Muertes estelares y remanentes de supernova (SNR)

Fernanda Carreón

mfcarreon@astro.unam.mx

Recordemos el diagrama H-R...

(CSIRO Radio Astronomy Image Archive)

(Karttunen et al., 2017)

Recordemos el diagrama H-R...

 $\log T_{\rm eff}(K)$

(Pols, 2011)

(Karttunen et al., 2017)

Recordemos el diagra

(CSIRO Radio Astronomy Image Archive)

Large star

Stellar cloud with proto-stars

Planetary nebula

$1.4M_{\odot} < M < 2.1M_{\odot}$

Supernova $8M_{\odot} < M < 30M_{\odot}$

Black hole > $2.1M_{\odot}$

 Las estrellas con masas $< 8M_{\odot}$ terminan como Enanas Blancas (WD)

Planetary nebula

$1.4M_{\odot} < M < 2.1M_{\odot}$

$8M_{\odot} < M < 30M_{\odot}$

Black hole > $2.1M_{\odot}$

- Las estrellas con masas $< 8M_{\odot}$ terminan como Enanas Blancas (WD)
- Para masas $> 8M_{\odot}$ el escenario no es sencillo

Planetary nebula

$1.4M_{\odot} < M < 2.1M_{\odot}$

$8M_{\odot} < M < 30M_{\odot}$

Black hole > $2.1M_{\odot}$

- Las estrellas con masas $< 8M_{\odot}$ terminan como Enanas Blancas (WD)
- Para masas $> 8M_{\odot}$ el escenario no es sencillo

Planetary nebula

$1.4M_{\odot} < M < 2.1M_{\odot}$

$8M_{\odot} < M < 30M_{\odot}$

Neutron star

> 30M

Black hole > $2.1M_{\odot}$

- Las estrellas con masas $< 8M_{\odot}$ terminan como Enanas Blancas (WD)
- Para masas $> 8M_{\odot}$ el escenario no es sencillo
- Además de la masa, ¿qué creen que afecte la evolución de una estrella?

Planetary nebula

$1.4M_{\odot} < M < 2.1M_{\odot}$

$8M_{\odot} < M < 30M_{\odot}$

Neutron star

> 30M

Black hole > 2.1*M*⊙

Masa inicial

- Masa inicial
- Transferencia/pérdida de masa durante la fase AGB

- Masa inicial
- Transferencia/pérdida de masa durante la fase AGB
- Metalicidad

- Masa inicial
- Transferencia/pérdida de masa durante la fase AGB
- Metalicidad
- Es o no un sistema binario

Estrellas de masas bajas e intermedias $0.5 - 8 M_{\odot}$

- Más comunes en el universo
- Tiempo de vida 10^9 años
- Pérdida de masa durante la fase AGB revela el núcleo degenerado de C-O
 - Etapa transitoria como estrella central en nebulosas planetarias
 - Cascarón de quema de H se apaga —> <u>Enana</u> <u>blanca</u>
 - <u>SN la y novas</u>

NGC 6302. (NASA, ESA and the Hubble SM4 ERO Team)

Estrellas masivas $> 8 M_{\odot}$

- Al final de la vida de la estrella: núcleo de hierro degenerado
- Cuando el núcleo supera la masa de Chandrasehkar ($1.46\,M_{\odot}$), colapsa
 - Se forma una proto-estrella de neutrones (46% protones, 54% neutrones)
 - Los protones se convierten en neutrones por captura electrónica
 - Después de 30 segundos, se obtiene una estrella de neutrones constituida 10-20% protones + 90-80% neutrones

$p + e^- \rightarrow n + \nu_{\rho}$

Estrellas masivas > $8 M_{\odot}$								
Al final de la vida de la estrella: núcleo								
¿Qué pasa si la masa del núcleo supe								
Nada detiene el colapso								
El campo gravitacional se va volvie								
Eventualmente ni la luz escapa								
<u>Se forma un agujero negro</u>								
Una región en el espacio-tiempo c externo								

o de hierro degenerado

era la masa de TOF ($\sim 2.1\,M_{\odot}$)?

ndo más fuerte

que no se puede comunicar con el universo

Estrellas masivas $> 8 M_{\odot}$

(Alsabti & Murdin, 2017)

Estrellas masivas $> 8 M_{\odot}$

(Woodley et al, 2002)

Estrellas masivas (Woodley et al, 2002) > $8 M_{\odot}$ low mass stars

Estrellas masivas (Woodley et al, 2002)

NASA, ESA, CSA, STScl, Webb ERO Production

12

Supernovas

<i>stars</i> llapse SNe	Very massive stars Pair instability SNe				
∏ ↑ Π b	Ultra-faint II-P				
ID II-L	. п-р				
ined	Super-luminous Gamma-ray bursters				
n					

(Alsabti & Murdin, 2017)

Supernovas

By Cmglee - Own work, CC BY-SA 3.0, https://bitly.cx/mA7Bw

Exploding massive stars									He 2
Exploding			B	C	N	0	F	Ne	
			5	6	7	8	9	10	
dwarfs		Al	Si	P	S	CI	Ar		
		13	14	15	16	17	18		
CO	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
27	28	29	30	31	32	33	34	35	36
Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
77	78	79	80	81	82	83	84	85	86

Remanentes de Supernova(SNR)

(X. Zhang et al, 2012)

NASA, ESA, J. Hester and A. Loll (Arizona State University)

