0.4. This
is a larger value but in agreement with the previous one
within uncertainties.

Channel B
In Figure 1 (B), we show the so-called ⇢-channel, which
includes the ⇢⇢� vertex, relevant for the extraction of
the MDM of the ⇢ meson. The photon from the leptonic
side, in the VMD approach, couples to the vector me-
son, which then couple into a triple vector vertex. This
defines the ⇢ electromagnetic vertex times a global con-
stant identified with the g⇢⇡⇡, accounting for the strong
process. For the ⇢0 triple vector meson vertex, we take
the same structure as for the ⇢ case, this assumption has
been found to be appealing [88], with the corresponding
di↵erence in couplings. Moreover, using the values in Ta-
ble I the combination of couplings for the ⇢0 di↵ers from
the ⇢ by less than 10%. The amplitude is given by:

M
µ
B(p1, p2, p3, p4) = �e

g3⇢⇡⇡
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m2
⇢ D
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r12� D
��
⇢+ [s21]�

1
↵�� D

⌘�
⇢� [s43] r43⌘, (11)

where �1
↵�� = (1 + i �)�↵��, is the absorptive corrected

vertex at one-loop consistent with gauge invariance [50,
93–95], and � ⌘ �V /MV . The tree-level vertex Eq. (2)
for this momentum configuration takes the form:

�↵�� = (12)

g�� Q1↵ + �0 (q� g↵� � q� g�↵) + s21� g�↵ � s43� g↵�,

where q = s21+s43 and Q1 = s43�s21. We have set �0 ⌘

�(0) for simplicity, the dependence on q2 is accounted by
the neutral vector mesons coupled to the photon. The
simplified amplitude is:

M
µ
B(p1, p2, p3, p4) =

ieC
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D⇢� [s43]�D⇢+ [s21]
⌘r43 · r12

Q1 · q
Q1µ
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12

�o
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Channel C
In Figure 1 (C), we show the process driven by a contact
term (⇢⇢⇡⇡), whose amplitude can be writen in a general
form as:

M
µ
C(p1, p2, p3, p4) = i e

g⇢⇡⇡ g⇢⇢⇡⇡
g⇢

m2
⇢

D↵µ
⇢0 [q]�

1
↵� D⇢� [s43] r43� . (14)

The e↵ective coupling g⇢⇢⇡⇡ and vertex �1
↵� are fixed by

requiring gauge invariance of the sum of the (A), (B) and
(C) amplitudes. We have worked out the combination
of these amplitudes and profit from the Ward-Takahashi
identity, fulfilled by the V V � vertex, to present the am-
plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
ent contributions that combine with each other to build
the gauge invariant amplitude, and the role of the MDM.
In order to get the gauge invariant amplitude from the
three channels, we use the combination of the following
amplitudes:

M
µ
ABC24

= M
µ
A(p1, p2, p3, p4) +M

µ
A(p3, p4, p1, p2)

+M
µ
B(p1, p2, p3, p4) (15)

+M
µ
C(p1, p2, p3, p4) +M

µ
C(p3, p4, p1, p2).

The gauge invariant amplitude is then:

M
µ
ABC24

= i eC
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where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:

Lµ(a, b) ⌘
aµ

a · q
�

bµ

b · q
. (17)

A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):

M
µ
ABC42

= M
µ
A(p1, p4, p3, p2) +M

µ
A(p3, p2, p1, p4)

+M
µ
B(p1, p4, p3, p2) (18)

+M
µ
C(p1, p4, p3, p2) +M

µ
C(p3, p2, p1, p4),

which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
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includes the ⇢⇢� vertex, relevant for the extraction of
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defines the ⇢ electromagnetic vertex times a global con-
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the same structure as for the ⇢ case, this assumption has
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ble I the combination of couplings for the ⇢0 di↵ers from
the ⇢ by less than 10%. The amplitude is given by:

M
µ
B(p1, p2, p3, p4) = �e

g3⇢⇡⇡
g⇢

m2
⇢ D

↵µ
⇢[q]

r12� D
��
⇢+ [s21]�

1
↵�� D

⌘�
⇢� [s43] r43⌘, (11)

where �1
↵�� = (1 + i �)�↵��, is the absorptive corrected

vertex at one-loop consistent with gauge invariance [50,
93–95], and � ⌘ �V /MV . The tree-level vertex Eq. (2)
for this momentum configuration takes the form:

�↵�� = (12)

g�� Q1↵ + �0 (q� g↵� � q� g�↵) + s21� g�↵ � s43� g↵�,

where q = s21+s43 and Q1 = s43�s21. We have set �0 ⌘

�(0) for simplicity, the dependence on q2 is accounted by
the neutral vector mesons coupled to the photon. The
simplified amplitude is:

M
µ
B(p1, p2, p3, p4) =

ieC
n⇣

D⇢� [s43]�D⇢+ [s21]
⌘r43 · r12

Q1 · q
Q1µ

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

�
q · r12 r

µ
43 � q · r43 r

µ
12

�o
. (13)

Channel C
In Figure 1 (C), we show the process driven by a contact
term (⇢⇢⇡⇡), whose amplitude can be writen in a general
form as:

M
µ
C(p1, p2, p3, p4) = i e

g⇢⇡⇡ g⇢⇢⇡⇡
g⇢

m2
⇢

D↵µ
⇢0 [q]�

1
↵� D⇢� [s43] r43� . (14)

The e↵ective coupling g⇢⇢⇡⇡ and vertex �1
↵� are fixed by

requiring gauge invariance of the sum of the (A), (B) and
(C) amplitudes. We have worked out the combination
of these amplitudes and profit from the Ward-Takahashi
identity, fulfilled by the V V � vertex, to present the am-
plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
ent contributions that combine with each other to build
the gauge invariant amplitude, and the role of the MDM.
In order to get the gauge invariant amplitude from the
three channels, we use the combination of the following
amplitudes:

M
µ
ABC24

= M
µ
A(p1, p2, p3, p4) +M

µ
A(p3, p4, p1, p2)

+M
µ
B(p1, p2, p3, p4) (15)

+M
µ
C(p1, p2, p3, p4) +M

µ
C(p3, p4, p1, p2).

The gauge invariant amplitude is then:

M
µ
ABC24

= i eC
n
Lµ(x1, x3)

⇣
D⇢� [s43] r43 · z12 �D⇢+ [s21] r12 · z34

⌘

+ r43 · r12
⇣
D⇢� [s43]L

µ(Q1, x3)�D⇢+ [s21]L
µ(Q1, x1)

⌘

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

⇣
q · r12 r

µ
43 � q · r43 r

µ
12

⌘o
, (16)

where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:

Lµ(a, b) ⌘
aµ

a · q
�

bµ

b · q
. (17)

A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):

M
µ
ABC42

= M
µ
A(p1, p4, p3, p2) +M

µ
A(p3, p2, p1, p4)

+M
µ
B(p1, p4, p3, p2) (18)

+M
µ
C(p1, p4, p3, p2) +M

µ
C(p3, p2, p1, p4),

which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
Appendix A.

4

the case for the ⇢0, with C ! (g2⇢⇡⇡g⇢0⇡⇡/g⇢0)m2
⇢0 D⇢0 [q].

Given the scarce information on the ⇢0 decay modes, in
the previous analysis [66, 67] the following combination
of coupling constants for the ⇢0 was assumed:

m2
⇢0g⇢0

g⇢0⇡⇡
= X

m2
⇢g⇢

g⇢⇡⇡
, (10)

where the proportionality constant X = 1 was taken.
The idea behind this assumption was to resemble typical
VMD relations, expecting the particularities of the ra-
dial excitation properties to drop out when considering
the ratios. Deviations of up to 20% were explored and
considered in the final result uncertainty. In this work,
we do not rely on this ansatz but make use of additional
theoretical and experimental information. In Table I, we
show the values of the couplings, consistent with a large
set of observables [82], which favors X = 1.3± 0.4. This
is a larger value but in agreement with the previous one
within uncertainties.

Channel B
In Figure 1 (B), we show the so-called ⇢-channel, which
includes the ⇢⇢� vertex, relevant for the extraction of
the MDM of the ⇢ meson. The photon from the leptonic
side, in the VMD approach, couples to the vector me-
son, which then couple into a triple vector vertex. This
defines the ⇢ electromagnetic vertex times a global con-
stant identified with the g⇢⇡⇡, accounting for the strong
process. For the ⇢0 triple vector meson vertex, we take
the same structure as for the ⇢ case, this assumption has
been found to be appealing [88], with the corresponding
di↵erence in couplings. Moreover, using the values in Ta-
ble I the combination of couplings for the ⇢0 di↵ers from
the ⇢ by less than 10%. The amplitude is given by:

M
µ
B(p1, p2, p3, p4) = �e

g3⇢⇡⇡
g⇢

m2
⇢ D

↵µ
⇢[q]

r12� D
��
⇢+ [s21]�

1
↵�� D

⌘�
⇢� [s43] r43⌘, (11)

where �1
↵�� = (1 + i �)�↵��, is the absorptive corrected

vertex at one-loop consistent with gauge invariance [50,
93–95], and � ⌘ �V /MV . The tree-level vertex Eq. (2)
for this momentum configuration takes the form:

�↵�� = (12)

g�� Q1↵ + �0 (q� g↵� � q� g�↵) + s21� g�↵ � s43� g↵�,

where q = s21+s43 and Q1 = s43�s21. We have set �0 ⌘

�(0) for simplicity, the dependence on q2 is accounted by
the neutral vector mesons coupled to the photon. The
simplified amplitude is:

M
µ
B(p1, p2, p3, p4) =

ieC
n⇣

D⇢� [s43]�D⇢+ [s21]
⌘r43 · r12

Q1 · q
Q1µ

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

�
q · r12 r

µ
43 � q · r43 r

µ
12

�o
. (13)

Channel C
In Figure 1 (C), we show the process driven by a contact
term (⇢⇢⇡⇡), whose amplitude can be writen in a general
form as:

M
µ
C(p1, p2, p3, p4) = i e

g⇢⇡⇡ g⇢⇢⇡⇡
g⇢

m2
⇢

D↵µ
⇢0 [q]�

1
↵� D⇢� [s43] r43� . (14)

The e↵ective coupling g⇢⇢⇡⇡ and vertex �1
↵� are fixed by

requiring gauge invariance of the sum of the (A), (B) and
(C) amplitudes. We have worked out the combination
of these amplitudes and profit from the Ward-Takahashi
identity, fulfilled by the V V � vertex, to present the am-
plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
ent contributions that combine with each other to build
the gauge invariant amplitude, and the role of the MDM.
In order to get the gauge invariant amplitude from the
three channels, we use the combination of the following
amplitudes:

M
µ
ABC24

= M
µ
A(p1, p2, p3, p4) +M

µ
A(p3, p4, p1, p2)

+M
µ
B(p1, p2, p3, p4) (15)

+M
µ
C(p1, p2, p3, p4) +M

µ
C(p3, p4, p1, p2).

The gauge invariant amplitude is then:

M
µ
ABC24

= i eC
n
Lµ(x1, x3)

⇣
D⇢� [s43] r43 · z12 �D⇢+ [s21] r12 · z34

⌘

+ r43 · r12
⇣
D⇢� [s43]L

µ(Q1, x3)�D⇢+ [s21]L
µ(Q1, x1)

⌘

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

⇣
q · r12 r

µ
43 � q · r43 r

µ
12

⌘o
, (16)

where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:

Lµ(a, b) ⌘
aµ

a · q
�

bµ

b · q
. (17)

A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):

M
µ
ABC42

= M
µ
A(p1, p4, p3, p2) +M

µ
A(p3, p2, p1, p4)

+M
µ
B(p1, p4, p3, p2) (18)

+M
µ
C(p1, p4, p3, p2) +M

µ
C(p3, p2, p1, p4),

which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
Appendix A.

4

the case for the ⇢0, with C ! (g2⇢⇡⇡g⇢0⇡⇡/g⇢0)m2
⇢0 D⇢0 [q].

Given the scarce information on the ⇢0 decay modes, in
the previous analysis [66, 67] the following combination
of coupling constants for the ⇢0 was assumed:

m2
⇢0g⇢0

g⇢0⇡⇡
= X

m2
⇢g⇢

g⇢⇡⇡
, (10)

where the proportionality constant X = 1 was taken.
The idea behind this assumption was to resemble typical
VMD relations, expecting the particularities of the ra-
dial excitation properties to drop out when considering
the ratios. Deviations of up to 20% were explored and
considered in the final result uncertainty. In this work,
we do not rely on this ansatz but make use of additional
theoretical and experimental information. In Table I, we
show the values of the couplings, consistent with a large
set of observables [82], which favors X = 1.3± 0.4. This
is a larger value but in agreement with the previous one
within uncertainties.

