Mecanismos de emisión en blazares _{3ra clase}

Mabel Osorio. Nov 21, 2024

Repaso

- Los blazares son AGNs que se observan directamente hacia el jet.
- Cuando estudiamos a los blazares, estudiamos el comportamiento y la naturaleza del jet.
- Conforman el 70% de las fuentes que emiten en rayos gamma.

Urry & Padovani, 1995

۲

Puede estar representado por frecuencia, energía o longitud de onda.

$E = h\nu$

Emisión en óptico está a energías de $\sim 1~{
m eV}$ La constante de Planck es $h = 4.135 \times 10^{-15} \text{ eVs}$

$E = \frac{hc}{\lambda}$

Contenido

- Distribución Espectral de Energía (SED)
- Mecanismos de emisión del jet observados en blazares
- Emisión del jet
 - Sincrotron
 - Compton inverso
 - Hadronicos

Distribución Espectral de Energía (SED) Descripción general del comportamiento del flujo de una fuente en varias longitudes

de onda

- Espectro de AGNs.
- Compuesto de la emisión de las diferentes partes de AGNs.
- Para AGNs con jet, el espectro lo domina la emisión de este que se muestra con una morfología de dos componentes a diferentes energías.

SED de blazares

Componente de Altas Energías

Blazares BL Lac: Pico Sincrotrón LBL: $\nu < 10^{14}$ Hz. **IBL:** 10^{14} Hz $\leq \nu \leq 10^{15}$ Hz **HBL:** > 10^{15} Hz **EHBL:** > 10^{18} Hz

Emisión Sinctrotrón Auto Compton SSC por sus siglas en inglés

Compton Inverso.

Emisión Sinctrotrón Auto Compton SSC por sus siglas en inglés

Para blazares HBL, el pico 3 sincrotrón está en rayos X, y el pico de altas energías está en rayos zgamma de TeV

Misma población

3

Si sólo existe una inyección de partículas en el sistema, el flujo Se espera una cor sincrotrón es $F_{syn} \propto N_e$. El flujo de Compton Inverso. altas energías es $F_{ssc} \propto F_{syn}N_{e}$, por lo que $F_{ssc} \propto F_{syn}^2$.

Observaciones Blazar Mrk 421

Acciari V. A. et al., 2014, Astropart. Phys., 54, 1

González M. M et al., 2019, MNRAS 484

Blazar Mrk 501

Dbservaciones Blazar HBL 1ES 1959+650:

superior) y rayos X (panel inferior)

Krawczynski et al, 2004

Observaciones Blazar HBL PKS 2155-304

Curva de luz de observaciones entre 2005 al 2009. En rayos gamma (rojos) y en rayos X (azules).

Dbservaciones Blazar HBL PKS 2155-304

gamma alcanza valores 2 órdenes de magnitud mayor que el flujo promedio

Excess de rayos gamma en varias ocasiones

- La correlación con índice > 1 en Mrk 501.
- La presencia de outliers en la mayoría de las correlaciones.
- Observación de flares huérfanos o flares extremos.

Sincrotrón Auto Compton de múltiples zonas

- Podemos explicar correlaciones con indices > 1.
- Con este modelo también se puede explicar la generación no correlacionada de emisión en rayos gamma.

Ref: Luigi Costamante. HBL variability at high energies

Modelo Compton Externo

- La componente de mayor energía se da por efecto compton inverso pero con fotones externos al jet.
- Por esta razón, no se espera una correlación entre emisión a diferentes bandas de energía.

Ref: Manel Errando. Fermi summer school 2021

Modelos Hadrónicos

Ref: Manel Errando. Fermi summer school 2021 Las implicaciones de este modelo es que los AGNs son fuentes que aceleran rayos cósmicos (RC) y que se producen neutrinos astrofísicos.

- Emisión de las altas energías del SED se da por procesos hadrónicos.
- Se propone que el jet está formado por protones y un campo magnético de órden de Gauss para poder acelerarlos.
- Las interacciones que se dan son $\gamma + p \rightarrow p + \pi^{o} + S$ $p + \gamma \rightarrow n + \pi^{+} + \pi^{-} + S$ $p + \gamma \rightarrow p + e^{+} + e^{-}$
- Los piones decaen en: $\pi^o \rightarrow 2\gamma$ $\pi^+ + \pi^- \rightarrow \mu^+ + \mu^- + \nu_\mu$

Radio galaxias El modelo SSC no describe la emisión de rayos gamma de TeV

Espectro de M87 de observaciones de HAWC entre 2015 a 2022. Ref: HAWC collaboration, preliminary results

Espectro multifrecuencias de M87 ajustado con un modelo SSC

La Luz de Fondo Extragaláctica (EBL) Un fondo muy importante para astrofísica de altas energías

Componentes del Fondo Cósmico Extragaláctico

- Cosmic Radio Background
- Cosmic Microwave Background (CMB)
- Cosmic Infrarred Background
- Cosmic Optical Background
- Cosmic Ultra-Violet Background (CUVB)
- Cosmic X-ray Background
- Cosmic Gamma-ray Background (CGB)

(CRB) (CIB) (COB) **EBL** (CXB)

- Lejano-mediano IR: $10 \ \mu m - 1000 \ \mu m$

- Cercano-IR: $10 \ \mu m - 0.4 \ \mu m$

- Óptico: $0.4 \ \mu m - 0.7 \ \mu m$

- Cercano UV: $0.1~\mu m$ - $0.4~\mu m$

Intensidad del Fondo Cósmico Extragaláctico

positrón

Gilmore, R. C., et al., MNRAS 422(4), 3189-3207

• El requerimiento básico para que se lleve a cabo la producción de pares es que debe haber suficiente energía en el centro de masa del sistema fotón-fotón para crear un par electrón-

 $/2E_{\gamma}E_{bg}(1-\cos\theta) \ge 2m_ec^2$

Cercano y mediano IR

Cercano IR y óptico

Fotones UV

El flujo observado y el intrínseco se relaciona como: $F_{obs}(E) = F_{int}(E) \times e^{-\tau(E,z)}$ donde $\tau(E, z)$ es la profundidad óptica $\tau(E_{\gamma}, z_0) = \frac{1}{2} \int_0^{z_0} dz \, \frac{dl}{dz} \int_{-1}^1 du \, (1-u)$ $\times \int_{E_{\rm min}}^{\infty} \mathrm{d}E_{\rm bg} \, n(E_{\rm bg}, z) \, \sigma(E_{\gamma}(1+z), E_{\rm bg}, \theta)$ 100

Gilmore, R. C., et al., MNRAS 422(4), 3189-3207

