Simulating low-energy charged-current electron neutrino interactions on argon in the CCM experiment

> Marisol Chávez Estrada on behalf of the CCM collaboration

Advisor: Dr. Juan Carlos D'Olivo Saez. ICN - UNAM

Reunión Anual de la División de Partículas y Campos. Pachuca, Hidalgo. May 21 - 23, 2025

marisol.chavez@correo.nucleares.unam.mx

Universidad Nacional Autónoma de México

Instituto de Ciencias Nucleares UNAM

Outline

- Motivation
- The CCM experiment and detector
- Particle production and CC scattering
- Simulation
- Background
- Cherenkov light
- Takeaways

Motivation

Why study the interaction of v_{a} with Ar at low Energies?

- Neutrinos: "messengers of the universe".
- Supernovae emit millions of neutrinos (E<50 MeV) within a few seconds, which can reach the Earth and be detected.
- New generation of ton-scale particle detectors (e.g. **DUNE**, **SBND**) is based on **liquid Argon technology.** Aim to observe this signals
- No measurements of this cross section for low E in Ar! (KARMEN and LSND measurements (2001) in ¹²C).
- **Model predictions** for the total Xsec vary up to a factor of 2: A measurement with 50% uncertainty would significantly improve constraints and help validate theoretical nuclear models.
- Measuring this XSec is critical for DUNE and multimessenger exploration via SNEWS, core-collapse supernova detection

The Coherent CAPTAIN Mills (CCM) experiment

- Located at Los Alamos, New Mexico, USA. LANSCE, LANL.
- Accelerator experiment with **800 MeV proton pulsed beam** hitting a Tungsten Target from above (90° wrt beam) at 20 Hz.
- ~ 3.1×10^{13} protons per bunch in a **triangular time distribution** of 280 ns.
- International collaboration ~50 members

México (ICN-UNAM): Alexis Aguilar, Juan Carlos D'Olivo, Cristian Macias, Marisol Chávez

The CCM detector

- Cylindrical cryostat with a **10 ton Liquid Argon** (LAr) capacity at 88K
- Located at 23 meters from Tungsten target
- Instrumented with **200 8" Photomultiplier Tubes** (PMTs) inside the 7 ton fiducial region and 1" PMTs in a 3 ton veto region optically isolated.
- MIT Muon portable detectors "Cosmic Watches" on top of the detector
- Detection system: Scintillation and Cherenkov light. No TPCs.
- Dynamic energy range from ~100 keV to 10 GeV
- Resolution: ~2 ns (time), ~5 cm (position), 20% energy.
- Surrounding **shielding:** lead, concrete, steel, borated polyethylene

Neutrino production and Charged Current scattering

- Neutrons, photons, pions and other particles are produced **in target**
- $\pi\text{-}$ are absorbed
- π + DAR \rightarrow prompt signal.
- muon decays in flight \rightarrow **delayed signal**.

$$\pi^{+} \to \mu^{+} + \nu_{\mu} \qquad (\tau_{\pi} = 26 \text{ ns "prompt"}) \qquad E_{\nu_{\mu}} \sim 30 \text{ MeV}$$

$$\mu^{+} \to e^{+} + \bar{\nu_{\mu}} + \nu_{e} \qquad (\tau_{\mu} = 2200 \text{ ns "delayed"}) \qquad E_{\nu_{e}, \bar{\nu_{\mu}}}: \ 0 - 52.8$$

• v_{e} interact in Liquid Argon:

- CC Cross Section has angular sensitivity. Differences between models
- Reconstructing **electron direction** will help **constrain** xs models.

- 52.8 MeV

Matches supernova

•Stage 1: Neutrino Primary Vertex injection (SIREN + MARLEY)

SIREN (Sampling and Injection for Rare EveNts) -Injects and weights interaction final states, with specific concern for the detector geometry.

-It makes use of the total cross section from MARI FY and the **neutrino flux**

MARLEY

-Provides the cross section prediction. -Developed by Steven Gardiner (Fermilab)

manan - Ra

- CC v. * Ar (Marley) . NC+ "A

Total Cross Sections in 40A

10 15 20 25 30 35 40 45 5 E RMV

Marisol Chávez Estrada. Reunión Anual de la División de Partículas y Campos May 21-23, 2025