Channel B
In Figure 1 (B), we show the so-called ⇢-channel, which
includes the ⇢⇢� vertex, relevant for the extraction of
the MDM of the ⇢ meson. The photon from the leptonic
side, in the VMD approach, couples to the vector me-
son, which then couple into a triple vector vertex. This
defines the ⇢ electromagnetic vertex times a global con-
stant identified with the g⇢⇡⇡, accounting for the strong
process. For the ⇢0 triple vector meson vertex, we take
the same structure as for the ⇢ case, this assumption has
been found to be appealing [88], with the corresponding
di↵erence in couplings. Moreover, using the values in Ta-
ble I the combination of couplings for the ⇢0 di↵ers from
the ⇢ by less than 10%. The amplitude is given by:

M
µ
B(p1, p2, p3, p4) = �e

g3⇢⇡⇡
g⇢

m2
⇢ D

↵µ
⇢[q]

r12� D
��
⇢+ [s21]�

1
↵�� D

⌘�
⇢� [s43] r43⌘, (11)

where �1
↵�� = (1 + i �)�↵��, is the absorptive corrected

vertex at one-loop consistent with gauge invariance [50,
93–95], and � ⌘ �V /MV . The tree-level vertex Eq. (2)
for this momentum configuration takes the form:

�↵�� = (12)

g�� Q1↵ + �0 (q� g↵� � q� g�↵) + s21� g�↵ � s43� g↵�,

where q = s21+s43 and Q1 = s43�s21. We have set �0 ⌘

�(0) for simplicity, the dependence on q2 is accounted by
the neutral vector mesons coupled to the photon. The
simplified amplitude is:

M
µ
B(p1, p2, p3, p4) =

ieC
n⇣

D⇢� [s43]�D⇢+ [s21]
⌘r43 · r12

Q1 · q
Q1µ

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

�
q · r12 r

µ
43 � q · r43 r

µ
12

�o
. (13)

Channel C
In Figure 1 (C), we show the process driven by a contact
term (⇢⇢⇡⇡), whose amplitude can be writen in a general
form as:

M
µ
C(p1, p2, p3, p4) = i e

g⇢⇡⇡ g⇢⇢⇡⇡
g⇢

m2
⇢

D↵µ
⇢0 [q]�

1
↵� D⇢� [s43] r43� . (14)

The e↵ective coupling g⇢⇢⇡⇡ and vertex �1
↵� are fixed by

requiring gauge invariance of the sum of the (A), (B) and
(C) amplitudes. We have worked out the combination
of these amplitudes and profit from the Ward-Takahashi
identity, fulfilled by the V V � vertex, to present the am-
plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
ent contributions that combine with each other to build
the gauge invariant amplitude, and the role of the MDM.
In order to get the gauge invariant amplitude from the
three channels, we use the combination of the following
amplitudes:

M
µ
ABC24

= M
µ
A(p1, p2, p3, p4) +M

µ
A(p3, p4, p1, p2)

+M
µ
B(p1, p2, p3, p4) (15)

+M
µ
C(p1, p2, p3, p4) +M

µ
C(p3, p4, p1, p2).

The gauge invariant amplitude is then:

M
µ
ABC24

= i eC
n
Lµ(x1, x3)

⇣
D⇢� [s43] r43 · z12 �D⇢+ [s21] r12 · z34

⌘

+ r43 · r12
⇣
D⇢� [s43]L

µ(Q1, x3)�D⇢+ [s21]L
µ(Q1, x1)

⌘

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

⇣
q · r12 r

µ
43 � q · r43 r

µ
12

⌘o
, (16)

where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:

Lµ(a, b) ⌘
aµ

a · q
�

bµ

b · q
. (17)

A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):

M
µ
ABC42

= M
µ
A(p1, p4, p3, p2) +M

µ
A(p3, p2, p1, p4)

+M
µ
B(p1, p4, p3, p2) (18)

+M
µ
C(p1, p4, p3, p2) +M

µ
C(p3, p2, p1, p4),

which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
Appendix A.

16

The amplitude is:



G. Toledo

Channel C

58 El Proceso e+e− → π+π−2π0.

como resultado esta misma expresión, por lo que a esta amplitud se le tiene que multiplicar
por un factor 2 para considerar este intercambio.

• Canal C.

El canal C, que es junto con los canales A y B un conjunto invariante de norma, se
muestra en la Figura 6.4.
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Figura 6.4: Canal C.

El esquema de VMD, no nos dice cuanto debeŕıa valer el vértice entre dos piones y dos
mesones ρ, pero es gracias a que sabemos que este canal junto con los anteriores forman
un conjunto invariante de norma que lo podemos conocer. Para ello propongamos que la
amplitud de este proceso es
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en donde desconocemos a la constante de acoplamiento gρρππ (acoplamiento entre dos piones
y dos ρ) aśı como al tensor Tγδ, que es la estructura del vértice para estas 4 part́ıculas. Ahora
bien, invariancia de norma nos dice que si consideramos el decaimiento del mesón ρ0 inicial
por los canales anteriores y sustituimos su vector de polarización por su momento (qµ), se
debe cumplir que

qµ(MrAµ +MrBµ +MrCµ) = 0. (6.11)

Haciendo la operación qµ(MrAµ +MrBµ) sin tomar los factores que vienen del ρ0 inicial
en las expresiones 6.7 y 6.9, se obtiene como resultado
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6.11, con −qµ(MrCµ) y tomando en cuenta la expresión 6.10 encontramos que
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Gauge invariance  of channels A, B y C fixes this contribution, applied 
for every form corresponding to the Bose and C symmetries. 

4

the case for the ⇢0, with C ! (g2⇢⇡⇡g⇢0⇡⇡/g⇢0)m2
⇢0 D⇢0 [q].

Given the scarce information on the ⇢0 decay modes, in
the previous analysis [66, 67] the following combination
of coupling constants for the ⇢0 was assumed:

m2
⇢0g⇢0

g⇢0⇡⇡
= X

m2
⇢g⇢

g⇢⇡⇡
, (10)

where the proportionality constant X = 1 was taken.
The idea behind this assumption was to resemble typical
VMD relations, expecting the particularities of the ra-
dial excitation properties to drop out when considering
the ratios. Deviations of up to 20% were explored and
considered in the final result uncertainty. In this work,
we do not rely on this ansatz but make use of additional
theoretical and experimental information. In Table I, we
show the values of the couplings, consistent with a large
set of observables [82], which favors X = 1.3± 0.4. This
is a larger value but in agreement with the previous one
within uncertainties.

Channel B
In Figure 1 (B), we show the so-called ⇢-channel, which
includes the ⇢⇢� vertex, relevant for the extraction of
the MDM of the ⇢ meson. The photon from the leptonic
side, in the VMD approach, couples to the vector me-
son, which then couple into a triple vector vertex. This
defines the ⇢ electromagnetic vertex times a global con-
stant identified with the g⇢⇡⇡, accounting for the strong
process. For the ⇢0 triple vector meson vertex, we take
the same structure as for the ⇢ case, this assumption has
been found to be appealing [88], with the corresponding
di↵erence in couplings. Moreover, using the values in Ta-
ble I the combination of couplings for the ⇢0 di↵ers from
the ⇢ by less than 10%. The amplitude is given by:

M
µ
B(p1, p2, p3, p4) = �e
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where �1
↵�� = (1 + i �)�↵��, is the absorptive corrected

vertex at one-loop consistent with gauge invariance [50,
93–95], and � ⌘ �V /MV . The tree-level vertex Eq. (2)
for this momentum configuration takes the form:

�↵�� = (12)

g�� Q1↵ + �0 (q� g↵� � q� g�↵) + s21� g�↵ � s43� g↵�,

where q = s21+s43 and Q1 = s43�s21. We have set �0 ⌘

�(0) for simplicity, the dependence on q2 is accounted by
the neutral vector mesons coupled to the photon. The
simplified amplitude is:
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Channel C
In Figure 1 (C), we show the process driven by a contact
term (⇢⇢⇡⇡), whose amplitude can be writen in a general
form as:
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The e↵ective coupling g⇢⇢⇡⇡ and vertex �1
↵� are fixed by

requiring gauge invariance of the sum of the (A), (B) and
(C) amplitudes. We have worked out the combination
of these amplitudes and profit from the Ward-Takahashi
identity, fulfilled by the V V � vertex, to present the am-
plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
ent contributions that combine with each other to build
the gauge invariant amplitude, and the role of the MDM.
In order to get the gauge invariant amplitude from the
three channels, we use the combination of the following
amplitudes:
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where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:

Lµ(a, b) ⌘
aµ

a · q
�

bµ

b · q
. (17)

A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):
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µ
A(p1, p4, p3, p2) +M

µ
A(p3, p2, p1, p4)

+M
µ
B(p1, p4, p3, p2) (18)

+M
µ
C(p1, p4, p3, p2) +M

µ
C(p3, p2, p1, p4),

which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
Appendix A.
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where the proportionality constant X = 1 was taken.
The idea behind this assumption was to resemble typical
VMD relations, expecting the particularities of the ra-
dial excitation properties to drop out when considering
the ratios. Deviations of up to 20% were explored and
considered in the final result uncertainty. In this work,
we do not rely on this ansatz but make use of additional
theoretical and experimental information. In Table I, we
show the values of the couplings, consistent with a large
set of observables [82], which favors X = 1.3± 0.4. This
is a larger value but in agreement with the previous one
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plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
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where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:
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A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):
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which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
Appendix A.

The  explicit gauge invariant amplitude is:

Using a particular set of amplitudes, corresponding to the  charge conjugation 

Similar expression is obtained for the neutral pion exchange
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Channel D

59 El Proceso e+e− → π+π−2π0.

Con esto tenemos finalmente una expresión para la amplitud de este diagrama pues cono-
cemos todos los elementos para la expresión 6.10 y por la misma construcción garantizamos
que los tres canales anteriores cumplen con la invariancia de norma.

• Canal D.

El canal D, presentado en la Figura 6.5, es según [40] él mas importante a bajas enerǵıas
(E< 1 GeV). Como ya se ha estudiado en el caṕıtulo anterior en principio este el canal

ρ0

π0

π0

π+

π−

ρ0ω

Figura 6.5: Canal D.

de la ω podŕıa tener otro diagrama que involucrara un término de contacto; pero no lo
consideraremos en este trabajo.

La amplitud para este canal esta dada por

MrDµ = −2

(

−
iem2

ρ

gρ
δµα

)

(igωρπ)
2 (igρππ) (P [q, ρ]− P [q, ρ′])P [q − p2,ω]

{P [s13, ρ] + P [s14, ρ] + P [s34, ρ]} εαξθγε
γ

φησ qξpφ1p
θ
2p

η
3p

σ
4 . (6.14)

Para este canal es fácil ver que su amplitud es invariante de norma por si misma; fijemos
nuestra atención en los tensores Levi-Civita. Al contraer esta expresión con el momento qµ

tendŕıamos que
qµMrDµ ∝ εµξθγε

γ
φησ qµqξpφ1p

θ
2p

η
3p

σ
4 , (6.15)

como podemos apreciar el momento q es par ante el intercambio de los ı́ndices µ y ξ, sin
embargo estos indices pertenecen al mismo Levi-Civita, que es impar ante el intercambio de
cualquiera de sus cuatro ı́ndices, por lo que esta expresión es automáticamente cero.

• Canal E.

El canal E, presentado en la Figura 6.6 tiene una amplitud dada por

MrEµ =

(

−
iem2

ρ

gρ
δµξ

)

(igaρπ)
2 (igρππ) (P [q, ρ]− P [q, ρ′])P [q − p1, a]P [s34, ρ]

(

−gξα
)

{q. (q − p1) gαβ − qβ (q − p1)α}
(

−gβγ + F [a] (q − p1)
β (q − p1)

γ
)

{s34. (q − p1) gγδ − s34γ (q − p1)δ}
(

−gδη + F [ρ]sδ34s
η
34

)

r43η. (6.16)
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6 D. Garćıa Gudiño and G. Toledo Sánchez

respectively, considering the ρ as an SU(2) gauge boson and generalizing to the ρ′.
These effects are not arbitrary as they are linked by the electric charge form factor
(see subsection H, below).

Let us illustrate the form of the reduced amplitude, considering only the ρ meson
triple vertex:

MBµ = e

(

m2
ρg

3
ρππ

gρ

)

Dµν [q, ρ] ΓνθτDθδ [s12, ρ]

Dτη [s34, ρ] rδ
21r

η
34, (12)

the only free parameters are those involved in the electromagnetic vertex Γνθτ Eqn.
(2). Namely, the β and γ parameters, since the electric charge is fixed.
We have similar expressions for the case when the ρ′ is involved, which are added
under the same considerations mentioned in the previous section. For the ρ′ triple
vector meson vertex, we take the same structure and coupling as for the ρ case, this
assumption has been found to be appealing 20, and its implications in our analysis
will be discussed below.

3.3. Channel C

The diagram (C) in Figure 1 includes a ρρππ contact term, with the subsequent
decay of the ρ into two pions. The contact coupling is fixed by requiring gauge
invariance of the sum of the (A), (B) and (C) amplitudes:

qµ(hAµ + hBµ + hCµ) = 0. (13)

The reduced amplitude can be written as:

MCµ =

(

em2
ρ

gρ
gρππ

)

Dµν [q, ρ]gρρππT νδDδγ [q, ρ]rγ
34 (14)

where the gρρππ coupling and the T νδ tensor are fixed by the gauge invariance
condition. Note that the gauge invariance condition is applied for every particular
form of the corresponding contribution from Bose-Einstein symmetry and charge
conjugation, each one producing an equivalent form for the contact contribution.

3.4. Channel D

This channel corresponds to the contribution of the ω and ρ meson intermediate
states as depicted in the diagram (D) of Figure 1. The ω − ρ(ρ′) − π coupling is
given by the following interaction Lagrangian:

Lω = gωρπδabϵ
µνλσ∂µων∂λρa

σπb. (15)

The corresponding reduced amplitude is given by:

MDµ = −e
m2

ρgρππg2
ωρπ

gρ
Dµν [q, ρ]ϵξνγαqξp2γ

Dαη [q − p2, ω] ϵφησθ(q − p2)φs34σDθλ [s34, ρ] rλ
34 (16)

5

Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:

M
µ
D(p1, p2, p3, p4) = �i e

⇣
Cd + ei✓ C 0

d

⌘
D![q � p2]

A[(q � p2)
2]V 1µ

! , (19)

where

A[(q � p2)
2] = 6 g3⇡

+ 2 g⇢⇡⇡ g!⇢⇡

⇣
D⇢0 [s13] +D⇢+ [s41] +D⇢� [s43]

⌘

+ 2 g⇢0⇡⇡ g!⇢0⇡

⇣
D⇢0 [s13] +D⇢0 [s41] +D⇢0 [s43]

⌘
, (20)

and

V 1µ
! = ✏↵⌘�� ✏

µ��� q� p2� p↵1 p⌘3 p
�
4 . (21)

The ⇢ and ⇢0 are added with a relative phase ✓ and the
corresponding coe�cients are

Cd =
g!⇢⇡

g⇢
m2

⇢ D⇢[q], C 0
d =

g!⇢0⇡

g⇢0
m2

⇢0 D⇢0 [q]. (22)

A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant

Parameter Value
g⇢⇡⇡ 5.9485 ± 0.0776
g⇢ 4.9621 ± 0.0940
g! 16.624 ± 0.4727

g!⇢⇡ (GeV�1) 11.294 ± 0.384
g⇢0⇡⇡ 5.7968 ± 0.4442

g!⇢0⇡ (GeV�1) 3.613 ± 0.742
g3⇡ (GeV�3) -53.494 ± 7.1857

g⇢0 12.845 ± 0.396
✓ (in ⇡ units) 0.8967 ± 0.0416

TABLE I. Parameters obtained from a fit to a set of observ-
ables as in Ref. [82] and adding the e+e� ! !⇡ ! ⇡+⇡�2⇡0

channel data from BaBar.

