Omar Vazquez Seminario de Física de Altas Energias 14 August, 2024

ALL KIN

ASSES.

Outline of the talk

- Introduction
 - The QCD phase diagram & the EoS
- The speed of sound, C_{s}
- Ultra-central AA collisions (UCCs)
- The ALICE experiment
- Data analysis
- Results
- Conclusions

Introduction

QCD phase diagram and the equation of state (EoS)

- Ultrarelativistic AA collisions are used to map the \bullet The EoS governs the dependence of the phase diagram of QCD matter. pressure (P) of QCD matter on the T, and $\mu_{\rm B}$. At high temperature (T) or high baryon density \bullet Lattice QCD predicts that nuclear matter $(\mu_{\rm B})$, nuclear matter undergoes a **phase** undergoes a phase transition at 7~155 MeV transition into an unbound state of quarks, and and $\mu_{\rm R} \approx 0$. gluons — a quark-gluon plasma (QGP).

QCD phase diagram and the equation of state (EoS)

- Ultrarelativistic AA collisions are used to map the \bullet The EoS governs the dependence of the phase diagram of QCD matter. pressure (P) of QCD matter on the T, and $\mu_{\rm B}$.
- At high temperature (T) or high baryon density $(\mu_{\rm B})$, nuclear matter undergoes a **phase** transition into an unbound state of quarks, and gluons — a quark-gluon plasma (QGP).

Omar Vazquez

Lattice QCD predicts that nuclear matter undergoes a phase transition at 7~155 MeV and $\mu_{\rm B} \approx 0$.

The speed of sound, c_s

 Velocity at which compression waves travel in a fluid.

$$c_s^2 = \frac{\mathrm{d}P}{\mathrm{d}\epsilon}$$

• First attempt using ALICE heavy-ion data extracted $c_s^2 = 0.24$ at $T_{eff} = 222$ MeV.

	-
	-
	1
	-
	1
ta	1
	-
nics	
	-

The speed of sound, c_s

 Velocity at which compression waves travel in a fluid.

$$c_s^2 = \frac{\mathrm{d}P}{\mathrm{d}\epsilon}$$

• First attempt using ALICE heavy-ion data extracted $c_s^2 = 0.24$ at $T_{eff} = 222$ MeV.

Ultra-central Pb-Pb collisions

- The volume of the QGP in UCCs is constant.
- Total entropy (S) can vary significantly \rightarrow increase of the N_{ch} .
- Larger entropy density \rightarrow higher temperature, T, $\rightarrow \langle p_T \rangle$ increases.

•
$$c_s^2 = \frac{\mathrm{d}P}{\mathrm{d}\epsilon} = \frac{s\,\mathrm{d}T}{T\,\mathrm{d}s}$$
.
• Experimental determination of $c_s^2 = \frac{\mathrm{d}\ln\langle p|}{\mathrm{d}\ln\langle \mathrm{d}N_{\mathrm{ch}}|}$

Nature Physics 16, 615-619 (2020)

The S_{knee} is defined as the $\langle S \rangle$ at b=0. $s \propto S/R^3$

First measurement of c_s^2 by the CMS Collaboration

- CMS made the first measurement using UCCs to extract c_s^2 at the LHC energies.
- Uses the $\langle p_T \rangle \langle p_T \rangle^0$ v.s. N_{ch} / N_{ch}^0 correlation \rightarrow minimizes the total systematic uncertainty.
- The extracted c_s^2 agrees well with lattice QCD predictions.

What drives the rise of $\langle p_T \rangle$ in UCCs?

- Different centrality estimators \rightarrow different $< p_T >$
- Can have a large effect on the extracted speed of sound values.

Phys. Lett. B 853 (2024) 138636

What drives the rise of $<\rho_T >$ in UCCs?

- Different centrality estimators \rightarrow different $< p_T >$
- Can have a large effect on the extracted speed of sound values.

Phys. Lett. B 853 (2024) 138636

The ALICE experiment

Relevant detectors:

- Multiplicity estimation (N_{tracklets}).

Relevant detectors:

- Silicon Pixel Detector (SPD) Multiplicity estimation (N_{tracklets}).
- Time-Projection Chamber (TPC) Tracking, PID, and multiplicity estimation (N_{ch}).