•Stage 2: Neutrino Interaction with Argon nuclei

-After electron neutrinos are injected in the CCM detector argon volume MARLEY SIREN uses Marley CCMAnalysis calls CCMAnalysis hands CCMAnalysis uses generates the interaction process. total-xs to choose SIREN to do injection Marley to generate off secondary interaction vertex w/ Marley xs secondary particles particles to Geant4 Marlev SIREN Marlev Geant4 - For each interaction event, particles are produced. ${}^{40}K$, e⁻, γ , n, other nuclei, etc SIREN CCM Marlev Injector Simulator Simulator Frequency of secondary particles by type **DAQ Frame** DAQ Frame DAO Frame - I3MCTree: NuE + - I3MCTree: NuE + - I3MCTree: NuE + Fake[e+Ar] Realle +Ar+... 10000 Real[e+Ar+...] Energy spectra of secondary nucleus particles 8000 - I3MCTree: NuE + Time K40Nerlaus (66.04%) Real[e+Ar+...] 6000 fune K30Nucleus (18 44% + Energy deps me Ar39Nucleus (6 16%) derive. 10 pe CI36Nucleus (4.08% PhotonHits ne HeANneleus (A 38%) 200 pe Ar38Nucleus (0.45%) pe Cl35Nucleus (0.30%) 1111111111111 pe H2Nucleus (0.15%) A. Schneider Can port Injection (SIREN) and interaction with Ar (MARLEY) to other detectors 0.000 0.002 0.004 0.006 0.008 0.010 Kinetic Energy (GeV)

• Energy spectra of some of the secondary particles (e, gammas, neutrons, K40)

• Spatial Distribution (XY) in the CCM detector

Marisol Chávez Estrada. Reunión Anual de la División de Partículas y Campos May 21-23, 2025

•Stage 3: MC simulation with Geant 4

SIREN uses Marley CCMAnalysis calls **CCM**Analysis uses CCMAnalysis hands Geant4 SIREN to do injection Marl y to generate total-xs to choose off secondary w/Marley xs secol dary particles interaction vertex particles to Geant4 Marley -Simulates **propagation** of all the particles SIREN Marley Geant4 produced previously by Marley into the detector SIREN CCM Marlev Injector Simulator Simulator - Detailed geometry and optical properties of the DAQ Frame - I3MCTree: NuE + detector, PMT response DAO Frame - I3MCTree: NuE + - I3MCTree: NuE + Fake[e+Ar] Realle +Ar+... Real[e+Ar+...] I3MCTree: NuE + Real[e+Ar+...] -Retrieves Energy depositions in the detector + Energy deps PhotonHits and photon production and propagation A. Schneider

- Developed by Darcy Newmark and Austin Schneider (CCM)

Background - Michel electrons

• **Cosmic Muons** constantly arrive to CCM, some of them enter the detector and stop

Cosmic watches are used for tagging muons

 μ^- Decay in Orbit (DIO): 24%used-Muon binds to the 1S (K-Shell) atomic orbital forming a muonic atom-Decays via: $\mu^- \rightarrow e^- + \bar{\nu_e} + \nu_{\mu}$ -Produces Michel electrons

- Michel electrons can mimic the CC signal in the detector

 Irreducible background for searching low E CC-neutrino interactions
 Differentiate at the distribution level
 Reduce rate with muon veto
- ~1% of muons that enter the detector **stop** and decay
- 2.18 x 10⁻⁷ Michels/trigger in the detector within a 6 µs region of interest
- **Simulation** (Cristian Macías) and **data analysis** (Darrel Smith) efforts in progress for **energy calibration**.

Marisol Chávez Estrada. Reunión Anual de la División de Partículas y Campos May 21-23, 2025

Reconstruction with Cherenkov light in CCM

- Allows us to discriminate between different particle types (PID)
 - Present in **E/M events**, but not in nuclear recoils, and less in hadronic activity
- Electron neutrino (v_e) CC interactions: can reconstruct outgoing electron direction
- Michel electrons have an isotropic angular distribution
 - Uncorrelated with beam or source direction, unlike true neutrino-induced electrons
- Cherenkov-based angular distribution:
 - Statistically distinguish signal (directional) from background (isotropic)
 - Improving the overall signal-to-background ratio
- Training ML reconstruction to reproduce electron energy, position, and direction
- CCM did the First observation of Cherenkov light in liquid argon produced from sub-MeV particles !! D. Newmark

Takeaways

- The CC v_e^{-Ar} interaction **cross section** at low energies **remains unmeasured**. **Critical** for supernova detection and future LAr experiments like **DUNE**.
- CCM is capable of measuring it!!
- Theoretical **models disagree** by up to a factor of 2, simulation helps constrain and validate them.
- Our **full simulation chain** is implemented: SIREN + MARLEY + Geant4 + CCMAnalysis. The injection and interaction stages are **portable to other detectors** with LAr.
- **Cherenkov** light in LAr offers **directional separation** between **signal** and **background**, and CCM achieved the **first observation from sub-MeV particles using Cherenkov!**
- This work lays the **foundation** for a **future cross section measurement** of v_e -Ar in the tens-of-MeV regime.