FIG. 3. e+e� ! !⇡0 ! ⇡+⇡�2⇡0 cross section, the solid line
is the result obtained in this work using the parameters given
in Table Idata and the symbols correspond to the data from
BaBar [81] and the rescaled data from SND [62, 63, 97] and
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form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:
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Thus, the amplitude, after simplifications, become
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⇢ D⇢[q] and the tensor func-

5

Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:
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A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant
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TABLE I. Parameters obtained from a fit to a set of observ-
ables as in Ref. [82] and adding the e+e� ! !⇡ ! ⇡+⇡�2⇡0

channel data from BaBar.
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is the result obtained in this work using the parameters given
in Table Idata and the symbols correspond to the data from
BaBar [81] and the rescaled data from SND [62, 63, 97] and
CMD2 [100]) measured for the final state ! ! ⇡+⇡�⇡0.

form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:
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Thus, the amplitude, after simplifications, become
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Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:
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A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant
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g⇢ 4.9621 ± 0.0940
g! 16.624 ± 0.4727
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ables as in Ref. [82] and adding the e+e� ! !⇡ ! ⇡+⇡�2⇡0

channel data from BaBar.
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is the result obtained in this work using the parameters given
in Table Idata and the symbols correspond to the data from
BaBar [81] and the rescaled data from SND [62, 63, 97] and
CMD2 [100]) measured for the final state ! ! ⇡+⇡�⇡0.

form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:
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Thus, the amplitude, after simplifications, become
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Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:
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A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant
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g⇢ 4.9621 ± 0.0940
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g⇢0⇡⇡ 5.7968 ± 0.4442
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ables as in Ref. [82] and adding the e+e� ! !⇡ ! ⇡+⇡�2⇡0

channel data from BaBar.

FIG. 3. e+e� ! !⇡0 ! ⇡+⇡�2⇡0 cross section, the solid line
is the result obtained in this work using the parameters given
in Table Idata and the symbols correspond to the data from
BaBar [81] and the rescaled data from SND [62, 63, 97] and
CMD2 [100]) measured for the final state ! ! ⇡+⇡�⇡0.

form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:
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Thus, the amplitude, after simplifications, become
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Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:
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A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant
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TABLE I. Parameters obtained from a fit to a set of observ-
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channel data from BaBar.
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form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:
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In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:
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A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant

Parameter Value
g⇢⇡⇡ 5.9485 ± 0.0776
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g! 16.624 ± 0.4727

g!⇢⇡ (GeV�1) 11.294 ± 0.384
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form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:

La1 = 2 ga1⇢⇡

⇣
⇢µ a

µ
1 q · k � @⌫ ⇢

µ @µ a
⌫
1

⌘
. (23)

Thus, the amplitude, after simplifications, become

M
µ
E(p1, p2, p3, p4) = �i eCa D⇢� [s43]Da1 [q � p1] r

�
43

Fµ↵(q � p1, q)F↵�(q � p1, s43),(24)

where Ca = (g2a1⇢⇡ g⇢⇡⇡/g⇢)m
2
⇢ D⇢[q] and the tensor func-
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ρ0

π+

π0

π−

π0

ρ−a1

Figura 6.6: Canal E para la producción de 4 piones: ρ→ πa1 → πρπ → 4π.

que puede verificarse de manera directa que es idénticamente igual a cero.

• Canal F.

ρ0
ρ0

σ

π+

π−

π0

π0

Figura 6.7: Canal F para la producción de 4 piones: ρ→ ρσ(f0)→ 4π.

En la Figura 6.7 presentamos el diagrama correspondiente al canal F, que procede por
la emisión de un mesón ρ y un mesón σ(600) (o f0(980)) por parte del mesón ρ original, y
luego por el decaimiento de ambos a dos piones cada uno. Este canal en particular carece de
intercambios de momento debido a que los dos piones neutros provienen del mismo vértice y
además hemos ignorado el vértice del mesón ρ0 en piones neutros. Para este canal la amplitud
viene dada por

MrFµ =

(

−
iem2

ρ

gρ
δµα

)

(igρρσ) (igρππ) (igσππ) (P [q, ρ]− P [q, ρ′])P [s13, ρ]P [s24, σ]

{q.s13rα31 − q.r31s
α
31} . (6.22)

98 Constantes de Acoplamiento.

a1

ρ−,0

π0,−

Figura E.4: Proceso a1 → ρ−,0π0,−.

ecuación

ga1ρπ =

(

12πΓa1→ρ−,0π0,−

√

(ma1
2 +mρ

2 −mπ
2) 2 − 4ma1

2mρ
2

ma1
3

1
2 (ma1

2 +mρ
2 −mπ

2) 2 +ma1
2mρ

2

)

1
2 .

(E-13)
Utilizando los valores experimentales que presentamos en el capitulo anterior tenemos un
valor numérico para esta constante que va de los 2.55 a los 3.95 GeV, esto debido al rango en
el ancho de decaimiento del mesón a1; y finalmente tomando un promedio de estos valores
obtenemos que nuestro valor para esta constante es

ga1ρπ = 3.25± 0.3 GeV (E-14)

Acoplamiento ρ− π − π: gρππ.

Esta constante al igual que las anteriores se obtiene de un decaimiento a dos cuerpos.
El proceso a considerar es el decaimiento del mesón ρ a dos piones (Fig. E.5), ya sean
cargados o neutros; sin embargo debido a que el decaimiento de un mesón ρ neutro a dos
piones igualmente neutros tiene una probabilidad de un orden de magnitud menor que la
correspondiente al caso cargado, se ha ignorado este decaimiento durante el calculo.

El elemento de matriz para este proceso esta dado por

ρ

π

π

Figura E.5: Proceso ρ → ππ.

M = −gρππεµ(p1 − p2)
µ; (E-15)
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Fig. 2. Cross section for the e+e− → π+π−2π0 process due exclusively to the ω channel (D).
Data from BaBar and SND are fitted to obtain the gωρ′π coupling.

where the ρ intermediate state is threefold, as it can be charged and neutral. An
analogous expression is obtained for the ρ′. This and the remaining diagrams are
gauge invariant by themselves. The required couplings are gωρπ and gωρ′π. The first
one has been determined to be gωρπ = 14.7± 0.1 GeV−1 from an analysis of vector
mesons radiative decays, the ω → 3π decay width and the e+e− → 3π cross section
24. To find the gωρ′π coupling we fit the SND 16 and BaBar 8 data for this channel
(E<2 GeV), with this coupling as the only free parameter. Requiring the sum of the
χ2 of the fit to each data set to lead to a minimum (χ2

SND/DoF +χ2
BABAR/DoF ),

we get gωρ′π = 10.8± 0.6 GeV−1, where the error bar accounts for the difference to
fit both data sets individually. In Figure 2, we show the best fit under this criterium,
with the assumption of a relative phase of 1800 between the ρ and ρ′ contributions.
This assumption was explored and its role found to be relatively significant in the
energy region above Mρ′ ; as we will show later, in that region the contribution from
this channel to the total process becomes subdominant and therefore the effect of
the phase itself is mild.

3.5. Channel E

This channel involves the a1 axial vector meson and the ρ (ρ′) meson intermediate
states as depicted in the diagram (E) of Figure 1. The simplest form of the effective
Lagrangian for the a1(q)− ρ(k)− π(p) strong interaction (where q, k and p are the
corresponding four momenta) is taken to be 25:

La1
= 2ga1ρπ(k · qρµaµ

1 − ∂νρµ∂µaν
1) (17)

N. Isgur, C. Morningstar, and C. Reader, Phys. Rev. D 39 1357(1989)

The corresponding coupling to ρ′ is taken to be the same. As we will show later, this channel is very suppressed in the 
whole region of study and deviations from this assumption are expected to have a very small effect.
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Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:

M
µ
D(p1, p2, p3, p4) = �i e

⇣
Cd + ei✓ C 0

d

⌘
D![q � p2]

A[(q � p2)
2]V 1µ

! , (19)

where

A[(q � p2)
2] = 6 g3⇡

+ 2 g⇢⇡⇡ g!⇢⇡

⇣
D⇢0 [s13] +D⇢+ [s41] +D⇢� [s43]

⌘

+ 2 g⇢0⇡⇡ g!⇢0⇡

⇣
D⇢0 [s13] +D⇢0 [s41] +D⇢0 [s43]

⌘
, (20)

and

V 1µ
! = ✏↵⌘�� ✏

µ��� q� p2� p↵1 p⌘3 p
�
4 . (21)

The ⇢ and ⇢0 are added with a relative phase ✓ and the
corresponding coe�cients are

Cd =
g!⇢⇡

g⇢
m2

⇢ D⇢[q], C 0
d =

g!⇢0⇡

g⇢0
m2

⇢0 D⇢0 [q]. (22)

A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant

Parameter Value
g⇢⇡⇡ 5.9485 ± 0.0776
g⇢ 4.9621 ± 0.0940
g! 16.624 ± 0.4727

g!⇢⇡ (GeV�1) 11.294 ± 0.384
g⇢0⇡⇡ 5.7968 ± 0.4442

g!⇢0⇡ (GeV�1) 3.613 ± 0.742
g3⇡ (GeV�3) -53.494 ± 7.1857

g⇢0 12.845 ± 0.396
✓ (in ⇡ units) 0.8967 ± 0.0416

TABLE I. Parameters obtained from a fit to a set of observ-
ables as in Ref. [82] and adding the e+e� ! !⇡ ! ⇡+⇡�2⇡0

channel data from BaBar.

FIG. 3. e+e� ! !⇡0 ! ⇡+⇡�2⇡0 cross section, the solid line
is the result obtained in this work using the parameters given
in Table Idata and the symbols correspond to the data from
BaBar [81] and the rescaled data from SND [62, 63, 97] and
CMD2 [100]) measured for the final state ! ! ⇡+⇡�⇡0.

form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:

La1 = 2 ga1⇢⇡

⇣
⇢µ a

µ
1 q · k � @⌫ ⇢

µ @µ a
⌫
1

⌘
. (23)

Thus, the amplitude, after simplifications, become

M
µ
E(p1, p2, p3, p4) = �i eCa D⇢� [s43]Da1 [q � p1] r

�
43

Fµ↵(q � p1, q)F↵�(q � p1, s43),(24)

where Ca = (g2a1⇢⇡ g⇢⇡⇡/g⇢)m
2
⇢ D⇢[q] and the tensor func- 6

tion is given by:

Fµ↵(a, b) ⌘ a · b gµ↵ � aµb↵. (25)

The gauge invariance is explicit from the structure of
this tensor. Similar expressions are obtained for the
charged and neutral pions exchange. In all cases the ⇢0

contribution is added with the same considerations as in
the previous channels. The coupling ga1⇢⇡ = 3.25 ± 0.3
GeV�1 is determined from the a1 ! ⇢⇡ decay width.
Due to the lack of experimental information, the cou-
pling for the ⇢0 is considered to be the same.

Channel F
This channel involves the ⇢ meson and the scalar particle
intermediate states � (600) and f0(980). The e↵ective
Lagrangian for this channel is given by:

LS = gV1V2S V1µ V
⌫
2 S + gSP1P2 S P1 P2, (26)

where gV1V2S and gSP1P2 are the e↵ective couplings. The
simplified amplitude is given by

M
µ
F�

(p1, p2, p3, p4) = i eC� D�[s24]D⇢0 [s31]

Fµ�(s31, q) r31� , (27)

where the propagator of the � meson is taken in a com-
plex mass form and C� = (g�⇡⇡ g⇢⇢� g⇢⇡⇡)/g⇢)m2

⇢ D⇢[q].
Notice that this channel has neither neutral nor
charged pions exchange, since they are emitted from
the same vertex. Using VMD relations, the coupling
g⇢⇢� = �(e/g⇢) g⇢�� is determined using the ⇢ ! ��
decay width, which gives g⇢�� = 0.63 ± 0.15 and the
coupling g�⇡⇡ = 3.7±1.6 is determined from the � ! ⇡⇡
decay width. The contribution from the f(980) is similar
with the mass and width replaced accordingly and the
couplings are considered to be the same.

Channel G
This is a non-resonant channel of neither ⇢ nor ⇢0. It
includes an intermediate scalar particle, that can be both
the � and f(980). The neutral pions emission comes
from a single vertex, thus, we end up having only two
diagrams due to the charged pions exchange. Adding
the two amplitudes the amplitude is gauge invariant and
given by:

M
µ
G = i e (g�⇡⇡)

2 D�[s42]L
µ(x1, x3). (28)

The contribution from the f(980) is similar, with the
mass and width replaced accordingly and the couplings
are considered to be the same. As we pointed out
above, the information on the couplings and parameters
of the scalars are not well determined, producing a strong
source of uncertainties in the low energy regime.

