

PRODUCTION OF ANTINEUTRONS IN HEAVY ION AND pp COLLISIONS IN THE ALICE EXPERIMENT AT THE LHC

Fabiola Lugo, Arturo Menchaca

IF UNAM

11/2024

Introduction

- Identify \bar{n} 's and reconstruct their kinematic properties through the momentum correlations between the \bar{n} 's and the $p\bar{p}$ pairs produced in charge exchange reactions.
- Use ITS silicon *n*'s as targets in which these reactions can be carried out.

Introduction

Previous study

- When the reaction occurs, the nucleus breaks apart, and a certain amount of energy is transferred to the nucleus fragments.
- The \bar{n} momentum can only be recovered from a CEX-based kinematic analysis within this limitation.
- In a CEX event a unique \bar{p} is produced.
- This is not the case for the p. The best one can do is to identify as the p CEX-partner the one that satifies the following conditions:
- > The most likely p should be that for which the distance from the primary vertex to the plane defined by the interaction vertex and the \bar{p} and p momenta, is minimal.

To reduce the uncertainty in kinematic reconstruction, events characterized by a large loss of \bar{n} energy were discarded:

$$\succ E_k^{\bar{p}} + E_k^p$$

 $\succ \left| c(\pmb{p}^{\bar{p}} + \pmb{p}^p) \right|$

F Lugo-Porras *et al,* Feasibility study to characterize the production of antineutrons in high energy *pp* collisions through charge exchange interactions, 2024 *J. Phys. G: Nucl. Part. Phys.* **51** 035005, doi: 10.1088/1361-6471/ad1dc1

Antineutrons production

- The protocol proposed for selecting CEX $p\bar{p}$ pairs was applied to the ALICE Monte Carlo simulations:
 - ▶ pb-pb (HIJING): LHC16g1
 ▶ pp (PYTHIA): LHC15a2a
 Ecm = 7000 GeV
- ITS coverture: $|\eta| < 1.5$ and $|V_z| < 5.3$ cm
 - > 13% for pbpb
 - ➤ 19% for pp

We select:

- Secondary \bar{p} 's generated by the interaction of a primary \bar{n} with the material
- Secondary vertex inside the ITS

➤ 3.9 cm <|Vx|< 43.6 cm</p>
3.9 cm <|Vy|< 43.6 cm</p>
|Vz|< 48.9 cm</p>

- Charged pion veto
- p 's fulfilling the same conditions as the $\bar{p}\,$ and produced in the same vertex
- CEX $p\bar{p}$ pair through the protocol developed previously.
- Events for which the \overline{n} mother is covered by the ITS:
 - \succ |η| < 1.5 and |V_z| < 5.3 cm
- We recover the efficiencies obtained in the feasibility study
 - ▶ pp: 7 events → 0.007%
 - ➤ pbpb: 11 events → 0.003%
- The reconstructed momentum is ~60% of the \bar{n} momentum.

Layer	R (cm)	$\pm Z \ (cm)$	Area (m^2)
1	3.9	14.1	0.07
2	7.6	14.1	0.14
3	15.0	22.1	0.42
4	23.9	29.7	0.89
5	38.0	43.1	2.20
6	43.0	48.9	2.80
7	60.0	60.0	

Verification of previous results

- The \bar{n} momentum and CEX-reconstructed momentum components are correlated.
- A linear function of the form P0 + P1x is fitted.

Verification of previous results

- The ITS can be considered as a continuous target.
- CEX interactions occur in the ITS layers.

- We select secondary \bar{p} generated by the interaction of a primary particle with the material.
- Events where a charged pion is produced are discarded.
- 90% of the \bar{p} 's originate from primary \bar{n} 's and \bar{p} 's.
- We expect to reject background from charged particles using the ITS and the TPC, since the parent particle must produce signals in the first layers of the ITS.
- Background from neutral particles is less than 1%.

Mother particle	pbpb (%)	рр (%)
n	0.54	0.30
\overline{n}	31.46	28.68
p	0.56	0.38
\bar{p}	63.77	64.29
π^+	1.26	2.20
π^{-}	1.24	2.17
<i>K</i> +	0.36	0.90
<i>K</i> ⁻	0.31	0.62
<i>K</i> ⁰ _{<i>S</i>}	0.15	0.13
K_L^0	0.34	0.34

Task to analyze data

To select CEX events in data, the following steps are proposed:

- Use TPC signals to select \bar{p} 's and p's
 - Produced in the same vertex.
 - > Do not register a signal in the first 2 layers of the ITS (preliminary)
- Implement a charged pion veto.
- CEX *p* selection using the previous protocol.
- Convert the task to O2 to apply the analysis to RUN 3 data.

Fabiola Lugo <u>fabiola.viridiana.lugo@cern.ch</u>