A.A. Aguilar-Arevalo,⁸ D. S. M. Alves,⁶ S. Biedron,⁹ J. Boissevain,¹ M. Borrego,⁶ M. Chavez–Estrada,⁸
A. Chavez,⁶ J.M. Conrad,⁷ R.L. Cooper,^{6,10} A. Diaz,⁷ J.R. Distel,⁶ J.C. D'Olivo,⁸ E. Dunton,² B. Dutta,¹¹
A. Elliott,⁴ D. Evans,⁶ D. Fields,⁹ J. Greenwood,⁴ M. Gold,⁹ J. Gordon,⁴ E. Guarincerri,⁶ E.C. Huang,⁶
N. Kamp,⁷ C. Kelsey,⁶ K. Knickerbocker,⁶ R. Lake,⁴ W.C. Louis,⁶ R. Mahapatra,¹¹ S. Maludze,¹¹ J. Mirabal,⁶
R. Moreno,⁴ H. Neog,¹¹ P. deNiverville,⁶ V. Pandey,⁵ J. Plata–Salas,⁸ D. Poulson,⁶ H. Ray,⁵ E. Renner,⁶
T.J. Schaub,⁹ M.H. Shaevitz,² D. Smith,⁴ W. Sondheim,⁶ A.M. Szelc,³ C. Taylor,⁶ W.H. Thompson,⁶
M. Tripathi,⁵ R.T. Thornton,⁶ R. Van Berg,¹ R.G. Van de Water,⁶ S. Verma,¹¹ and K. Walker⁴
(The CCM Collaboration)

Backup slides

CCM Historical Timeline

Marisol Chávez Estrada. Reunión Anual de la División de Partículas y Campos May 21-23, 2025

Cross section prediction

6

 $\left(\frac{d\sigma}{d\cos\theta_f}\right)$

- MARLEY (Model of Argon Reaction Low Energy Yields) provides the cross section prediction.
 Developed by Steven Gardiner
- Includes the **allowed approximation** (long-wavelength (q->0) and slow nucleons ($p_N/m_N \rightarrow 0$ limit) and **Fermi and Gamow-Teller** matrix elements.
- MARLEY predicts a nearly flat angular distribution.
- Other models like CRPA include full expansion of nuclear matrix element (allowed as well as forbidden transition), predict more backwards strength.

0.650.6 DAR 0.55 0.45 0.4 CRPA CRPA - AA 0.35 MARLEY 0.3 0.25 -0.40.4 0.8 -0.80 $\cos\theta_f$

 $CC(\nu_e, {}^{40}Ar)$

• Model predictions for the total cross section vary by up to a factor of 2

 $(\sim 100\%) \rightarrow$ even a measurement with **50% uncertainty** would significantly improve constraints and help validate theoretical models.

CC xs has angular sensitivity. Reconstructing electron direction will help constrain xs models. **Critical for DUNE:** Multimessenger exploration via SNEWS

Total expected events in CCM

• Assuming 5 Tons of LAr, 1.5 x 10²² POT (2022+2023+2025 data), and a 75% efficiency $N_{ev} = 10^{-10}$ in the CCM detector:

$\mathbf{Y} \quad N_{\rm ev} = \int N_T \cdot \boldsymbol{\phi} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon} \ dE_{\nu}$

CC Events in CCM at 23 m, for 5 tons of LAr, E_{ν} :[0, 52.85 (= $m_{\mu}/2$) MeV] .

Total events/3 years	Total events/ year	Total events/ year. (Eff=75%)
150.64	50.21	37.7

Dominant source of error:

 Uncertainty in neutrino flux ~10%.
 (Based on LSND-like source 7%)
 Derived from pions/proton production

Detector systematic error:

- Uncertainty on energy threshold: 4% Due to 20% energy resolution
- Total estimated error on CC cross section: 16% Includes systematic and statistical errors
- There is an extra 0.9 x 10²² POT on disk currently (2021 data) Total events: 150.64 -> 180.766

Michel electrons Background estimation

- We assume that the muon entering the detector does in between two DAQ windows, making it impossible to observe directly.
- This muon produces a Michel electron within the DAQ window, particularly in a Region of Interest (ROI) relevant to our analysis.