In Figure 4, we plot the cross section in the low en-
ergy region (below 1.1 GeV). The result from our model
(solid line) is compared to experimental results from SND
[62, 63], BaBar data [81], OLYA, CMD2 and ND [56–
58, 61] (symbols), which are properly described. Our

FIG. 4. Total cross section e+e� ! ⇡+⇡�2⇡0 in the energy
region below 1.1 GeV, compared to several experimental data:
SND, BaBar, OLYA, CMD2 and ND.

study shows that, in this region, the cross section is dom-
inated by the (D) and (G) channels, consistent with what
has been found in previous analysis [88]. The uncer-
tainties associated to these channels come mainly from
the scalar particles couplings and the interference among
the channels, they are displayed in Figure 4 by the blue
shaded band. Notice that the band fades out as energy
increases and therefore have no impact in the outcome of
the analysis for the determination of the ⇢ MDM. Note
that the theoretical result quoted in [81], for the low en-
ergy region, corresponds to a single contribution. Our de-
scription involves several channels, whose couplings were
fixed from other observables.

III. THE ⇢ MDM FROM THE TOTAL CROSS
SECTION

We have computed the total cross section following the
PDG [102] convention and neglected the electron mass:

d� =
(2⇡)4 |M|2

4
p
(k+ · k�)2

�4
⇣
q �

nX

i=1

pi
⌘ nY

i=1

d3pi
(2⇡)3 2Ei

. (29)

The averaged squared amplitude |M|2 is built up from
the leptonic and hadronic parts discussed above:

|M|2 =
e2

q2
lµ⌫ h

µ⌫ , (30)

where the 1/q2 factor comes from the photon propagator,
hµ⌫ = Jµ J⌫† is the hadronic tensor obtained from the
hadronic currents discussed above, and lµ⌫ is the leptonic
tensor, given by:

lµ⌫ = k+µ k�⌫ + k�µ k+⌫ �
q2

2
gµ⌫ . (31)

The  explicit gauge invariant amplitude are:

The  gauge invariant tensor:
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Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:

M
µ
D(p1, p2, p3, p4) = �i e

⇣
Cd + ei✓ C 0

d

⌘
D![q � p2]

A[(q � p2)
2]V 1µ

! , (19)

where

A[(q � p2)
2] = 6 g3⇡

+ 2 g⇢⇡⇡ g!⇢⇡

⇣
D⇢0 [s13] +D⇢+ [s41] +D⇢� [s43]

⌘

+ 2 g⇢0⇡⇡ g!⇢0⇡

⇣
D⇢0 [s13] +D⇢0 [s41] +D⇢0 [s43]

⌘
, (20)

and

V 1µ
! = ✏↵⌘�� ✏

µ��� q� p2� p↵1 p⌘3 p
�
4 . (21)

The ⇢ and ⇢0 are added with a relative phase ✓ and the
corresponding coe�cients are

Cd =
g!⇢⇡

g⇢
m2

⇢ D⇢[q], C 0
d =

g!⇢0⇡

g⇢0
m2

⇢0 D⇢0 [q]. (22)

A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant

Parameter Value
g⇢⇡⇡ 5.9485 ± 0.0776
g⇢ 4.9621 ± 0.0940
g! 16.624 ± 0.4727

g!⇢⇡ (GeV�1) 11.294 ± 0.384
g⇢0⇡⇡ 5.7968 ± 0.4442

g!⇢0⇡ (GeV�1) 3.613 ± 0.742
g3⇡ (GeV�3) -53.494 ± 7.1857

g⇢0 12.845 ± 0.396
✓ (in ⇡ units) 0.8967 ± 0.0416

TABLE I. Parameters obtained from a fit to a set of observ-
ables as in Ref. [82] and adding the e+e� ! !⇡ ! ⇡+⇡�2⇡0

channel data from BaBar.

FIG. 3. e+e� ! !⇡0 ! ⇡+⇡�2⇡0 cross section, the solid line
is the result obtained in this work using the parameters given
in Table Idata and the symbols correspond to the data from
BaBar [81] and the rescaled data from SND [62, 63, 97] and
CMD2 [100]) measured for the final state ! ! ⇡+⇡�⇡0.

form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:

La1 = 2 ga1⇢⇡

⇣
⇢µ a

µ
1 q · k � @⌫ ⇢

µ @µ a
⌫
1

⌘
. (23)

Thus, the amplitude, after simplifications, become

M
µ
E(p1, p2, p3, p4) = �i eCa D⇢� [s43]Da1 [q � p1] r

�
43

Fµ↵(q � p1, q)F↵�(q � p1, s43),(24)

where Ca = (g2a1⇢⇡ g⇢⇡⇡/g⇢)m
2
⇢ D⇢[q] and the tensor func-
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60 El Proceso e+e− → π+π−2π0.

ρ0

π+

π0

π−

π0

ρ−a1

Figura 6.6: Canal E.

Al hacer de nuevo la contracción con el momento del mesón ρ0 para checar invariancia
de norma tenemos que

qµMrEµ ∝ [(s34. (q − p1)) (q. (q − p1)) (q.r43)− (r43. (q − p1)) (q. (q − p1)) (q.s34) +

((s34.p1) (q.r43)− (r43.p1) (q.s34)) (q. (q − p1))] , (6.17)

que puede verificarse de manera directa que es idénticamente igual a cero.

• Canal F.

ρ0
ρ0

σ

π+

π−

π0

π0

Figura 6.7: Canal F.

En la Figura 6.7 presentamos el diagrama correspondiente al canal F. Este canal en
particular carece de intercambios de momento debido a que los dos piones neutros provienen
del mismo vértice y además hemos ignorado el vértice del mesón ρ0 en piones neutros. Para
este canal la amplitud viene dada por

MrFµ =

(

−
iem2

ρ

gρ
δµα

)

(igρρσ) (igρππ) (igσππ) (P [q, ρ]− P [q, ρ′])P [s13, ρ]P [s24, σ]

{q.s13rα31 − q.r31s
α
31} . (6.18)
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The reduced amplitude is then:

MEµ =

(

e4m2
ρg

2
a1ρπgρππ

gρ

)

Dµν [q, ρ] (18)

(q · (q − p1)g
νλ − qν(q − p1)

λ)Dλα[q − p1, a1]

(s34 · (q − p1)g
αβ − sα

34(q − p1)
β)Dβγ [s34, ρ]rγ

34,

here the width of the a1 is taken as a constant and the coupling ga1ρπ = 3.25± 0.3
GeV−1 is determined from the a1 → ρπ decay. The corresponding coupling to ρ′ is
taken to be the same. As we will show later, this channel is very suppressed in the
whole region of study and deviations from this assumption are expected to have a
very small effect.

3.6. Channel F

This channel involves the ρ and a scalar particle intermediate states as depicted in
the diagram (F) of Figure 1. We consider the scalar to be both σ(600) and f0(980).
The interaction between the vector (V) and pseudoscalar (P) particles with the
scalar (S) are parameterised by:

LS = gV1V2SV1µV ν
2 S + gSP1P2

SP1P2 (19)

where gV1V2S and gSP1P2
are the effective coupling constants. The reduced amplitude

takes the following form:

MrFµ =

(

−
iem2

ρ

gρ

)

gρρσgρππgσππDµν [q, ρ]D[s24, σ]

Dνλ[q − s24, ρ]rα
13. (20)

The VMD relation gρρσ = −(e/gρ)gρσγ allows to determine gρρσ, where gρσγ =
0.63 ± 0.15 GeV−1 is determined from the ρ → σγ decay. The coupling gσππ =
3.7±1.6 GeV is determined from the σ → ππ decay. For the f(980) we use the same
coupling constants. The effect of the large uncertainties will be reflected in the low
energy regime of the cross section.

3.7. Channel G

We consider a non-resonant ρ and ρ′ channel, as represented in the diagram (G),
including an intermediate scalar particle, that can be both the σ and f(980). As we
pointed out above, the information on the couplings and parameters of the scalars
are not well determined, producing a strong source of uncertainties in the low energy
regime. As we will show below, this lack of precision do not affect the region of our
interest to determine the MDM of the ρ meson.
The reduced amplitude is given by:

MrGµ = 2eg2
σππD[q − p1, π]D[s24, σ]

(

p1µ −
q · p1

q · p3

p3µ

)

(21)

6

tion is given by:

Fµ↵(a, b) ⌘ a · b gµ↵ � aµb↵. (25)

The gauge invariance is explicit from the structure of
this tensor. Similar expressions are obtained for the
charged and neutral pions exchange. In all cases the ⇢0

contribution is added with the same considerations as in
the previous channels. The coupling ga1⇢⇡ = 3.25 ± 0.3
GeV�1 is determined from the a1 ! ⇢⇡ decay width.
Due to the lack of experimental information, the cou-
pling for the ⇢0 is considered to be the same.

Channel F
This channel involves the ⇢ meson and the scalar particle
intermediate states � (600) and f0(980). The e↵ective
Lagrangian for this channel is given by:

LS = gV1V2S V1µ V
⌫
2 S + gSP1P2 S P1 P2, (26)

where gV1V2S and gSP1P2 are the e↵ective couplings. The
simplified amplitude is given by

M
µ
F�
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⇢ D⇢[q].
Notice that this channel has neither neutral nor
charged pions exchange, since they are emitted from
the same vertex. Using VMD relations, the coupling
g⇢⇢� = �(e/g⇢) g⇢�� is determined using the ⇢ ! ��
decay width, which gives g⇢�� = 0.63 ± 0.15 and the
coupling g�⇡⇡ = 3.7±1.6 is determined from the � ! ⇡⇡
decay width. The contribution from the f(980) is similar
with the mass and width replaced accordingly and the
couplings are considered to be the same.

Channel G
This is a non-resonant channel of neither ⇢ nor ⇢0. It
includes an intermediate scalar particle, that can be both
the � and f(980). The neutral pions emission comes
from a single vertex, thus, we end up having only two
diagrams due to the charged pions exchange. Adding
the two amplitudes the amplitude is gauge invariant and
given by:

M
µ
G = i e (g�⇡⇡)

2 D�[s42]L
µ(x1, x3). (28)

The contribution from the f(980) is similar, with the
mass and width replaced accordingly and the couplings
are considered to be the same. As we pointed out
above, the information on the couplings and parameters
of the scalars are not well determined, producing a strong
source of uncertainties in the low energy regime.

In Figure 4, we plot the cross section in the low en-
ergy region (below 1.1 GeV). The result from our model
(solid line) is compared to experimental results from SND
[62, 63], BaBar data [81], OLYA, CMD2 and ND [56–
58, 61] (symbols), which are properly described. Our

FIG. 4. Total cross section e+e� ! ⇡+⇡�2⇡0 in the energy
region below 1.1 GeV, compared to several experimental data:
SND, BaBar, OLYA, CMD2 and ND.

study shows that, in this region, the cross section is dom-
inated by the (D) and (G) channels, consistent with what
has been found in previous analysis [88]. The uncer-
tainties associated to these channels come mainly from
the scalar particles couplings and the interference among
the channels, they are displayed in Figure 4 by the blue
shaded band. Notice that the band fades out as energy
increases and therefore have no impact in the outcome of
the analysis for the determination of the ⇢ MDM. Note
that the theoretical result quoted in [81], for the low en-
ergy region, corresponds to a single contribution. Our de-
scription involves several channels, whose couplings were
fixed from other observables.

III. THE ⇢ MDM FROM THE TOTAL CROSS
SECTION

We have computed the total cross section following the
PDG [102] convention and neglected the electron mass:
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The averaged squared amplitude |M|2 is built up from
the leptonic and hadronic parts discussed above:

|M|2 =
e2

q2
lµ⌫ h

µ⌫ , (30)

where the 1/q2 factor comes from the photon propagator,
hµ⌫ = Jµ J⌫† is the hadronic tensor obtained from the
hadronic currents discussed above, and lµ⌫ is the leptonic
tensor, given by:

lµ⌫ = k+µ k�⌫ + k�µ k+⌫ �
q2

2
gµ⌫ . (31)
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Constantes de Acoplamiento. 101

hadronización del fotón en el proceso ρ→ σγ como se puede ver en la Figura (E.6). Por me-
dio de la igualdad de los elementos de matriz de los procesos a) y b) en dicha figura podemos
identificar cuanto vale la constante de acoplamiento gρρσ en términos de las constantes gρσγ
y gρ.

El elemento de matriz del proceso ρ→ ρσ en la Figura (E.6a)) está dado por

Ma = −gρρσεµη∗µ, (E-18)

donde εµ y η∗µ son los vectores de polarización de los mesones ρ; mientras que el elemento
de matriz del proceso ρ → σγ mas la hadronización del fotón a un mesón ρ, como aparece
en la Figura (E.6b)), está dado por

Mb = gρσγ

(

em2
ρ

gρq2

)

εµη
∗µ, (E-19)

en donde q es el momento del mesón ρ inicial.

Al igualar estos elementos de matriz podemos entonces identificar que la constante gρρσ
está dada por

gρρσ = −
(

em2
ρ

gρq2

)

gρσγ . (E-20)

La expresión para la constante gρσγ puede obtenerse, al igual que las anteriores, por medio
del decaimiento ρ→ σγ y utilizando el ancho de decaimiento experimental de este proceso,
lo que da por resultado

gρσγ =
3

α
Γρ→σγ

(

2mρ

m2
ρ −m2

σ

)3

, (E-21)

aqúı α ≈ 1
137 , es la constante de estructura fina. El valor numérico de esta constate es

gρσγ = 0.63± 0.15 GeV −1. (E-22)

Las constates de acoplamiento gωρπ, gωρ′π y gρρππ, han sido obtenidas con detalle dentro
del texto en los caṕıtulos 5 y 6 correspondientemente.

ρ(q) ρ(p) ρ(q) ρ(p)

σ σ

γ

a) b)

Figura E.6: Proceso ρ→ ρσ, visto desde el punto de vista de dominancia vectorial como el proceso
radiativo ρ→ σγ seguido de la hadronización del fotón en un mesón ρ.
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a1

ρ−,0

π0,−

Figura E.4: Proceso a1 → ρ−,0π0,−.

