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Cosmic rays (CRs)

*»»Cosmic rays are high energetic charged particles hitting continuously
the Earth at a rate about 10’000 particles by square meter by second at
energies of 1 GeV.

*+»The number of particles quickly reduce as the energy increases,
particles with energy above 10'° eV arrives at a rate about one particle
by square kilometer by year.

Grieder, P., 2011. Extensive Air Showers: High Energy Phenomena and Astrophysical
Aspects - A Tutorial, Reference Manual and Data Book. Springer Berlin Heidelberg.
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EAS

An extensive air shower (EAS) takes place when
a primary cosmic ray hit an air molecule on top
of the atmosphere, generating a violent
collision.

The fragments hit more air molecules since the
energy of the original particle spread over
millions of particles arriving the Earth’s
surface.

Studying EAS give us information
about their development and energy
of the primary particle.
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Figure 2. Schematic illustration of EAS
development.
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Figure 3. lllustration of EAS simulations for different primaries CRs.
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F. Schmidt, J. Knapp, "CORSIKA Shower Images’, 2005,
https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html



East-West asymmetry

* In the 1930’s G. Lemaitre and
S. Vallarta wrote a series of
papers explaining the latitude
and azimuth effects
discovered by Clay and
Compton: the cosmic rays are
affected by geomagnetic filed
and can be charged particles.

*S. Vallarta convinced to A.
COmpton T:O : make Figure 4. George Lemaitre and Manuel Sandoval
measurements in Mexico to Vallarta in 1938.

test their predictions.

Pérez-Peraza, J. (2009). Reminiscences of cosmic ray research in Mexico. Advances S
in Space Research, 44(10), 1215-1220. https://doi.org/10.1016/j.asr.2008.11.031



* Compton sent his student Luis W. Alvarez to conduct the
experiments in the mountains around Mexico city.

* They measured the cosmic ray intensity by varying the orientation
of the detector.

* Compton and Alvarez determinedd an excess of about 10 % in the
intensity deviations to the west, implying that cosmic radiation
consisted principally of protons.

Pérez-Peraza, J. (2009). Reminiscences of cosmic ray research in Mexico. Advances
in Space Research, 44(10), 1215-1220. https://doi.org/10.1016/j.asr.2008.11.031



Trasgo-like detector

TRASGO (Goblin): TRAck reconStructinG bOx

Initiative from the Institute of High Energy (IGFAE)
from Santiago de Compostela University, Spain

High granularity tracking detector

Good temporal resolution

Sensitive to bunches of particles (clusters)
Muon / Electron sensitive (software separation)
Rough estimation of electron and gamma
energy
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Figure 5.

[llustration of a TRASGO and Trasgo detector




Figure 6. MiniTrasgo detector

MiniTrasgo

Main features:
Effective Surface: 0.1 m?
Number of Channels: 32
Angular resolution: ~3°

Mean rate: 9 Hz

Figure 7. Cartoon of a MiniTrasgo
detector, electronics and Gas Freon.




Detection by resistive plate chambers (RPCs)

M LowE e MedE e- HghE e
—‘ I

-
Po1 P l [

Electrodes 0 Prosmp D_.
= : | Al box \_ \

L FAIAN Semiconductive paint \

& doob |

0] .

1 [ N

[ |

v

Induced pulse |
Glass
] | @ Spacers ¢ \va . @
|4 N HV
| Y @) Freon R134a gas @ Gas
| |
Pb2 ©) ‘

|| Polipropilene box
—— \ Charged particle
N 1]
\
\
‘\ Figure 8: Left: design of a miniTrasgo detector, showing the particles
! produced by muons and electrons of different energies. Right: RPC side
Q O view.
| ——
I R -




MACARIO detector at CIIEC (BUAP)

Figure 9. MACARIO detector layout during data
adquisition for this work.
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Data analysis by event display
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Angular distributions
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Results on East-West asymmetry (Puebla)

* Typically the asymmetry factor is expressed as:
R =2 % (Iyest — least)/ Uwest T+ least)

* Considering the data measured on different days around the same
time we get the next results: e oy
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CORSIKA simulations

* Primary proton

* 250’000 showers per run

* Fixed energies: 10, 100, 400, 1’000 GeV

 Zenith angles: 12, 23, 34,45 °

* Observation level: 2’100 m

* Geographic location: latitude 18.99 N, longitude 98.19 W
* Magnetic field: Bx = 27.08 uT, Bz - 28.64 uT

e Cut-off rigidity (Puebla): ~7.5 GV

15



Results for simulations

* For low energies (10, 100 GeV) there is not an asimmetry due to
geomagnetic cut-off rigidity.

* For high energy (1’000 GeV) there is not asymmetry because the
geomagnetic field can not deviate the particles anymore.

* In the middle range (400 GeV) we found an asymmetry.
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Comparison of measurements and simulation
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Ongoing work

* Detector response with
GEANT4 simulations

* Particles produced by different
Incident particles (u—, e ™)

* Track topologies

* Incident particles injected
based on CORSIKA
simulations results

MACARIO

18



Run 173 (1 event, 1 kept)

MACARIO

MACARIO




Vertical muon of 4 GeV Vertical electron of 4 GeV

Run 14 (1 event, 1 kept) Run 88 (1 event, 1 kept)

MACARIO MACARIO




Conclusions

* The study of East-West asymmetry is a fundamental phenomenon
which happens in every place of the world but depends on the
latitude and altitude.