 Considering that only 1% of muons entering the detector stop and decay into a Michel electron:

2.18×10^{-7} events/trigger

Mar

Side view

Backgrounds for CC search

Beam related	Solution
Time Related: Neutrons from the beam	Shielding, time cuts in data
Non time related: Neutron activation : emission of gamma, alpha, beta, neutrons, and fission products	Quality cuts, energy cut, measurement

Non beam related	Solution
Cosmogenic neutrons	PID
Michel electrons: from cosmic muons	Veto cuts, Muon identification

W target shielded : surrounding 5m of steel, 2 m of concrete.

CCM Shielded: surrounding walls, roof and under the cryostat Concrete, Steel, Borated Polyethylene, Lead

Michel electrons

• **Muons** constantly arrive to CCM, some of them enter the detector and stop:

Experience repulsion from the nucleus They are not captured Decays freely $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu_\mu}$ Lifetime: 2.197 us

used for tagging muons

Captured by an atom. Two possible processes:

μ- Lifetime in Argon: 537 ns

Neutrons

- Large number of neutron interactions post-beam
- Combination of cuts will remove most of these
 - Fiducial volume cuts
 - Event quality cuts
 - Triplet to singlet ratio cuts
 - Particle identification
 - Leveraging Cherenkov light
- Need a reduction of $\sim 10^3$ to get to 20% xs. sens.

Data Selection

- If neutron rate is too high post-cuts, we can leverage timing to reduce backgrounds
- Defining two ROI: early and late

Early ROI length: 178 ns Late ROI length: 5802 ns

Marisol Chávez Estrada. Reunión Anual de la División de Partículas y Campos May 21-23, 2025

Statistical Analysis (MC)

Signal distribution

- Energy dist:
 - Energy of the outgoing electron produced after the interaction in LAr (SIREN+MARLEY)
- Time dist combines:
 - Time when neutrino hits the detector (SIREN+MARLEY)
 - \circ $\,$ Time of pion decay $\,$
 - Time of muon decay
 - Triangular beam profile (pulse width =290 ns)

Background distribution Considering only Michel electrons

• Energy dist:

• Time dist:

Statistical Analysis (MC) (cont)

10000 11000 12000 13000 14000 15000 16000 Time (ns)

Data Selection

• Signal

The outgoing electron usually carries most of the energy ~ 20–50 MeV : KEY SIGNATURE FOR SIGNAL ID (Similar E range than Michel electrons)

A non-negligible fraction of the neutrino energy is lost to nuclear binding energy, nuclear excitation, and the kinetic energy of emitted particles (protons, neutrons).

• Starting cuts in data:

Time	Define early/late ROI's
Energy	Focus on the 20-50 MeV range to match the electron signal
Fiducial volume	Reduce edge-related backgrounds
Muon Veto	Use PMT's in veto region and cosmic watches to tag incoming muons
Cherenkov-based directionality	Exploit isotropic vs directional separation

Coated and uncoated PMTs

The cryostat

Physics program at CCM

• CCM is an experiment that explores the search for SM, BSM and Dark Sector physics, such as **leptophobic dark** matter, axion-like particles, meson portal models, and neutrino interactions.

• Publications:

-<u>First Leptophobic Dark Matter Search from the Coherent–CAPTAIN-Mills Liquid Argon Detector</u> (PRL) -<u>First dark matter search results from Coherent CAPTAIN-Mills</u> (PRD) -<u>Prospects for detecting axionlike particles at the Coherent CAPTAIN-Mills experiment</u> (PRD)

Cross Sections

Light production and detection in Argon

Detection mechanism: Scintillation light

The ν_e is scattered by the Ar atom through the **CC** process:

Electrons can:

$$\begin{array}{c|c}
\nu_e + {}^{40} Ar \rightarrow e^- + {}^{40} K^* \\
\hline
\end{array}$$
Electrons can:

$$\begin{array}{c|c}
e^- + Ar \rightarrow e^- + Ar^+ + e^{-'} \\
Ar^+ + e^- \rightarrow Ar^* \\
\hline
\end{array}$$
(recombination)

Excite the Ar:

$$\begin{array}{c|c}
e^- + Ar \rightarrow Ar^* + e^{-'} \\
e^- + Ar \rightarrow Ar^* + e^{-'} \\
\hline
\end{array}$$
Both process

$$\begin{array}{c|c}
e^- + Ar \rightarrow Ar^* + e^{-'} \\
e^- + Ar \rightarrow Ar^* + e^{-'} \\
\hline
\end{array}$$