Debido que queremos la constante de acoplamiento para el caso general, tenemos que consi-
derar la relación

Γ(σ → ππ) =
3

2
Γ(σ → π+π−), (E-9)

por lo que nuestro resultado final es

gσππ =

(

32

3
πΓ(σ → ππ)

m2
σ

√

m2
σ − 4m2

π

)

1/2. (E-10)

Lo que nos da un valor numérico de

gσππ = 3.69± 1.6 GeV. (E-11)

Acoplamiento a1 − ρ− π: ga1ρπ.

Para la obtención de esta constante de acoplamiento hemos considerado el proceso de
decaimiento a1 → ρ−,0π0,− (Fig. E.4) y hemos trabajado en la aproximación de isoesṕına,
esto debido a que la masa de los mesones ρ cargados y neutros han sido considerados con la
misma masa.

Este proceso tiene el elemento de matriz

M = −2ga1ρπ(k · qηµε∗µ − kµqνηµε
∗
ν), (E-12)

en donde q, k son los momentos de los mesones a1 y ρ respectivamente y ηµ y ε∗ν sus
correspondientes vectores de polarización.

Al igual que en los casos anteriores utilizando la formula para el ancho de decaimiento a
dos cuerpos (Ec. E-3), uno puede despejar la constante de acoplamiento y obtener la siguiente
ecuación

ga1ρπ =

(

12πΓa1→ρ−,0π0,−

√

(ma1
2 +mρ

2 −mπ
2) 2 − 4ma1

2mρ
2

ma1
3

1
2 (ma1

2 +mρ
2 −mπ

2) 2 +ma1
2mρ

2

)

1
2 .

(E-13)

aMasas de piones cargados y neutros iguales.
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Es evidente, si se considera el último renglón, que la expresión 6.18 es invariante de norma
pues si hacemos la contracción con qµ tenemos

qµMrEµ ∝ {q.s13 q.r31 − q.r31 q.s31} = 0. (6.19)

Este diagrama es el mismo para los mesones σ(600) y f0(980). Debido a que esperamos
que las contribuciones de ambos sean pequeñas los consideraremos el mismo canal, a menos
que sea necesario hacer la distinción.

Y finalmente,

• Canal G.

El último canal considerado en este trabajo lo presentamos en la Figura 6.8, cuya expre-

γ

π+

π−

π0

π0

π− σ

Figura 6.8: Canal G.

sión para su amplitud está dada por

MrGµ = 2 (igσππ)
2(ie)(P [q, ρ]− P [q, ρ′])PS[q − p1]P [s24, σ]

(

p1µ −
q.p1
q.p3

p3µ

)

. (6.20)

El verificar la invariancia de norma también en este caso es trivial, basta fijarse en el último
factor en la expresión 6.20, el cuál al ser contráıdo con el momento del fotón qµ da por
resultado

qµMrGµ ∝
(

q.p1 −
q.p1
q.p3

q.p3

)

, (6.21)

que evidentemente se anula. El término − q.p1
q.p3

p3µ no aparece en las reglas de Feynman que
nosotros hemos considerado, sin embargo éste debe ser introducido porque, como podemos
ver en [41] este diagrama pertenece a un conjunto de procesos que es invariante de norma, a
los cuales nosotros no tenemos acceso por el esquema en que estamos trabajando, sin embargo
podemos considerar un término de contacto que al sumar con el diagrama aqúı presentado
lo vuelva invariante de norma, y éste es precisamente el término que hemos introducido.

Como se puede ver en este último proceso no hemos considerado que el fotón debido a la
aniquilación electrón-positrón transmute en un mesón ρ. Esto en principio debeŕıa ser aśı,
pero al considerar el polo proveniente del propagador de este mesón da como resultado un

σ and f(980)
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tion is given by:

Fµ↵(a, b) ⌘ a · b gµ↵ � aµb↵. (25)

The gauge invariance is explicit from the structure of
this tensor. Similar expressions are obtained for the
charged and neutral pions exchange. In all cases the ⇢0

contribution is added with the same considerations as in
the previous channels. The coupling ga1⇢⇡ = 3.25 ± 0.3
GeV�1 is determined from the a1 ! ⇢⇡ decay width.
Due to the lack of experimental information, the cou-
pling for the ⇢0 is considered to be the same.

Channel F
This channel involves the ⇢ meson and the scalar particle
intermediate states � (600) and f0(980). The e↵ective
Lagrangian for this channel is given by:

LS = gV1V2S V1µ V
⌫
2 S + gSP1P2 S P1 P2, (26)

where gV1V2S and gSP1P2 are the e↵ective couplings. The
simplified amplitude is given by

M
µ
F�

(p1, p2, p3, p4) = i eC� D�[s24]D⇢0 [s31]

Fµ�(s31, q) r31� , (27)

where the propagator of the � meson is taken in a com-
plex mass form and C� = (g�⇡⇡ g⇢⇢� g⇢⇡⇡)/g⇢)m2

⇢ D⇢[q].
Notice that this channel has neither neutral nor
charged pions exchange, since they are emitted from
the same vertex. Using VMD relations, the coupling
g⇢⇢� = �(e/g⇢) g⇢�� is determined using the ⇢ ! ��
decay width, which gives g⇢�� = 0.63 ± 0.15 and the
coupling g�⇡⇡ = 3.7±1.6 is determined from the � ! ⇡⇡
decay width. The contribution from the f(980) is similar
with the mass and width replaced accordingly and the
couplings are considered to be the same.

Channel G
This is a non-resonant channel of neither ⇢ nor ⇢0. It
includes an intermediate scalar particle, that can be both
the � and f(980). The neutral pions emission comes
from a single vertex, thus, we end up having only two
diagrams due to the charged pions exchange. Adding
the two amplitudes the amplitude is gauge invariant and
given by:

M
µ
G = i e (g�⇡⇡)

2 D�[s42]L
µ(x1, x3). (28)

The contribution from the f(980) is similar, with the
mass and width replaced accordingly and the couplings
are considered to be the same. As we pointed out
above, the information on the couplings and parameters
of the scalars are not well determined, producing a strong
source of uncertainties in the low energy regime.

In Figure 4, we plot the cross section in the low en-
ergy region (below 1.1 GeV). The result from our model
(solid line) is compared to experimental results from SND
[62, 63], BaBar data [81], OLYA, CMD2 and ND [56–
58, 61] (symbols), which are properly described. Our

FIG. 4. Total cross section e+e� ! ⇡+⇡�2⇡0 in the energy
region below 1.1 GeV, compared to several experimental data:
SND, BaBar, OLYA, CMD2 and ND.

study shows that, in this region, the cross section is dom-
inated by the (D) and (G) channels, consistent with what
has been found in previous analysis [88]. The uncer-
tainties associated to these channels come mainly from
the scalar particles couplings and the interference among
the channels, they are displayed in Figure 4 by the blue
shaded band. Notice that the band fades out as energy
increases and therefore have no impact in the outcome of
the analysis for the determination of the ⇢ MDM. Note
that the theoretical result quoted in [81], for the low en-
ergy region, corresponds to a single contribution. Our de-
scription involves several channels, whose couplings were
fixed from other observables.

III. THE ⇢ MDM FROM THE TOTAL CROSS
SECTION

We have computed the total cross section following the
PDG [102] convention and neglected the electron mass:
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The averaged squared amplitude |M|2 is built up from
the leptonic and hadronic parts discussed above:

|M|2 =
e2

q2
lµ⌫ h

µ⌫ , (30)

where the 1/q2 factor comes from the photon propagator,
hµ⌫ = Jµ J⌫† is the hadronic tensor obtained from the
hadronic currents discussed above, and lµ⌫ is the leptonic
tensor, given by:

lµ⌫ = k+µ k�⌫ + k�µ k+⌫ �
q2

2
gµ⌫ . (31)

The  explicit gauge invariant amplitude is:Non-resonant channel

20

The corresponding coupling to ρ′ is taken to be the same. As we will show later, this channel is very suppressed in the whole region of study 
and deviations from this assumption are expected to have a very small effect. For the f(980) we use the same coupling constants.

G

Channels E, F and G 

Total cross section e+e− → π+π−2π0 in the energy region from threshold to 1.1 GeV, 
compared to several experimental data.
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given by:

M
µ
G = i e (g�⇡⇡)

2 D�[s42]L
µ(x1, x3). (28)

The contribution from the f(980) is similar, with the
mass and width replaced accordingly and the couplings
are considered to be the same. As we pointed out
above, the information on the couplings and parameters
of the scalars are not well determined, producing a strong
source of uncertainties in the low energy regime.

In Figure 4, we plot the cross section in the low en-
ergy region (below 1.1 GeV). The result from our model
(solid line) is compared to experimental results from SND
[62, 63], BaBar data [81], OLYA, CMD2 and ND [56–
58, 61] (symbols), which are properly described. Our

FIG. 4. Total cross section e+e� ! ⇡+⇡�2⇡0 in the energy
region below 1.1 GeV, compared to several experimental data:
SND, BaBar, OLYA, CMD2 and ND.

study shows that, in this region, the cross section is dom-
inated by the (D) and (G) channels, consistent with what
has been found in previous analysis [88]. The uncer-
tainties associated to these channels come mainly from
the scalar particles couplings and the interference among
the channels, they are displayed in Figure 4 by the blue
shaded band. Notice that the band fades out as energy
increases and therefore have no impact in the outcome of
the analysis for the determination of the ⇢ MDM. Note
that the theoretical result quoted in [81], for the low en-
ergy region, corresponds to a single contribution. Our de-
scription involves several channels, whose couplings were
fixed from other observables.

III. THE ⇢ MDM FROM THE TOTAL CROSS
SECTION

We have computed the total cross section following the
PDG [102] convention and neglected the electron mass:

d� =
(2⇡)4 |M|2

4
p
(k+ · k�)2

�4
⇣
q �

nX

i=1

pi
⌘ nY

i=1

d3pi
(2⇡)3 2Ei

. (29)

The averaged squared amplitude |M|2 is built up from
the leptonic and hadronic parts discussed above:

|M|2 =
e2

q2
lµ⌫ h

µ⌫ , (30)

where the 1/q2 factor comes from the photon propagator,
hµ⌫ = Jµ J⌫† is the hadronic tensor obtained from the
hadronic currents discussed above, and lµ⌫ is the leptonic
tensor, given by:

lµ⌫ = k+µ k�⌫ + k�µ k+⌫ �
q2

2
gµ⌫ . (31)

different mass regions. For Mðπþπ−2π0Þ ≤ 1.2 Gev=c2,
the systematic uncertainty due to ISR background sub-
traction is determined bin by bin and ranges from 1%
to 100%. In this region the absolute systematic uncer-
tainty due to ISR background subtraction is calculated
as ð0.455 · ECM=GeV–0.296Þ nb. In the region below
0.85 GeV=c2 the measurement is compatible with 0.

B. Comparison to theory and other experiments

The measured cross section is compared to existing data
in Fig. 10. Our new measurement covers the energy range
from 0.85 to 4.5 GeV. The previously existing data were
collected by the experiments ACO [26,27], ADONE MEA
[28–30], ADONE γγ2 [31], DCI-M3N [20], ND [32],
OLYA [33], and SND [34,35]. The new measurement is in
reasonable agreement with the previous experiments except
for ND, which lies significantly above all others.
This cross section measurement is an important bench-

mark for existing theoretical calculations. In Fig. 11, the
prediction from chiral perturbation theory including ω, a1
and double ρ exchange [36] is shown in comparison to data.
The prediction exhibits similar behavior as the measured
cross section, underestimating it slightly but especially at
low energies this discrepancy is covered by the systematic
uncertainties.

C. Contribution to aμ and Δα
The result of this analysis is of major importance for the

theoretical prediction of the muon gyromagnetic anomaly
aμ. Before BABAR, the channel eþe− → πþπ−2π0 was

estimated to contribute approximately 2.4% of the leading
order hadronic part of aμ, but the size of its uncertainty was
more than one fifth of the uncertainty of all hadronic
contributions combined [37].
The theoretical prediction of aμ relates the undressed

eþe− cross section of a given final state X to the
corresponding contribution to aμ at leading order via [38]

aXμ ¼ 1

4π3

Z
∞

sXmin

KμðsÞ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

ec4

s

q

1þ 2m2
ec4

s

· σð0Þeþe−→XðsÞds; ð5Þ

where KμðsÞ is the muon kernel function and me the
electron mass [19]. Integrating over the energy region
0.85 GeV ≤ ECM ≤ 1.8 GeV we find

aπ
þπ−2π0

μ ¼ ð17.9% 0.1stat % 0.6systÞ × 10−10; ð6Þ

where the first uncertainty is statistical and the second
systematic, giving a total relative precision of 3.3%.
Before BABAR, the world average covered the energy

range 1.02 GeV ≤ ECM ≤ 1.8 GeV and yielded the result1

ð16.76% 1.31% 0.20radÞ × 10−10 [37], implying a total
relative precision of 7.9%. In this region we measure
aπ

þπ−2π0
μ ¼ ð17.4% 0.1stat % 0.6systÞ × 10−10 in agreement

with the previous value. The uncertainties correspond to a
total relative precision of 3.2%. Hence, the relative pre-
cision of the BABAR measurement alone is a factor 2.5
higher than the precision of the world data set without
BABAR.0
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FIG. 10. The previously published πþπ−2π0 cross section data
in addition to this analysis (statistical uncertainties only).
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radiative effects, while the first is the combined statistical and
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Parameters analysis. decay modes and cross section data
function to minimize is defined by:

�2(✓) =
NX

i=1

(yi � µ (xi; ✓))2

E2
i

, (19)

where ✓ = (✓1, ..., ✓N) are the parameters to determine; yi and Ei are the experimental data

and their corresponding uncertainty. µ(xi; ✓) are the theoretical estimate for the correspond-

ing parameters. In a first step we determine the parameters of the model involving the light

mesons, from 10 decay modes which are insensitive to the ⇢0(1450), namely: ⇢ ! ⇡ ⇡ neutral

and charged modes, ⇢0 ! e+ e�, µ+ µ�, ! ! e+ e�, µ+ µ�, ! ! ⇡0 �, ⇢ ! ⇡ � neutral and

charged modes and ⇡0 ! � �, using the experimental information as listed in the PDG [2].