Relevant detectors:

- Silicon Pixel Detector (SPD)
 Vertex reconstruction, tracking, and
 Multiplicity estimation (N_{tracklets}).
- Time-Projection Chamber (TPC)
 Tracking, PID, and multiplicity
 estimation (N_{ch}).
- V0A ($2.8 < \eta < 5.1$) and V0C ($-3.7 < \eta < -1.7$) Triggering, multiplicity estimation (N_{ch}).

• ZDC

Centrality estimation.

Tracklet: track segment joining hits in the SPD detector.

Relevant detectors:

- Silicon Pixel Detector (SPD)
 Vertex reconstruction, tracking, and
 Multiplicity estimation (N_{tracklets}).
- Time-Projection Chamber (TPC) Tracking, PID, and multiplicity estimation (N_{ch}).
- VOA (2.8 < η < 5.1) and VOC (-3.7 < η < -1.7) Triggering, multiplicity estimation (N_{ch}).

• ZDC

Centrality estimation.

Tracklet: track segment joining hits in the SPD detector.

Data analysis

Centrality estimators

Observable	Label	Centrality estimation	$\langle p_{\rm T} \rangle$ and $\langle {\rm d} N_{\rm ch} / {\rm d} \eta \rangle$	η gap
N _{ch} in TPC	Ι	$ \eta \leq 0.8$	$ \eta \leq 0.8$	0
	Π	$0.5 \leq \eta \leq 0.8$	$ \eta \leq 0.3$	0.2
F_{-} in TDC	III	$ \eta \leq 0.8$	$ \eta \leq 0.8$	0
$E_{\rm T}$ in TPC	IV	$0.5 \leq \eta \leq 0.8$	$ \eta \leq 0.3$	0.2
N _{tracklets} in SPD	V	$ \eta \leq 0.8$	$ \eta \leq 0.8$	0
	VI	$0.5 \leq \eta \leq 0.8$	$ \eta \leq 0.3$	0.2
	VII	$0.3 < \eta \le 0.6$	$ \eta \leq 0.3$	0
	VIII	$0.7 \le \eta \le 1$	$ \eta \leq 0.3$	0.4
N _{ch} in V0	IX	$-3.7 < \eta < -1.7 + 2.8 < \eta < 5.1$	$ \eta \leq 0.8$	0.9

- N_{ch} and E_T have a lower (upper) p_T cut of 0.15 (50) GeV/c.
- $N_{\text{tracklets}}$: lower p_{T} cut of 0.03 GeV/c.

Measuring the pt spectra

- Pb–Pb data at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
- Use high multiplicity and high transverse energy events to select UCCs.

• Measure the p_T spectra in narrow percentile bins.

Measuring the pt spectra

- Pb—Pb data at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
- Use high multiplicity and high transverse energy events to select UCCs.
- Measure the p_T spectra in narrow percentile bins.

gy events to select UCCs. ns.

Data-driven extraction of <**N**_{part}> **for UCCs**

 <N_{part}> v.s. centrality: indirect measure of the interaction region radius. A = 208, $\langle E_N \rangle$ ($\langle E_P \rangle$) is the mean neutrons(protons) energy in the ZDC, α_N and α_P are acceptance corrections, and $E_A=2.51$ TeV. <u>ALICE-PUBLIC-2020-001</u>

Corrections to the pt spectra

Omar Vazquez

 $p_{\rm T}~({\rm GeV}/c)$

					-
					-
					-
					-
				_	
					_
					7
					-
					-
					-
					-
					-
				-	
					_
					_
					٦
					5
			. /	/ _	
p_{\perp}	. ((ЭĒ	۶V/	' C	;)

Corrections to the pt spectra

Extrapolation to $p_T = 0$

- Wave model.
- Measure $\langle p_T \rangle$ and $\langle dN/d\eta \rangle$ in the p_T interval between 0 and 10 GeV/c.
- Fraction of extrapolated yields is about 9%.

• Extrapolation to $p_T=0$ by fitting the spectra in 0.15< $p_T < 1.5$ GeV/c with a Boltzmann-Gibbs Blast-

Omar Vazquez

12

Normalized p_T spectra ratios

- N_{ch} based centrality estimators: enhances yield at mid p_T only (radial flow bump).
- $E_{\rm T}$ based centrality estimator: enhances yield at both mid and high $p_{\rm T}$.