The excited Argon (Ar^*) combines with atoms of neutral Argon creating excimers:

$$Ar^* + Ar \rightarrow Ar_2^* \rightarrow 2Ar + \gamma$$
(Excimer)

Detected by PMTs

Photons VUV (128 nm) Prompt component (singlet)~6 ns Delayed component (triplet) ~1600 ns

The ${}^{40}K^*$ returns to its ground state or can ionize Argon as it travels through the medium, producing light 31

CC Scattering

Neutrino Charged Current Scattering

The scattering of the neutrino with the nucleus (A,Z) is mediated by a W boson, leading to a lepton and a nucleus (A,Z+1)

CC Scattering (cont)

Leptonic Tensor:

$$\begin{split} L_{\mu\nu} &\equiv Tr[\gamma_{\mu}(1-\gamma_{5})\not\!k\gamma_{\nu}(1-\gamma_{5})(\not\!k'+m_{l})] \\ &= 8[k_{\mu}k'_{\nu}+k_{\nu}k'_{\mu}-g_{\mu\nu}(k\cdot k')-i\epsilon_{\mu\nu\rho\sigma}k^{\rho}k'^{\sigma}] \end{split}$$

$$\frac{d\sigma}{dQ^2} = \frac{G_F^2 |V_{ud}|^2}{32\pi (s - m_i^2)^2} F_C L_{\mu\nu} W^{\mu\nu},$$

 m_l Final lepton mass

Hadronic Tensor:

$$W^{\mu
u}\equiv rac{1}{2J_i+1}\sum_{M_i}\sum_{M_f}\mathcal{N}^\mu\mathcal{N}^{
ust}$$

 $J_i(J_f)$ Inicial (final) nuclear spin $M_i(M_f)$ Third component of the nuclear spin on its initial (final) state

 \mathcal{N}^{μ} Nuclear matrix element

$$\mathcal{N}^{\mu} = \langle f | \sum_{n=1}^{A} e^{i\mathbf{q} \cdot \mathbf{x}(n)} j^{\mu}(n) | i \rangle$$

3

CC Scattering (cont)

$$\mathcal{N}^{\mu} = \langle f | \sum_{n=1}^{A} e^{i\mathbf{q}\cdot\mathbf{x}(n)} j^{\mu}(n) | i \rangle$$

$$W^{\mu
u}\equiv rac{1}{2J_i+1}\sum_{M_i}\sum_{M_f}\mathcal{N}^\mu\mathcal{N}^{
ust}$$

The current operator is evaluated under the allowed approximation:

Large wavelength () and the momentum of the nucleon y the moment of the struck nucleon is neglected with respect to its mass

 $\mathcal{N}^{0} = \frac{g_{V}}{\sqrt{2L+1}} \delta_{J_{i}J_{f}} \delta_{M_{i}M_{f}} \langle f || \mathcal{O}_{F} || i \rangle$

Temporal component:

Spatial component:

$$\mathcal{N}^{\omega} = \frac{-g_A(-1)^{J_i - M_i}}{\sqrt{3}} (J_f \ M_f \ J_i \ - M_i |1 \ \omega) \langle f || \mathcal{O}_{GT} || i \rangle$$

$$\mathcal{O}_F \equiv \sum_{n=1}^A t_-(n)$$

 $\mathcal{O}_{GT} \equiv \sum_{n=1}^A \sigma(n) t_-(n)$
Fermi and
Gamow-Teller
operators

Under this approximation, the hadronic tensor:

$$W^{00} = 4E_i E_f B(F)$$
$$W^{ab} = \frac{4}{3} \delta_{ab} E_i E_f B(GT)$$
$$W^{0a} = 4W^{a0} = 0$$

$$B(F) \equiv \frac{g_V^2}{2J_i + 1} \left| \langle J_f || \mathcal{O}_F || J_i \rangle \right|^2$$
$$B(GT) \equiv \frac{g_A^2}{2J_i + 1} \left| \langle J_f || \mathcal{O}_{GT} || J_i \rangle \right|^2$$

Fermi and Gamow-Teller Reduced matrix elements

Total energy of the nuclei in the initial (final) state

CC Scattering (cont)

In the CM system the energies of the particle are independent of the scattering angle :

$$\sigma = \frac{G_F^2 |V_{ud}|^2}{\pi} F_C \left[\frac{E_i E_f}{s} \right] E_l |\mathbf{p}_l| \left[B(F) + B(GT) \right]$$

To date there are no experimental data available for CC scattering of in argon in the MeV range.