These involve four parameters: g⇢, g⇢⇡⇡, g! and g!⇢⇡. In Table V, we show the results of the

fit. The value of the minimization function per degree of freedom (dof) is �2/dof = 0.32.

The correlation between parameters is shown in Fig. 7 as a heat map.

Parameter Central value Error

g⇢⇡⇡ 5.9485 0.0536

g⇢ 4.9619 0.0661

g! 17.038 0.603

g!⇢⇡ (GeV�1) 11.575 0.438

TABLE V: Fit to 10 decay modes as described in the text.

Then, we include the ! ! 3 ⇡ decay mode to exhibit the strong modification of the g!⇢⇡

parameter previously obtained, which becomes g!⇢⇡ = 14.572±0.22 and a �2/dof >> 1, sig-

naling the inconsistency and therefore the need of extending the description by incorporating

the ⇢(1450) and a contact term as prescribed by the WZW anomaly. Upon the inclusion of

these contributions we obtain g!⇢⇡ = 11.576 ± 0.463, in accordance with previous results.

Hereafter this is the way to describe the ! decay, and denote this set of data as the 11 decay

modes. In a second step, we incorporate the data from the e+ e� ! 3 ⇡ cross section (as

measured by SND [3], CMD2 [4], BABAR [5] and BES III [6]) and the e+ e� ! ⇡0 ⇡0 � (as

measured by SND [7–9] and CDM2 [10]) to further restrict the ⇢(1450) parameters validity

region. Global restrictions from other measurements, as the mentioned A1 and upper bound

for the g⇢0⇡⇡ parameter,are incorporated by setting a consistent region for the search of the

parameters in the minimization process. In particular, we obtain A1 = 0.125± 0.05.

14

We minimize the function

considering the couplings as free parameters, for the following data:

I. INTRODUCTION

The low energy measurements involving hadrons are reaching a high accuracy. In gen-

eral, the low mass hadron spectra contributing to the processes can be identified and the

corresponding parameters obtained. Excited states manifest themselves in low energy ob-

servables as modifications to the values of the parameters and as part of the scattering

processes for energies reaching the threshold for their nominal masses. The ⇢(1450) vector

meson (denoted by ⇢0 wherever possible) is one example of such states. It can be identified

as contributing to the ! ! 3⇡ decay width, by noticing that the e↵ective strong coupling

associated to such transition deviates from what is observed in other processes insensitive

to the ⇢0 [1]. The di-pion spectrum obtained in ⌧ ! ⌫⌧⇡⇡ and the e+e� ! ⇡⇡ cross section

exhibit clear indications of its presence and are used to determine its mass and total decay

width [2]. This important information needs to be complemented with the partial width of

the di↵erent decay modes, which have then implications on the parameters for the models

attempting to describe them. This information has not been settled, although evidence can

be extracted from particular observables [2]. Decay modes such as ⇢0 ! !⇡ and ⇢0 ! ⇡⇡

are of particular interest to disentangle the contribution of the ⇢0 and ⇢ mesons in low en-

ergy observables sensitive to both mesons. They are involved in the e+e� ! ⇡0⇡+⇡� and

e+e� ! ⇡0⇡0� processes [3–10], and in e+e� ! ⇡0⇡0⇡+⇡� process driven by the ! meson

as intermediate state, where available data for this particular channel o↵ers an opportunity

to test these contributions [11, 12].

In this work, we determine the hadronic couplings of the low energy mesons and the ⇢0, as

described in the context of the vector meson dominance model, by performing a global fit of

a set of decay modes and cross sections. We made use of MINUIT package for minimization

and Vegas [13] subroutine for the phase space integration to obtain the cross section when-

ever needed. In a first step we determine the parameters of the model involving the light

mesons, from 10 decay modes which are practically insensitive to the ⇢0, namely: ⇢ ! ⇡⇡

neutral and charged modes, ⇢0 ! e+e�, µ+µ�, ! ! e+e�, µ+µ�, ! ! ⇡0�, ⇢ ! ⇡�

neutral and charged modes and ⇡0 ! ��. Then, we include the ! ! 3⇡ decay, driven by

the ⇢ meson intermediate state, to exhibit the modification of the parameters previously

obtained, signaling the inconsistency and therefore the need of extending the description by

incorporating the ⇢0 and a contact term as prescribed by the Wess-Zumino-Witten anomaly
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(WZW) [14, 15]. In a second step, we incorporate the data from the e+e� ! 3⇡ cross

section as measured by SND, CMD2, BABAR and BES III [3–6]) and then e+e� ! ⇡0⇡0�

data as measured by SND and CDM2 [7–10] to further restrict the ⇢0 parameters validity

region. As an application of the results, we compute the e+e� ! 4⇡ cross section for the

so-called omega channel, and compare with the data measured by BABAR [11] considering

the parameters found. As a by product, we keep track of the behaviour of the coupling of

the ⇢ � ! � ⇡ mesons and determine its stability upon the inclusion of the ⇢0 and contact

term in the description of the processes under consideration.

II. THEORETICAL FRAMEWORK

The vector meson dominance model (VMD) is able to account for the low energy man-

ifestation of the strong interaction by considering the hadrons as the relevant degrees of

freedom. Incorporation of symmetries such as Isospin and SU(3) flavour symmetry allow

to both classify the hadrons and relate their properties. Further considerations associated

to the vector mesons manifestation as gauge bosons and incorporation of higher symmetries

have been also considered as extensions of the VMD [16–18]. Here, since the hadrons in-

volved are the lightest ones, we restrict ourselves to the part that is common to all the VMD

based models. The VMD Lagrangian including the light mesons ⇢, ⇡ and !, and ⇢0 can be

set as:

L =
X

V=⇢, ⇢0

gV ⇡⇡ ✏abc V
a
µ ⇡b @µ ⇡c +

X

V=⇢, ⇢0

g!V ⇡ �ab ✏
µ⌫�� @µ !⌫ @� V

a
� ⇡b

+ g3⇡ ✏abc ✏
µ⌫�� !µ @⌫ ⇡

a @� ⇡
b @� ⇡

c +
X

V=⇢, ⇢0,!

em2
V

gV
Vµ A

µ. (1)

We have labelled the couplings with the corresponding interacting fields and, in general, V

refers to a vector mesons and Aµ refers to the photon field. The couplings are free parameters

to be determined from experiment. Although, as we mention before, relations between them

and even from other descriptions can be drawn [19–24].

The strong interaction between the !, ⇢ and ⇡ mesons, encoded in the g!⇢⇡ parameter

necessarily involves at least one of the particles o↵-shell due to phase space restrictions. Thus,

the determination of its values might depend on the particular kinematical conditions of the

considered observable. For example, these mesons are produced in experiments devoted to

3

SND (00), (13), (16), CMD2SND, BABAR, CMD2, BES 3
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Couplings 5

Channel D
In Figure 2 (D) we show the channel corresponding to
the contribution of the !, which then decay to three pions
via the ⇢ and ⇢0 mesons intermediate states and a contact
term. The intermediate states are threefold, as they can
be charged and neutral. The amplitude can be set as:

M
µ
D(p1, p2, p3, p4) = �i e

⇣
Cd + ei✓ C 0

d

⌘
D![q � p2]

A[(q � p2)
2]V 1µ

! , (19)

where

A[(q � p2)
2] = 6 g3⇡

+ 2 g⇢⇡⇡ g!⇢⇡

⇣
D⇢0 [s13] +D⇢+ [s41] +D⇢� [s43]

⌘

+ 2 g⇢0⇡⇡ g!⇢0⇡

⇣
D⇢0 [s13] +D⇢0 [s41] +D⇢0 [s43]

⌘
, (20)

and

V 1µ
! = ✏↵⌘�� ✏

µ��� q� p2� p↵1 p⌘3 p
�
4 . (21)

The ⇢ and ⇢0 are added with a relative phase ✓ and the
corresponding coe�cients are

Cd =
g!⇢⇡

g⇢
m2

⇢ D⇢[q], C 0
d =

g!⇢0⇡

g⇢0
m2

⇢0 D⇢0 [q]. (22)

A similar expression, corresponding to the neutral
pions exchange (p2 $ p4) completes the amplitude for
this channel. The amplitudes are gauge invariant by
themselves.
In the previous analysis [66, 67, 96] we performed a fit
to the SND [62, 63] and preliminary BaBar data [64, 65]
for this channel, with a relative phase ✓ between the ⇢
and ⇢0 of 1800, where the error bars on the couplings
accounted for the di↵erence to fit both data sets in-
dividually. Here, we have redone the analysis of [82]
extending the observables to include the ! channel data
from BaBar [81], which previously was considered as a
test of the analysis. In Table I we show the parameters
obtained, which are in agreement with the previous ones
[82] but improve in the uncertainties of the parameters
associated to the ⇢0.
In Figure 3, we show the ! channel cross section
obtained using the parameters given in Table I and the
experimental data reported by BaBar [81]. We also
plot the SND [97–99] and CMD2[100] data, obtained
from rescaling the measured process e+e� ! ⇡⇡�.
We observe that the theoretical result from this work
makes a good description of them. This interme-
diate energy region is thus well under control and is
the baseline upon the addition of the MDM contribution.

Channels E, F and G
These channels involve, in the intermediate state, the a1
axial vector meson and the � (600) and f0(980) scalar
particles, as depicted in Figure 2. Here, we present the
corresponding amplitudes in explicit gauge invariant

Parameter Value
g⇢⇡⇡ 5.9485 ± 0.0776
g⇢ 4.9621 ± 0.0940
g! 16.624 ± 0.4727

g!⇢⇡ (GeV�1) 11.294 ± 0.384
g⇢0⇡⇡ 5.7968 ± 0.4442

g!⇢0⇡ (GeV�1) 3.613 ± 0.742
g3⇡ (GeV�3) -53.494 ± 7.1857

g⇢0 12.845 ± 0.396
✓ (in ⇡ units) 0.8967 ± 0.0416

TABLE I. Parameters obtained from a fit to a set of observ-
ables as in Ref. [82] and adding the e+e� ! !⇡ ! ⇡+⇡�2⇡0

channel data from BaBar.

FIG. 3. e+e� ! !⇡0 ! ⇡+⇡�2⇡0 cross section, the solid line
is the result obtained in this work using the parameters given
in Table Idata and the symbols correspond to the data from
BaBar [81] and the rescaled data from SND [62, 63, 97] and
CMD2 [100]) measured for the final state ! ! ⇡+⇡�⇡0.

form. These channels are suppressed in the whole region
of study, as it has been shown in a previous analysis
[66, 67]. They are included to compare the model with
data near threshold, where they become relevant (well
below the energy region of interest for the ⇢ MDM)
presented by BaBar [81] and to exhibit the dependence
on the parameters of these channels.

Channel E involves the axial vector meson a1. The
e↵ective lagrangian describing the interaction between
the a1(q)� ⇢(k)� ⇡(p) is given by [101]:

La1 = 2 ga1⇢⇡

⇣
⇢µ a

µ
1 q · k � @⌫ ⇢

µ @µ a
⌫
1

⌘
. (23)

Thus, the amplitude, after simplifications, become

M
µ
E(p1, p2, p3, p4) = �i eCa D⇢� [s43]Da1 [q � p1] r

�
43

Fµ↵(q � p1, q)F↵�(q � p1, s43),(24)

where Ca = (g2a1⇢⇡ g⇢⇡⇡/g⇢)m
2
⇢ D⇢[q] and the tensor func-

4

the case for the ⇢0, with C ! (g2⇢⇡⇡g⇢0⇡⇡/g⇢0)m2
⇢0 D⇢0 [q].

Given the scarce information on the ⇢0 decay modes, in
the previous analysis [66, 67] the following combination
of coupling constants for the ⇢0 was assumed:

m2
⇢0g⇢0

g⇢0⇡⇡
= X

m2
⇢g⇢

g⇢⇡⇡
, (10)

where the proportionality constant X = 1 was taken.
The idea behind this assumption was to resemble typical
VMD relations, expecting the particularities of the ra-
dial excitation properties to drop out when considering
the ratios. Deviations of up to 20% were explored and
considered in the final result uncertainty. In this work,
we do not rely on this ansatz but make use of additional
theoretical and experimental information. In Table I, we
show the values of the couplings, consistent with a large
set of observables [82], which favors X = 1.3± 0.4. This
is a larger value but in agreement with the previous one
within uncertainties.