Normalized ratio =

Normalized p_T spectra ratios

Extracting the squared speed of sound, c_s^2

Primary observable: $< p_T > / < p_T > ^{0-5\%}$ v.s. $< dN/d\eta > / < dN/d\eta > ^{0-5\%}$ correlation

$$\langle p_{\rm T} \rangle / \langle p_{\rm T} \rangle^{0-5\%} = \left[\frac{N_{\rm ch}^*}{f(N_{\rm ch}^*, N_{\rm ch,knee}^*, \sigma_0)} \right]^{C_s^2}$$

$$N_{\rm ch}^* = \langle dN/d\eta \rangle / \langle dN/d\eta \rangle^{0-5\%}.$$

Below the knee $\langle p_{\rm T} \rangle / \langle p_{\rm T} \rangle^{0-5\%} = 1$

Above the knee $\langle p_{\rm T} \rangle / \langle p_{\rm T} \rangle^{0-5\%} \propto$ $N_{ch,knee}^*$

Gaussian distribution of the number of emitted particles for a fixed impact parameter

Estimating the $N^*_{ch,knee}$ and σ_0

- a fixed impact parameter. PRC 97, 014905 (2018)

• Construct the event fraction distribution as a function of $N_{ch}^* = \langle dN_{ch}/d\eta \rangle / \langle dN_{ch}/d\eta \rangle^{0-5\%}$.

• Fit the data with a model that assumes a Gaussian distribution of the number of emitted particles for

Results

Extracting the squared speed of sound, c_s^2

- Large range of c_s^2 values when N_{ch} or E_T overlaps with region to extract c_s^2 .
- Introducing a η gap for $E_{\rm T}$ reduces the extracted c_s^2 .

Extracting the squared speed of sound, c_s^2

- Large range of c_s^2 values when N_{ch} or E_T overlaps with region to extract c_s^2 .
- Introducing a η gap for $E_{\rm T}$ reduces the extracted c_s^2 .

and	$\langle p_{\rm T} \rangle$	& (d	$N/d\eta\rangle$		ALICE-PU and III	BLIC-202	<u>24-</u>
8 <	$\left(dN/d\eta \right)$		E _T	← I\	/		
and	$\langle p_{\rm T} \rangle$	&	$N/d\eta$				
() 0.	3 0	.5 0	.8 -	1 2	.8	5

VI, $C_{s}^{2} = 0.18 I_{0.00266 \text{ (stat)}}$ Extracting the squared speed of sound, c_s^2

- depends on the centrality estimation.
- decreases with N_{ch} centrality estimator when η gap placed.

VI, $C_{\rm s}^{-} = 0.18 I_{0.00266 \text{ (stat)}}$ Extracting the squared speed of sound, c_s^2

- Extraction of c_s^2 depends on the centrality estimation.
- Speed of sound also decreases with N_{ch} centrality estimator when η gap placed.

Extracted c_s^2 v.s. pseudorapidity gap

- A clear picture emerges -> Extracted speed of sound higher for E_T compared to N_{ch} centrality estimator with fixed eta gap for ALICE.

Trajectum predictions

• Trajectum predictions are in good agreement with the data.

Conclusions

- investigate QGP equation of state.
- The $\langle p_T \rangle / \langle p_T \rangle^{0-5\%}$ versus $\langle dN_{ch}/d\eta \rangle / \langle dN_{ch}/d\eta \rangle^{0-5\%}$ correlation depends on the definition of centrality.
- Experimental confirmation of Trajectum model prediction.
- The extraction of c_s^2 is not trivial -> biases are significant.
 - The extracted c_s^2 using E_T -based centrality estimators is larger compared to that using the N_{ch} based estimators -> short and long range $< p_T > - < p_T >$ correlations.
 - The measured c_s^2 decreases with increasing pseudorapidity gap.
- studies needed to reduce uncertainty.

• Both ALICE and CMS observe an increase of $< p_T >$ with $< dN_{ch}/d\eta >$ in UCCs -> new opportunity to

• Range of ALICE values ($c_s^2 = 0.2 \pm 0.1$) consistent with CMS value, $c_s^2 = 0.24 \pm 0.016$. Further

Backup

$N_{\rm ch}(|\eta| < 0.8)$ vs V0 amplitude

• N_{ch} at mid-rapidity flattens out beyond V0 amplitude ~41x10³ if using very narrow percentiles.

Forward-backward <pt> correlations

ALI-PREL-119780

Dependence of $\langle b \rangle$ on the centrality estimator

Trajectum simulations; the average impact parameter ($\langle b \rangle$) decreases slowly for ultra-central collisions (<0.01%).

The centrality selector based on N_{ch} without p_T bias does best at selecting ultra-central collisions because ** is both, constant and lowest.