* MACARIO detector is very useful for training students who are
starting to get involved in astroparticle and particle physics.

* The technology employed on MACARIOQO is like the instrumentation
of bigger particle physics projects and familiarize with it allows to
gain experience on the high energy physics area.

* Due to compact size the Trasgo-like detectors are suitable for
education and outreach activities.

21



Thanks for your time

col539023@colaborador.buap.mx
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A historical second measurement of East-
West asymmetry

* In 1940, under the guidance of
Alfredo Banos, the Young
students Fernando Alba
Andrade and Manuel l.
Perrusquia constructed a
rotaiting rail system of Geiger
counters to measure cosmic
ray intensity as a function of
time at azimuth and zenith
angles.

Figure 11. First Mexican cosmic ray detector
placed on the roof of the Mining Palace in 1941.
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The Determination of the Sign and the Energy Spectrum
of Primary Cosmic Radiation™

M. S. VaLpLarTta, M. L. Perusguia,** anp J. DE OVARZABAL
Instituto de Fisica, Universidad de México, México, D. F.

(Received November 19, 1946)

An experiment is reported in this paper for the measure-
ment of the complete azimuthal effect. This experiment was
performed in Mexico City (geomagnetic latitude 29°,
altitude 2242 m above sea level) for constant zenith angles
20°,40°, and 60°. A characteristic feature is that the length
of the atmospheric path is constant, hence the assumption is
made that the number of secondaries detected by the
cosmic-ray telescope is a measure of the number of pri-
maries. The analysis yields an energy spectrum of the
primary radiation of the form K /E' (E =energy, K =con-
stant). There is no evidence of negative primary particles.
The results are subject to revision because the penumbra

bands at this latitude are only imperfectly known, and also
because of the resolving power of our present apparatus.
The possibility of a bright line spectrum, or of such a
spectrum superimposed on a continuous distribution, is not
ruled out. The possibility of negative primaries is excluded
within the limits of experimental error. The spectrum ob-
tained from our experimental data agrees completely with
that determined from the experiment of Gill, carried out at
Lahore, Punjab, India. The result is valid in the energy
range from about 350 to 600 millistérmers, or 6 to 21 Bev if
the primaries are protons.
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Main effects of the atmosphere as extenuating

The influence of several atmospheric variables on cosmic ray
muons observed by KACST detector

A, Maghrabi ', M. Almuwir.  (2018)

! 1m2 scintillator + 1 PMT + 200g/cm2 concrete (3 Xo)

1 | Muon Box 4 | Amplifier
2 | PMT Base and Preamp 5| ADC
3 | HV Power Supplier 6 | Data Acquisition Board
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Atmospheric temperature corrections attempts

THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS] OBRSERVED AT THE GROUND:
ANALYSIS OF THE (il ORAI MIUON DETECTOR NETWORK DATA

R R. 5. pr Mesposga', €, R Braoa', E, Ecuer', A, Daz Laco', K Munakata’, T. Kuwasara’, M. Kozar®, C. Karo?,
W. Rockemeace’, N. J. Scavc’, L K. AL Jassas®, M. M. Seaxsia”, M. Tokvsasy”®, M. L. Duom®, J. E. Humsoe®,

. THE ASTROPHYSICAL JOURNAL, 330:38 (25pp), 2016 October 20

Aly = couz = AH[p], p = 100 hPa

C. altitudimétrica

4.1. The Atmospheric Expansion (ATE) Method

M:r = AGED * .ﬂT I-IICRD]

| 4.2 The Ground (GRD) Method | P. Blackett

Al = oanpr = AT [hvnar]

4.3. The MMP Method | A. Duperier

Aly = ayie = AH [p] + oo = AT [hypar] (5)

4.4. The GRD, ATE and MMP Method Combinations (GRID
+MMP and ATE +MMP)
Alr = earp + AT [harp] + ommr + AT [Aapar]

Al — J:”'” arm [x] * AT * dx

4.5. The Thearetical (THR) Method and its Variation (THR-L)

L. Dorman o »
st = [ pliadh, pli) = it = e
4.6. The Mass Weighted (MSS) Method Alr = omss * Olss . il — 2l
, Tuss = Sowlhi] + Tihd, wik] = *1] —xthet]
V.M. Dvornikov i=0 x[hy)
4.7. The Effective Temperature (EFF) Method ard its Variation Alr = ogpr * ATese (13)
(EFF-M) .
Tpw = o ST ek — o) (14)
P.H. Barrett J ot s x




Cosmic rays as temperature probe

IceCube Lab

IceTop
81 Stations
324 optical sensors

50 m

IceCube Array
86 strings including 8 DeepCore strings
5160 optical sensors

1450 m
DeepCore

8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower
324 m

2450 m
2820 m

Bedrock

Figura 15. IceCube observatory at south pole.

260

Stratosphere Temperature

https://icecube.wisc.edu/gallery/detector/#modulagallery-7032-9784
Tilav, S., Desiati, P., Kuwabara, T., et. al (2009). Atmospheric variations as observed by IceCube.
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Figure 16. Temporal evolution of temperature and muon
rates detected from 2007 till 2009.
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