Channel B
In Figure 1 (B), we show the so-called ⇢-channel, which
includes the ⇢⇢� vertex, relevant for the extraction of
the MDM of the ⇢ meson. The photon from the leptonic
side, in the VMD approach, couples to the vector me-
son, which then couple into a triple vector vertex. This
defines the ⇢ electromagnetic vertex times a global con-
stant identified with the g⇢⇡⇡, accounting for the strong
process. For the ⇢0 triple vector meson vertex, we take
the same structure as for the ⇢ case, this assumption has
been found to be appealing [88], with the corresponding
di↵erence in couplings. Moreover, using the values in Ta-
ble I the combination of couplings for the ⇢0 di↵ers from
the ⇢ by less than 10%. The amplitude is given by:

M
µ
B(p1, p2, p3, p4) = �e

g3⇢⇡⇡
g⇢

m2
⇢ D

↵µ
⇢[q]

r12� D
��
⇢+ [s21]�

1
↵�� D

⌘�
⇢� [s43] r43⌘, (11)

where �1
↵�� = (1 + i �)�↵��, is the absorptive corrected

vertex at one-loop consistent with gauge invariance [50,
93–95], and � ⌘ �V /MV . The tree-level vertex Eq. (2)
for this momentum configuration takes the form:

�↵�� = (12)

g�� Q1↵ + �0 (q� g↵� � q� g�↵) + s21� g�↵ � s43� g↵�,

where q = s21+s43 and Q1 = s43�s21. We have set �0 ⌘

�(0) for simplicity, the dependence on q2 is accounted by
the neutral vector mesons coupled to the photon. The
simplified amplitude is:

M
µ
B(p1, p2, p3, p4) =

ieC
n⇣

D⇢� [s43]�D⇢+ [s21]
⌘r43 · r12

Q1 · q
Q1µ

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

�
q · r12 r

µ
43 � q · r43 r

µ
12

�o
. (13)

Channel C
In Figure 1 (C), we show the process driven by a contact
term (⇢⇢⇡⇡), whose amplitude can be writen in a general
form as:

M
µ
C(p1, p2, p3, p4) = i e

g⇢⇡⇡ g⇢⇢⇡⇡
g⇢

m2
⇢

D↵µ
⇢0 [q]�

1
↵� D⇢� [s43] r43� . (14)

The e↵ective coupling g⇢⇢⇡⇡ and vertex �1
↵� are fixed by

requiring gauge invariance of the sum of the (A), (B) and
(C) amplitudes. We have worked out the combination
of these amplitudes and profit from the Ward-Takahashi
identity, fulfilled by the V V � vertex, to present the am-
plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
ent contributions that combine with each other to build
the gauge invariant amplitude, and the role of the MDM.
In order to get the gauge invariant amplitude from the
three channels, we use the combination of the following
amplitudes:

M
µ
ABC24

= M
µ
A(p1, p2, p3, p4) +M

µ
A(p3, p4, p1, p2)

+M
µ
B(p1, p2, p3, p4) (15)

+M
µ
C(p1, p2, p3, p4) +M

µ
C(p3, p4, p1, p2).

The gauge invariant amplitude is then:

M
µ
ABC24

= i eC
n
Lµ(x1, x3)

⇣
D⇢� [s43] r43 · z12 �D⇢+ [s21] r12 · z34

⌘

+ r43 · r12
⇣
D⇢� [s43]L

µ(Q1, x3)�D⇢+ [s21]L
µ(Q1, x1)

⌘

+ (1 + i �)D⇢� [s43]D⇢+ [s21]

�0

⇣
q · r12 r

µ
43 � q · r43 r

µ
12

⌘o
, (16)

where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:

Lµ(a, b) ⌘
aµ

a · q
�

bµ

b · q
. (17)

A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):

M
µ
ABC42

= M
µ
A(p1, p4, p3, p2) +M

µ
A(p3, p2, p1, p4)

+M
µ
B(p1, p4, p3, p2) (18)

+M
µ
C(p1, p4, p3, p2) +M

µ
C(p3, p2, p1, p4),

which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
Appendix A.
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Channel C
In Figure 1 (C), we show the process driven by a contact
term (⇢⇢⇡⇡), whose amplitude can be writen in a general
form as:
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requiring gauge invariance of the sum of the (A), (B) and
(C) amplitudes. We have worked out the combination
of these amplitudes and profit from the Ward-Takahashi
identity, fulfilled by the V V � vertex, to present the am-
plitude in a closed form, instead of leaving the countert-
erm as a general requirement, as done before. This is
particularly useful for tracking the origin of the di↵er-
ent contributions that combine with each other to build
the gauge invariant amplitude, and the role of the MDM.
In order to get the gauge invariant amplitude from the
three channels, we use the combination of the following
amplitudes:
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The gauge invariant amplitude is then:
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⇣
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⌘
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D⇢� [s43]L

µ(Q1, x3)�D⇢+ [s21]L
µ(Q1, x1)
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⇣
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µ
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where x1 = q � 2 p1, x3 = q � 2 p3 and we defined the
gauge invariant tensor:

Lµ(a, b) ⌘
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a · q
�
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A similar expression is obtained by adding the amplitude
from the following diagrams (individual channels):
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ABC42

= M
µ
A(p1, p4, p3, p2) +M
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A(p3, p2, p1, p4)
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B(p1, p4, p3, p2) (18)
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which in practice corresponds to the p2 $ p4 exchange.
Notice that the charged pions exchange was already
used to build the gauge invariant structures. The details
to obtain the gauge invariant amplitude is described in
Appendix A.
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Magnetic dipole moment from Babar data 

A, B, and C channels contribution to the total cross section for e+e− → π+π−2π0 and the BaBar 
experimental data. The  strong dependence on the MDM is exhibited by choosing three values 1, 2 and 3.
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64 El Proceso e+e− → π+π−2π0.

los resultados en esta ultima referencia para poder trabajar con la ecuación que presentamos
arriba. Esto nos lleva finalmente a tener la siguiente expresión para la sección eficaz total

σ(q2) =

∫ s1+

s1−

ds1

∫ s2+

s2−

ds2

∫ u1+

u1−

du1

∫ u2+

u2−

du2

∫ t0+

t0−

dt0

∫ t1+

t1−

dt1

∫ t2+

t2−

dt2
1

4(2π)8
√
k1.k2

|M|2FEF. (6.31)

En esta expresión las variables t2, t1, t0, u2, u1, s2 y s1 son las variables que se proponen en
[44] para trabajar con el espacio fase 1 y FEF es un factor del mismo que se crea a partir
de considerar esta elección de estas variables2 . Para obtener esta expresión hemos ignorado
la masa del electrón (positrón).

Para poder obtener el cuadrado de la amplitud para el proceso se sigue el siguiente
proceso, primero se construye MT . Después se multiplica a esta amplitud por su complejo
conjugado y se suma sobre los estados de esṕın; lo cual da por resultado un tensor con dos
indices de Lorentz, el cual se debe contraer con la parte leptónica del proceso. El resultado
para la parte leptónica lo haremos expliticamente a continuación a modo de ejemplo.

La parte leptónica 6.1 tiene como elemento de matriz reducido a la expresión

Mµ
l = −iev̄(k2)γ

µu(k1); (6.32)

cuyo conjugado es
M∗ν

l = ieū(k1)γ
νv(k2); (6.33)

al hacer el promedio sobre estados de esṕın tenemos que

|M̄µν
l | =

e2

4

∑

espines

[v̄(k2)γ
µu(k1)][ū(k1)γ

νv(k2)], (6.34)

que por reglas de trazas se traduce en

lµν ≡ |M̄µν
l | = e2(kµ

1k
ν
2 + kν

1k
µ
2 − k1 · k2 gµν). (6.35)

Entonces si definimos al correspondiente tensor de la parte hadrónica como hµν , final-
mente tenemos que

|MT |2 =
1

s2
lµνhµν . (6.36)

Aqúı el factor 1
s2 es debido al propagador del fotón que hasta ahora no hab́ıamos considerado.

Finalmente para poder obtener un resultado numérico de la sección eficaz total de este
proceso se hizo un programa en FORTAN, el cual puede calcular la integral de la ecuación
6.31 con ayuda de una sub-rutina llamada VEGAS. Para lo cual se requeŕıa de introducir

1Las definición de variables y ĺımites que se utilizaron se muestran de manera explicita en el apéndice.
2véase la ecuación G-2.

We compute the cross section of the process
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The seven kinematical variables are chosen following Ref.[Kumar]. 
The integration is performed numerically using a Fortran code and the Vegas subroutine 



G. Toledo

Individual channels contribution

Individual channels contribution to the total cross section for e+e− → π+π−2π0 and the BaBar data.
Each channel includes the full reduced amplitudes for ρ and ρ′ and their corresponding interferences, which are the 
dominant ones. The interferences among different channels are not shown but accounted in the analysis.
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G. Toledo

MDM, total cross section data

The quoted error bar takes into account the 
uncertainties coming from the electric charge form factor

Fit to total cross section data from BaBar (symbols). The 
shaded area is the uncertainty including the one from electric 
charge form factor

7

FIG. 5. BaBar data for the e+ e� ! 2⇡0⇡+⇡� total cross
section (symbols with error bars) and the A, B and C channels
contribution for �0 = 1, 2, 3 (dotted lines).

FIG. 6. BaBar data for the e+ e� ! 2⇡0⇡+⇡� total cross
section (circle symbols) and the contributions from all the
channles. The A, B and C channels contribution is set to
�0 = 2.

The kinematical variables are chosen following Ref.[103].
The integration is performed numerically using a Fortran
code and the Vegas subroutine [104].

In Figure 5, we plot the cross section from the A, B
and C channels amplitude. The strong dependence on
the �0 parameter is exhibited considering 3 values, �0 =1,
2 and 3. These are compared to the experimental data
from BaBar. The plots show that the main sensitivity
to �0 is in the region from 1.4 GeV to 1.8 GeV. Thus,
we consider the region up to 1.8 GeV to determine the ⇢
MDM. For energies above 1.8 GeV there are structures
that are not captured in the current description.

In Figure 6, we plot the total cross section data from
BaBar [81] and the contribution from all the individual
channels. Each channel includes the amplitudes for ⇢
and ⇢0 and their corresponding interferences. The in-
terferences among di↵erent channels are not shown but
accounted in the analysis. Error bars are not displayed
for the sake of clarity. The energy region below 1.4 GeV
is dominated by the ! channel (D) and the interference
with the other channels. Channels F and G are largely
suppressed, they become less suppressed at threshold,
where the corresponding large uncertainties play a role,
mainly trough the interference with the ! channel. This
is well below the region where �0 is important. Above
1.4 GeV the contribution from ABC channels surpass the
! contribution, becoming the leading one. In that same
region channel E is larger than channels F and G but
below the ABC and D channels. We performed a fit to
the BaBar[81] total cross section data, considering �0 as
the only free parameter. It favors �0 = 2.05± 0.07 with
a �2/dof = 1.3. In order to properly obtain the static
limit value, we look to the electric charge form factor

|F⇢ (0) | = (32)

lim
q2!0

�����
g⇢⇡⇡m2

⇢

g⇢
D⇢[q

2]�
g⇢0⇡⇡m2

⇢0

g⇢0
D⇢0 [q2]

����� = 1.

Using the value of the parameters as given in Table I, we
obtain the value for the left hand side limit |F⇢ (0) | =
0.75 ± 0.05, where the error comes mainly from the ⇢0

parameters. We normalize �0 to this value to have it
properly defined. Thus, the value of the ⇢ meson MDM
from the BaBar data is

µ⇢ = 2.7± 0.3 in (e/2m⇢) units. (33)

The error bar considers the uncertainties from the fit and
the one from the charge normalization, this last being the
dominant.
In Figure 7, we show the total cross section data from

BaBar[81] (symbols) and the fit (solid line), correspond-
ing to �0 = 2.05. The blue band represents the un-
certainty, which incorporates the uncertainty from the
electric charge form factor normalization. The behavior
is consistent with the previous observation in Figure 5
where the dependence on �0 becomes important above
1.4 GeV.

IV. CONCLUSIONS

In order to determine the ⇢ meson MDM, we have per-
formed an analysis of the e+e� ! ⇡+⇡�2⇡0 cross sec-
tion, measured by the BaBar Collaboration [81]. The
�⇤

! 4⇡ vertex was modeled in the VMD approach,
considering the exchange of the ⇡, !, a1, �, f(980), ⇢
and ⇢0 mesons. We provided explicit gauge invariant ex-
pressions, for the corresponding amplitudes, in particular
for the A, B and C channels this was done by properly
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section (symbols with error bars) and the A, B and C channels
contribution for �0 = 1, 2, 3 (dotted lines).

FIG. 6. BaBar data for the e+ e� ! 2⇡0⇡+⇡� total cross
section (circle symbols) and the contributions from all the
channles. The A, B and C channels contribution is set to
�0 = 2.

The kinematical variables are chosen following Ref.[103].
The integration is performed numerically using a Fortran
code and the Vegas subroutine [104].

In Figure 5, we plot the cross section from the A, B
and C channels amplitude. The strong dependence on
the �0 parameter is exhibited considering 3 values, �0 =1,
2 and 3. These are compared to the experimental data
from BaBar. The plots show that the main sensitivity
to �0 is in the region from 1.4 GeV to 1.8 GeV. Thus,
we consider the region up to 1.8 GeV to determine the ⇢
MDM. For energies above 1.8 GeV there are structures
that are not captured in the current description.

In Figure 6, we plot the total cross section data from
BaBar [81] and the contribution from all the individual
channels. Each channel includes the amplitudes for ⇢
and ⇢0 and their corresponding interferences. The in-
terferences among di↵erent channels are not shown but
accounted in the analysis. Error bars are not displayed
for the sake of clarity. The energy region below 1.4 GeV
is dominated by the ! channel (D) and the interference
with the other channels. Channels F and G are largely
suppressed, they become less suppressed at threshold,
where the corresponding large uncertainties play a role,
mainly trough the interference with the ! channel. This
is well below the region where �0 is important. Above
1.4 GeV the contribution from ABC channels surpass the
! contribution, becoming the leading one. In that same
region channel E is larger than channels F and G but
below the ABC and D channels. We performed a fit to
the BaBar[81] total cross section data, considering �0 as
the only free parameter. It favors �0 = 2.05± 0.07 with
a �2/dof = 1.3. In order to properly obtain the static
limit value, we look to the electric charge form factor
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q2!0
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⇢
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D⇢[q
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g⇢0⇡⇡m2

⇢0

g⇢0
D⇢0 [q2]
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Using the value of the parameters as given in Table I, we
obtain the value for the left hand side limit |F⇢ (0) | =
0.75 ± 0.05, where the error comes mainly from the ⇢0

parameters. We normalize �0 to this value to have it
properly defined. Thus, the value of the ⇢ meson MDM
from the BaBar data is

µ⇢ = 2.7± 0.3 in (e/2m⇢) units. (33)

The error bar considers the uncertainties from the fit and
the one from the charge normalization, this last being the
dominant.
In Figure 7, we show the total cross section data from

BaBar[81] (symbols) and the fit (solid line), correspond-
ing to �0 = 2.05. The blue band represents the un-
certainty, which incorporates the uncertainty from the
electric charge form factor normalization. The behavior
is consistent with the previous observation in Figure 5
where the dependence on �0 becomes important above
1.4 GeV.

