Status of the MPD experiment at NICA

PONENTE

Dra. Ivonne Alicia Maldonado Cervantes JINR (RUS)

The Nuclotron-based Ion Collider fAcility (NICA) is a mega-science project under development at the Joint Institute for Nuclear Research in Dubna, Rusia; Its main goal is to study hot and dense strongly interacting QCD matter and to search for a mixed phase and the critical end point in the QCD phase diagram. NICA will collide ion beams (up to Au+79) with an average luminosity of $L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$ in the energy range from $\sqrt{s_{NN}} = 4 - 11$ GeV, as well as beams of polarized protons ($\sqrt{s_{NN}}$ up to 26 GeV) and deuterons ($\sqrt{s_{NN}}$ up to 12 GeV). The facility includes the fixed target experiment Baryon Matter at Nuclotron BM@N, the collider facilities Multi Purpose Detector (MPD) and Spin Physics Detector (SPD) experiments and the ARIADNA (Applied Research at the NICA) project. It is expected that the technological start-up of the complex and the first ion collisions will take place in the middle of 2025. The MPD experiment will run with heavy-ion collisions within the center of mass $\sqrt{s_{NN}}$ energy range from 2.4 to 3.5 GeV in fixed target mode and from 4 to 11 GeV in collider mode. This will make possible to shed light on a poorly studied region of the phase diagram and to test predictions of non-perturbative QCD and other theoretical models describing strongly interacting matter. In this talk I will review the status of the MPD experiment and the feasibility physics studies in preparation for the first data taking that will take place in 2026. Also I will takk about the joint efforts between JINR and a group of Mexican scientists. In particular the development of the miniBeBe, a trigger detector proposed to work during stage zero of the MPD operation, and its contribution to the second collaboration paper

SEMINARIO DE FÍSICA DE ALTAS ENERGÍAS

Instituto de Ciencias Nucleares UNAM

miércoles 30/10/24

nstitutodeFisicaUNAM cnunam

13 HRS

y física de altas energías, A225

@institutodefisica
@icn.unam.mx

Lugar: salón de seminarios de gravitación

También puedes acompañarnos vía zoom https://cern.zoom.us/j/63861353708?pwd=cTBSMX BGc29iRVhWS3IUVmdLaiZwZz09