IV. CONCLUSIONS

In order to determine the ⇢ meson MDM, we have per-
formed an analysis of the e+e� ! ⇡+⇡�2⇡0 cross sec-
tion, measured by the BaBar Collaboration [81]. The
�⇤

! 4⇡ vertex was modeled in the VMD approach,
considering the exchange of the ⇡, !, a1, �, f(980), ⇢
and ⇢0 mesons. We provided explicit gauge invariant ex-
pressions, for the corresponding amplitudes, in particular
for the A, B and C channels this was done by properly

Provided all the parameters involved in our description are determined from other observables, 

we fit the data considering  β0 in the electromagnetic vertex as the only free parameter.
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The kinematical variables are chosen following Ref.[103].
The integration is performed numerically using a Fortran
code and the Vegas subroutine [104].

In Figure 5, we plot the cross section from the A, B
and C channels amplitude. The strong dependence on
the �0 parameter is exhibited considering 3 values, �0 =1,
2 and 3. These are compared to the experimental data
from BaBar. The plots show that the main sensitivity
to �0 is in the region from 1.4 GeV to 1.8 GeV. Thus,
we consider the region up to 1.8 GeV to determine the ⇢
MDM. For energies above 1.8 GeV there are structures
that are not captured in the current description.

In Figure 6, we plot the total cross section data from
BaBar [81] and the contribution from all the individual
channels. Each channel includes the amplitudes for ⇢
and ⇢0 and their corresponding interferences. The in-
terferences among di↵erent channels are not shown but
accounted in the analysis. Error bars are not displayed
for the sake of clarity. The energy region below 1.4 GeV
is dominated by the ! channel (D) and the interference
with the other channels. Channels F and G are largely
suppressed, they become less suppressed at threshold,
where the corresponding large uncertainties play a role,
mainly trough the interference with the ! channel. This
is well below the region where �0 is important. Above
1.4 GeV the contribution from ABC channels surpass the
! contribution, becoming the leading one. In that same
region channel E is larger than channels F and G but
below the ABC and D channels. We performed a fit to
the BaBar[81] total cross section data, considering �0 as
the only free parameter. It favors �0 = 2.05± 0.07 with
a �2/dof = 1.3. In order to properly obtain the static
limit value, we look to the electric charge form factor

|F⇢ (0) | = (32)

lim
q2!0

�����
g⇢⇡⇡m2

⇢

g⇢
D⇢[q

2]�
g⇢0⇡⇡m2

⇢0

g⇢0
D⇢0 [q2]

����� = 1.

Using the value of the parameters as given in Table I, we
obtain the value for the left hand side limit |F⇢ (0) | =
0.75 ± 0.05, where the error comes mainly from the ⇢0

parameters. We normalize �0 to this value to have it
properly defined. Thus, the value of the ⇢ meson MDM
from the BaBar data is

µ⇢ = 2.7± 0.3 in (e/2m⇢) units. (33)

The error bar considers the uncertainties from the fit and
the one from the charge normalization, this last being the
dominant.
In Figure 7, we show the total cross section data from

BaBar[81] (symbols) and the fit (solid line), correspond-
ing to �0 = 2.05. The blue band represents the un-
certainty, which incorporates the uncertainty from the
electric charge form factor normalization. The behavior
is consistent with the previous observation in Figure 5
where the dependence on �0 becomes important above
1.4 GeV.
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channles. The A, B and C channels contribution is set to
�0 = 2.

The kinematical variables are chosen following Ref.[103].
The integration is performed numerically using a Fortran
code and the Vegas subroutine [104].

In Figure 5, we plot the cross section from the A, B
and C channels amplitude. The strong dependence on
the �0 parameter is exhibited considering 3 values, �0 =1,
2 and 3. These are compared to the experimental data
from BaBar. The plots show that the main sensitivity
to �0 is in the region from 1.4 GeV to 1.8 GeV. Thus,
we consider the region up to 1.8 GeV to determine the ⇢
MDM. For energies above 1.8 GeV there are structures
that are not captured in the current description.

In Figure 6, we plot the total cross section data from
BaBar [81] and the contribution from all the individual
channels. Each channel includes the amplitudes for ⇢
and ⇢0 and their corresponding interferences. The in-
terferences among di↵erent channels are not shown but
accounted in the analysis. Error bars are not displayed
for the sake of clarity. The energy region below 1.4 GeV
is dominated by the ! channel (D) and the interference
with the other channels. Channels F and G are largely
suppressed, they become less suppressed at threshold,
where the corresponding large uncertainties play a role,
mainly trough the interference with the ! channel. This
is well below the region where �0 is important. Above
1.4 GeV the contribution from ABC channels surpass the
! contribution, becoming the leading one. In that same
region channel E is larger than channels F and G but
below the ABC and D channels. We performed a fit to
the BaBar[81] total cross section data, considering �0 as
the only free parameter. It favors �0 = 2.05± 0.07 with
a �2/dof = 1.3. In order to properly obtain the static
limit value, we look to the electric charge form factor
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Using the value of the parameters as given in Table I, we
obtain the value for the left hand side limit |F⇢ (0) | =
0.75 ± 0.05, where the error comes mainly from the ⇢0

parameters. We normalize �0 to this value to have it
properly defined. Thus, the value of the ⇢ meson MDM
from the BaBar data is

µ⇢ = 2.7± 0.3 in (e/2m⇢) units. (33)

The error bar considers the uncertainties from the fit and
the one from the charge normalization, this last being the
dominant.
In Figure 7, we show the total cross section data from

BaBar[81] (symbols) and the fit (solid line), correspond-
ing to �0 = 2.05. The blue band represents the un-
certainty, which incorporates the uncertainty from the
electric charge form factor normalization. The behavior
is consistent with the previous observation in Figure 5
where the dependence on �0 becomes important above
1.4 GeV.
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The kinematical variables are chosen following Ref.[103].
The integration is performed numerically using a Fortran
code and the Vegas subroutine [104].

In Figure 5, we plot the cross section from the A, B
and C channels amplitude. The strong dependence on
the �0 parameter is exhibited considering 3 values, �0 =1,
2 and 3. These are compared to the experimental data
from BaBar. The plots show that the main sensitivity
to �0 is in the region from 1.4 GeV to 1.8 GeV. Thus,
we consider the region up to 1.8 GeV to determine the ⇢
MDM. For energies above 1.8 GeV there are structures
that are not captured in the current description.

In Figure 6, we plot the total cross section data from
BaBar [81] and the contribution from all the individual
channels. Each channel includes the amplitudes for ⇢
and ⇢0 and their corresponding interferences. The in-
terferences among di↵erent channels are not shown but
accounted in the analysis. Error bars are not displayed
for the sake of clarity. The energy region below 1.4 GeV
is dominated by the ! channel (D) and the interference
with the other channels. Channels F and G are largely
suppressed, they become less suppressed at threshold,
where the corresponding large uncertainties play a role,
mainly trough the interference with the ! channel. This
is well below the region where �0 is important. Above
1.4 GeV the contribution from ABC channels surpass the
! contribution, becoming the leading one. In that same
region channel E is larger than channels F and G but
below the ABC and D channels. We performed a fit to
the BaBar[81] total cross section data, considering �0 as
the only free parameter. It favors �0 = 2.05± 0.07 with
a �2/dof = 1.3. In order to properly obtain the static
limit value, we look to the electric charge form factor
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Using the value of the parameters as given in Table I, we
obtain the value for the left hand side limit |F⇢ (0) | =
0.75 ± 0.05, where the error comes mainly from the ⇢0

parameters. We normalize �0 to this value to have it
properly defined. Thus, the value of the ⇢ meson MDM
from the BaBar data is

µ⇢ = 2.7± 0.3 in (e/2m⇢) units. (33)

The error bar considers the uncertainties from the fit and
the one from the charge normalization, this last being the
dominant.
In Figure 7, we show the total cross section data from

BaBar[81] (symbols) and the fit (solid line), correspond-
ing to �0 = 2.05. The blue band represents the un-
certainty, which incorporates the uncertainty from the
electric charge form factor normalization. The behavior
is consistent with the previous observation in Figure 5
where the dependence on �0 becomes important above
1.4 GeV.
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The kinematical variables are chosen following Ref.[103].
The integration is performed numerically using a Fortran
code and the Vegas subroutine [104].

In Figure 5, we plot the cross section from the A, B
and C channels amplitude. The strong dependence on
the �0 parameter is exhibited considering 3 values, �0 =1,
2 and 3. These are compared to the experimental data
from BaBar. The plots show that the main sensitivity
to �0 is in the region from 1.4 GeV to 1.8 GeV. Thus,
we consider the region up to 1.8 GeV to determine the ⇢
MDM. For energies above 1.8 GeV there are structures
that are not captured in the current description.

In Figure 6, we plot the total cross section data from
BaBar [81] and the contribution from all the individual
channels. Each channel includes the amplitudes for ⇢
and ⇢0 and their corresponding interferences. The in-
terferences among di↵erent channels are not shown but
accounted in the analysis. Error bars are not displayed
for the sake of clarity. The energy region below 1.4 GeV
is dominated by the ! channel (D) and the interference
with the other channels. Channels F and G are largely
suppressed, they become less suppressed at threshold,
where the corresponding large uncertainties play a role,
mainly trough the interference with the ! channel. This
is well below the region where �0 is important. Above
1.4 GeV the contribution from ABC channels surpass the
! contribution, becoming the leading one. In that same
region channel E is larger than channels F and G but
below the ABC and D channels. We performed a fit to
the BaBar[81] total cross section data, considering �0 as
the only free parameter. It favors �0 = 2.05± 0.07 with
a �2/dof = 1.3. In order to properly obtain the static
limit value, we look to the electric charge form factor
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Using the value of the parameters as given in Table I, we
obtain the value for the left hand side limit |F⇢ (0) | =
0.75 ± 0.05, where the error comes mainly from the ⇢0

parameters. We normalize �0 to this value to have it
properly defined. Thus, the value of the ⇢ meson MDM
from the BaBar data is

µ⇢ = 2.7± 0.3 in (e/2m⇢) units. (33)

The error bar considers the uncertainties from the fit and
the one from the charge normalization, this last being the
dominant.
In Figure 7, we show the total cross section data from

BaBar[81] (symbols) and the fit (solid line), correspond-
ing to �0 = 2.05. The blue band represents the un-
certainty, which incorporates the uncertainty from the
electric charge form factor normalization. The behavior
is consistent with the previous observation in Figure 5
where the dependence on �0 becomes important above
1.4 GeV.

IV. CONCLUSIONS

In order to determine the ⇢ meson MDM, we have per-
formed an analysis of the e+e� ! ⇡+⇡�2⇡0 cross sec-
tion, measured by the BaBar Collaboration [81]. The
�⇤

! 4⇡ vertex was modeled in the VMD approach,
considering the exchange of the ⇡, !, a1, �, f(980), ⇢
and ⇢0 mesons. We provided explicit gauge invariant ex-
pressions, for the corresponding amplitudes, in particular
for the A, B and C channels this was done by properly
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★ We obtained the magnetic dipole moment of the ρ meson using published 
data from the BaBar Collaboration for the e+e− → π+π−2π0 process, in the 
center of mass energy range from 0.9 to 1.8 GeV. 

★  We describe the γ∗ → 4π vertex using a vector meson dominance model, 
including the intermediate resonant contributions relevant at these energies.  

★ We improved on the previous extracted value, where preliminary data from 
the same collaboration was used, by considering published data, better 
grounded values of the parameters involved and explicit gauge invariant 
description of the process. 
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FIG. 5. BaBar data for the e+ e� ! 2⇡0⇡+⇡� total cross
section (symbols with error bars) and the A, B and C channels
contribution for �0 = 1, 2, 3 (dotted lines).

FIG. 6. BaBar data for the e+ e� ! 2⇡0⇡+⇡� total cross
section (circle symbols) and the contributions from all the
channles. The A, B and C channels contribution is set to
�0 = 2.

The kinematical variables are chosen following Ref.[103].
The integration is performed numerically using a Fortran
code and the Vegas subroutine [104].
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the only free parameter. It favors �0 = 2.05± 0.07 with
a �2/dof = 1.3. In order to properly obtain the static
limit value, we look to the electric charge form factor
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Using the value of the parameters as given in Table I, we
obtain the value for the left hand side limit |F⇢ (0) | =
0.75 ± 0.05, where the error comes mainly from the ⇢0

parameters. We normalize �0 to this value to have it
properly defined. Thus, the value of the ⇢ meson MDM
from the BaBar data is

µ⇢ = 2.7± 0.3 in (e/2m⇢) units. (33)

The error bar considers the uncertainties from the fit and
the one from the charge normalization, this last being the
dominant.
In Figure 7, we show the total cross section data from

BaBar[81] (symbols) and the fit (solid line), correspond-
ing to �0 = 2.05. The blue band represents the un-
certainty, which incorporates the uncertainty from the
electric charge form factor normalization. The behavior
is consistent with the previous observation in Figure 5
where the dependence on �0 becomes important above
1.4 GeV.

IV. CONCLUSIONS

In order to determine the ⇢ meson MDM, we have per-
formed an analysis of the e+e� ! ⇡+⇡�2⇡0 cross sec-
tion, measured by the BaBar Collaboration [81]. The
�⇤

! 4⇡ vertex was modeled in the VMD approach,
considering the exchange of the ⇡, !, a1, �, f(980), ⇢
and ⇢0 mesons. We provided explicit gauge invariant ex-
pressions, for the corresponding amplitudes, in particular
for the A, B and C channels this was done by properly
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